MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk2lem2f Structured version   Visualization version   GIF version

Theorem numclwlk2lem2f 30352
Description: 𝑅 is a function mapping the "closed (n+2)-walks v(0) ... v(n-2) v(n-1) v(n) v(n+1) v(n+2) starting at 𝑋 = v(0) = v(n+2) with v(n) =/= X" to the words representing the prefix v(0) ... v(n-2) v(n-1) v(n) of the walk. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 31-May-2021.) (Proof shortened by AV, 23-Mar-2022.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
numclwwlk.r 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 prefix (𝑁 + 1)))
Assertion
Ref Expression
numclwlk2lem2f ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑥,𝐺,𝑤   𝑥,𝐻   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑅(𝑥,𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)

Proof of Theorem numclwlk2lem2f
StepHypRef Expression
1 nnnn0 12385 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 2z 12501 . . . . . . . . . . 11 2 ∈ ℤ
32a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℤ)
4 nn0pzuz 12800 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → (𝑁 + 2) ∈ (ℤ‘2))
51, 3, 4syl2anc 584 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘2))
65anim2i 617 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
763adant1 1130 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
8 numclwwlk.h . . . . . . . . 9 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
98numclwwlkovh 30348 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
109eleq2d 2817 . . . . . . 7 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
117, 10syl 17 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
12 fveq1 6821 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
1312eqeq1d 2733 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑋 ↔ (𝑥‘0) = 𝑋))
14 fveq1 6821 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘((𝑁 + 2) − 2)) = (𝑥‘((𝑁 + 2) − 2)))
1514, 12neeq12d 2989 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))
1613, 15anbi12d 632 . . . . . . 7 (𝑤 = 𝑥 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
1716elrab 3647 . . . . . 6 (𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
1811, 17bitrdi 287 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
19 peano2nn 12134 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
20 nnz 12486 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2120, 3zaddcld 12578 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℤ)
22 uzid 12744 . . . . . . . . . . . . . 14 ((𝑁 + 2) ∈ ℤ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
2321, 22syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
24 nncn 12130 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
25 1cnd 11104 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2624, 25, 25addassd 11131 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
27 1p1e2 12242 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
2827a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (1 + 1) = 2)
2928oveq2d 7362 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 + (1 + 1)) = (𝑁 + 2))
3026, 29eqtrd 2766 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + 2))
3130fveq2d 6826 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (ℤ‘((𝑁 + 1) + 1)) = (ℤ‘(𝑁 + 2)))
3223, 31eleqtrrd 2834 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1)))
3319, 32jca 511 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
34333ad2ant3 1135 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
3534adantr 480 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
36 simprl 770 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → 𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺))
37 wwlksubclwwlk 30033 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))) → (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 prefix (𝑁 + 1)) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
3835, 36, 37sylc 65 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 prefix (𝑁 + 1)) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺))
39 pncan1 11538 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
4039eqcomd 2737 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → 𝑁 = ((𝑁 + 1) − 1))
4124, 40syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 + 1) − 1))
4241oveq1d 7361 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 WWalksN 𝐺) = (((𝑁 + 1) − 1) WWalksN 𝐺))
4342eleq2d 2817 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 prefix (𝑁 + 1)) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
44433ad2ant3 1135 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 prefix (𝑁 + 1)) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
4544adantr 480 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 prefix (𝑁 + 1)) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
4638, 45mpbird 257 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
47 numclwwlk.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
4847clwwlknbp 30010 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2)))
49 simprl 770 . . . . . . . . . . . . . . . 16 (((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (𝑥‘0) = 𝑋)
50 simprr 772 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → 𝑥 ∈ Word 𝑉)
51 peano2nn0 12418 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
521, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
53 nnre 12129 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5453lep1d 12050 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
55 elfz2nn0 13515 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ (0...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0𝑁 ≤ (𝑁 + 1)))
561, 52, 54, 55syl3anbrc 1344 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(𝑁 + 1)))
57 2cnd 12200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 2 ∈ ℂ)
58 addsubass 11367 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
59 2m1e1 12243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (2 − 1) = 1
6059oveq2i 7357 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 + (2 − 1)) = (𝑁 + 1)
6158, 60eqtrdi 2782 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + 1))
6224, 57, 25, 61syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1))
6362oveq2d 7362 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → (0...((𝑁 + 2) − 1)) = (0...(𝑁 + 1)))
6456, 63eleqtrrd 2834 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ (0...((𝑁 + 2) − 1)))
65 elfzp1b 13498 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℤ ∧ (𝑁 + 2) ∈ ℤ) → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
6620, 21, 65syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
6764, 66mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
6867adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
69 oveq2 7354 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑥) = (𝑁 + 2) → (1...(♯‘𝑥)) = (1...(𝑁 + 2)))
7069eleq2d 2817 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑥) = (𝑁 + 2) → ((𝑁 + 1) ∈ (1...(♯‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7170ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑁 + 1) ∈ (1...(♯‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7268, 71mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(♯‘𝑥)))
73 pfxfv0 14596 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(♯‘𝑥))) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
7450, 72, 73syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
7574ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0)))
7675adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑉𝑁 ∈ ℕ) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0)))
7776impcom 407 . . . . . . . . . . . . . . . . . . 19 ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
7877ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
79 simpl 482 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥‘0) = 𝑋)
8078, 79eqtrd 2766 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 prefix (𝑁 + 1))‘0) = 𝑋)
81 pfxfvlsw 14599 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(♯‘𝑥))) → (lastS‘(𝑥 prefix (𝑁 + 1))) = (𝑥‘((𝑁 + 1) − 1)))
8250, 72, 81syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (lastS‘(𝑥 prefix (𝑁 + 1))) = (𝑥‘((𝑁 + 1) − 1)))
8324, 39syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
8424, 57pncand 11470 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁)
8583, 84eqtr4d 2769 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = ((𝑁 + 2) − 2))
8685fveq2d 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
8786adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
8882, 87eqtr2d 2767 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 2) − 2)) = (lastS‘(𝑥 prefix (𝑁 + 1))))
8988ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = (lastS‘(𝑥 prefix (𝑁 + 1)))))
9089adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑉𝑁 ∈ ℕ) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = (lastS‘(𝑥 prefix (𝑁 + 1)))))
9190impcom 407 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (𝑥‘((𝑁 + 2) − 2)) = (lastS‘(𝑥 prefix (𝑁 + 1))))
9291neeq1d 2987 . . . . . . . . . . . . . . . . . . . . . 22 ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) ↔ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0)))
9392biimpcd 249 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) → ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0)))
9493adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0)))
9594impcom 407 . . . . . . . . . . . . . . . . . . 19 (((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0))
9695adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0))
97 neeq2 2991 . . . . . . . . . . . . . . . . . . . 20 (𝑋 = (𝑥‘0) → ((lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋 ↔ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0)))
9897eqcoms 2739 . . . . . . . . . . . . . . . . . . 19 ((𝑥‘0) = 𝑋 → ((lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋 ↔ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0)))
9998adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋 ↔ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0)))
10096, 99mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)
10180, 100jca 511 . . . . . . . . . . . . . . . 16 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))
10249, 101mpancom 688 . . . . . . . . . . . . . . 15 (((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))
103102exp31 419 . . . . . . . . . . . . . 14 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
104103com23 86 . . . . . . . . . . . . 13 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
105104ancoms 458 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2)) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
10648, 105syl 17 . . . . . . . . . . 11 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
107106imp 406 . . . . . . . . . 10 ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
108107com12 32 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
1091083adant1 1130 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
110109imp 406 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))
11146, 110jca 511 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
112111ex 412 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
11318, 112sylbid 240 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
114113imp 406 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
115 3simpc 1150 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉𝑁 ∈ ℕ))
116115adantr 480 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑉𝑁 ∈ ℕ))
117 numclwwlk.q . . . . . . 7 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
11847, 117numclwwlkovq 30349 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
119116, 118syl 17 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
120119eleq2d 2817 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑋𝑄𝑁) ↔ (𝑥 prefix (𝑁 + 1)) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}))
121 fveq1 6821 . . . . . . 7 (𝑤 = (𝑥 prefix (𝑁 + 1)) → (𝑤‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
122121eqeq1d 2733 . . . . . 6 (𝑤 = (𝑥 prefix (𝑁 + 1)) → ((𝑤‘0) = 𝑋 ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑋))
123 fveq2 6822 . . . . . . 7 (𝑤 = (𝑥 prefix (𝑁 + 1)) → (lastS‘𝑤) = (lastS‘(𝑥 prefix (𝑁 + 1))))
124123neeq1d 2987 . . . . . 6 (𝑤 = (𝑥 prefix (𝑁 + 1)) → ((lastS‘𝑤) ≠ 𝑋 ↔ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))
125122, 124anbi12d 632 . . . . 5 (𝑤 = (𝑥 prefix (𝑁 + 1)) → (((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋) ↔ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
126125elrab 3647 . . . 4 ((𝑥 prefix (𝑁 + 1)) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ↔ ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
127120, 126bitrdi 287 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑋𝑄𝑁) ↔ ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
128114, 127mpbird 257 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 prefix (𝑁 + 1)) ∈ (𝑋𝑄𝑁))
129 numclwwlk.r . 2 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 prefix (𝑁 + 1)))
130128, 129fmptd 7047 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  {crab 3395   class class class wbr 5091  cmpt 5172  wf 6477  cfv 6481  (class class class)co 7346  cmpo 7348  cc 11001  0cc0 11003  1c1 11004   + caddc 11006  cle 11144  cmin 11341  cn 12122  2c2 12177  0cn0 12378  cz 12465  cuz 12729  ...cfz 13404  chash 14234  Word cword 14417  lastSclsw 14466   prefix cpfx 14575  Vtxcvtx 28972   WWalksN cwwlksn 29802   ClWWalksN cclwwlkn 29999  ClWWalksNOncclwwlknon 30062   FriendGraph cfrgr 30233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-fz 13405  df-fzo 13552  df-hash 14235  df-word 14418  df-lsw 14467  df-substr 14546  df-pfx 14576  df-wwlks 29806  df-wwlksn 29807  df-clwwlk 29957  df-clwwlkn 30000  df-clwwlknon 30063
This theorem is referenced by:  numclwlk2lem2f1o  30354
  Copyright terms: Public domain W3C validator