MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk2lem2f Structured version   Visualization version   GIF version

Theorem numclwlk2lem2f 27580
Description: 𝑅 is a function mapping the "closed (n+2)-walks v(0) ... v(n-2) v(n-1) v(n) v(n+1) v(n+2) starting at 𝑋 = v(0) = v(n+2) with v(n) =/= X" to the words representing the prefix v(0) ... v(n-2) v(n-1) v(n) of the walk. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 31-May-2021.) (Proof shortened by AV, 23-Mar-2022.) (Revised by AV, 1-May-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
numclwwlk.r 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
Assertion
Ref Expression
numclwlk2lem2f ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑥,𝐺,𝑤   𝑥,𝐻   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑅(𝑥,𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)

Proof of Theorem numclwlk2lem2f
StepHypRef Expression
1 nnnn0 11586 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 2z 11695 . . . . . . . . . . 11 2 ∈ ℤ
32a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℤ)
4 nn0pzuz 11983 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → (𝑁 + 2) ∈ (ℤ‘2))
51, 3, 4syl2anc 575 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘2))
65anim2i 605 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
763adant1 1153 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
8 numclwwlk.h . . . . . . . . 9 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
98numclwwlkovh 27576 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
109eleq2d 2882 . . . . . . 7 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
117, 10syl 17 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
12 fveq1 6417 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
1312eqeq1d 2819 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑋 ↔ (𝑥‘0) = 𝑋))
14 fveq1 6417 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘((𝑁 + 2) − 2)) = (𝑥‘((𝑁 + 2) − 2)))
1514, 12neeq12d 3050 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))
1613, 15anbi12d 618 . . . . . . 7 (𝑤 = 𝑥 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
1716elrab 3570 . . . . . 6 (𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
1811, 17syl6bb 278 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
19 peano2nn 11329 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
20 nnz 11685 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2120, 3zaddcld 11772 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℤ)
22 uzid 11939 . . . . . . . . . . . . . 14 ((𝑁 + 2) ∈ ℤ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
2321, 22syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
24 nncn 11324 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
25 1cnd 10330 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2624, 25, 25addassd 10357 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
27 1p1e2 11445 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
2827a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (1 + 1) = 2)
2928oveq2d 6900 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 + (1 + 1)) = (𝑁 + 2))
3026, 29eqtrd 2851 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + 2))
3130fveq2d 6422 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (ℤ‘((𝑁 + 1) + 1)) = (ℤ‘(𝑁 + 2)))
3223, 31eleqtrrd 2899 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1)))
3319, 32jca 503 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
34333ad2ant3 1158 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
3534adantr 468 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
36 simprl 778 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → 𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺))
37 wwlksubclwwlk 27232 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))) → (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
3835, 36, 37sylc 65 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺))
39 pncan1 10749 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
4039eqcomd 2823 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → 𝑁 = ((𝑁 + 1) − 1))
4124, 40syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 + 1) − 1))
4241oveq1d 6899 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 WWalksN 𝐺) = (((𝑁 + 1) − 1) WWalksN 𝐺))
4342eleq2d 2882 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
44433ad2ant3 1158 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
4544adantr 468 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
4638, 45mpbird 248 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺))
47 numclwwlk.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
4847clwwlknbp 27206 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2)))
49 simprl 778 . . . . . . . . . . . . . . . 16 (((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (𝑥‘0) = 𝑋)
50 simprr 780 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → 𝑥 ∈ Word 𝑉)
51 peano2nn0 11619 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
521, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
53 nnre 11323 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5453lep1d 11250 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
55 elfz2nn0 12674 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ (0...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0𝑁 ≤ (𝑁 + 1)))
561, 52, 54, 55syl3anbrc 1436 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(𝑁 + 1)))
57 2cnd 11391 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 2 ∈ ℂ)
58 addsubass 10586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
59 2m1e1 11446 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (2 − 1) = 1
6059oveq2i 6895 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 + (2 − 1)) = (𝑁 + 1)
6158, 60syl6eq 2867 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + 1))
6224, 57, 25, 61syl3anc 1483 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1))
6362oveq2d 6900 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → (0...((𝑁 + 2) − 1)) = (0...(𝑁 + 1)))
6456, 63eleqtrrd 2899 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ (0...((𝑁 + 2) − 1)))
65 elfzp1b 12660 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℤ ∧ (𝑁 + 2) ∈ ℤ) → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
6620, 21, 65syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
6764, 66mpbid 223 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
6867adantr 468 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
69 oveq2 6892 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑥) = (𝑁 + 2) → (1...(♯‘𝑥)) = (1...(𝑁 + 2)))
7069eleq2d 2882 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑥) = (𝑁 + 2) → ((𝑁 + 1) ∈ (1...(♯‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7170ad2antrl 710 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑁 + 1) ∈ (1...(♯‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7268, 71mpbird 248 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(♯‘𝑥)))
73 swrd0fv0 13684 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(♯‘𝑥))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
7450, 72, 73syl2anc 575 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
7574ex 399 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0)))
7675adantl 469 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑉𝑁 ∈ ℕ) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0)))
7776impcom 396 . . . . . . . . . . . . . . . . . . 19 ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
7877ad2antrl 710 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = (𝑥‘0))
79 simpl 470 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥‘0) = 𝑋)
8078, 79eqtrd 2851 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋)
81 swrd0fvlsw 13687 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(♯‘𝑥))) → (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) = (𝑥‘((𝑁 + 1) − 1)))
8250, 72, 81syl2anc 575 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) = (𝑥‘((𝑁 + 1) − 1)))
8324, 39syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
8424, 57pncand 10688 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁)
8583, 84eqtr4d 2854 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = ((𝑁 + 2) − 2))
8685fveq2d 6422 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
8786adantr 468 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
8882, 87eqtr2d 2852 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 2) − 2)) = (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
8988ex 399 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩))))
9089adantl 469 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑉𝑁 ∈ ℕ) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩))))
9190impcom 396 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (𝑥‘((𝑁 + 2) − 2)) = (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
9291neeq1d 3048 . . . . . . . . . . . . . . . . . . . . . 22 ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) ↔ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9392biimpcd 240 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) → ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9493adantl 469 . . . . . . . . . . . . . . . . . . . 20 (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9594impcom 396 . . . . . . . . . . . . . . . . . . 19 (((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0))
9695adantl 469 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0))
97 neeq2 3052 . . . . . . . . . . . . . . . . . . . 20 (𝑋 = (𝑥‘0) → ((lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9897eqcoms 2825 . . . . . . . . . . . . . . . . . . 19 ((𝑥‘0) = 𝑋 → ((lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
9998adantr 468 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋 ↔ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ (𝑥‘0)))
10096, 99mpbird 248 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)
10180, 100jca 503 . . . . . . . . . . . . . . . 16 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
10249, 101mpancom 671 . . . . . . . . . . . . . . 15 (((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
103102exp31 408 . . . . . . . . . . . . . 14 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
104103com23 86 . . . . . . . . . . . . 13 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
105104ancoms 448 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2)) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
10648, 105syl 17 . . . . . . . . . . 11 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
107106imp 395 . . . . . . . . . 10 ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
108107com12 32 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
1091083adant1 1153 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
110109imp 395 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
11146, 110jca 503 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
112111ex 399 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
11318, 112sylbid 231 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
114113imp 395 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
115 3simpc 1175 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉𝑁 ∈ ℕ))
116115adantr 468 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑉𝑁 ∈ ℕ))
117 numclwwlk.q . . . . . . 7 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
11847, 117numclwwlkovq 27577 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
119116, 118syl 17 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
120119eleq2d 2882 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ↔ (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}))
121 fveq1 6417 . . . . . . 7 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (𝑤‘0) = ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0))
122121eqeq1d 2819 . . . . . 6 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → ((𝑤‘0) = 𝑋 ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋))
123 fveq2 6418 . . . . . . 7 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (lastS‘𝑤) = (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)))
124123neeq1d 3048 . . . . . 6 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → ((lastS‘𝑤) ≠ 𝑋 ↔ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))
125122, 124anbi12d 618 . . . . 5 (𝑤 = (𝑥 substr ⟨0, (𝑁 + 1)⟩) → (((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋) ↔ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
126125elrab 3570 . . . 4 ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋)))
127120, 126syl6bb 278 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁) ↔ ((𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 substr ⟨0, (𝑁 + 1)⟩)‘0) = 𝑋 ∧ (lastS‘(𝑥 substr ⟨0, (𝑁 + 1)⟩)) ≠ 𝑋))))
128114, 127mpbird 248 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 substr ⟨0, (𝑁 + 1)⟩) ∈ (𝑋𝑄𝑁))
129 numclwwlk.r . 2 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 substr ⟨0, (𝑁 + 1)⟩))
130128, 129fmptd 6616 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  w3a 1100   = wceq 1637  wcel 2157  wne 2989  {crab 3111  cop 4387   class class class wbr 4855  cmpt 4934  wf 6107  cfv 6111  (class class class)co 6884  cmpt2 6886  cc 10229  0cc0 10231  1c1 10232   + caddc 10234  cle 10370  cmin 10561  cn 11315  2c2 11368  0cn0 11579  cz 11663  cuz 11924  ...cfz 12569  chash 13357  Word cword 13522  lastSclsw 13523   substr csubstr 13526  Vtxcvtx 26111   WWalksN cwwlksn 26970   ClWWalksN cclwwlkn 27190  ClWWalksNOncclwwlknon 27275   FriendGraph cfrgr 27454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2069  ax-7 2105  ax-8 2159  ax-9 2166  ax-10 2186  ax-11 2202  ax-12 2215  ax-13 2422  ax-ext 2795  ax-rep 4977  ax-sep 4988  ax-nul 4996  ax-pow 5048  ax-pr 5109  ax-un 7189  ax-cnex 10287  ax-resscn 10288  ax-1cn 10289  ax-icn 10290  ax-addcl 10291  ax-addrcl 10292  ax-mulcl 10293  ax-mulrcl 10294  ax-mulcom 10295  ax-addass 10296  ax-mulass 10297  ax-distr 10298  ax-i2m1 10299  ax-1ne0 10300  ax-1rid 10301  ax-rnegex 10302  ax-rrecex 10303  ax-cnre 10304  ax-pre-lttri 10305  ax-pre-lttrn 10306  ax-pre-ltadd 10307  ax-pre-mulgt0 10308
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2062  df-mo 2635  df-eu 2642  df-clab 2804  df-cleq 2810  df-clel 2813  df-nfc 2948  df-ne 2990  df-nel 3093  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3404  df-sbc 3645  df-csb 3740  df-dif 3783  df-un 3785  df-in 3787  df-ss 3794  df-pss 3796  df-nul 4128  df-if 4291  df-pw 4364  df-sn 4382  df-pr 4384  df-tp 4386  df-op 4388  df-uni 4642  df-int 4681  df-iun 4725  df-br 4856  df-opab 4918  df-mpt 4935  df-tr 4958  df-id 5232  df-eprel 5237  df-po 5245  df-so 5246  df-fr 5283  df-we 5285  df-xp 5330  df-rel 5331  df-cnv 5332  df-co 5333  df-dm 5334  df-rn 5335  df-res 5336  df-ima 5337  df-pred 5907  df-ord 5953  df-on 5954  df-lim 5955  df-suc 5956  df-iota 6074  df-fun 6113  df-fn 6114  df-f 6115  df-f1 6116  df-fo 6117  df-f1o 6118  df-fv 6119  df-riota 6845  df-ov 6887  df-oprab 6888  df-mpt2 6889  df-om 7306  df-1st 7408  df-2nd 7409  df-wrecs 7652  df-recs 7714  df-rdg 7752  df-1o 7806  df-oadd 7810  df-er 7989  df-map 8104  df-pm 8105  df-en 8203  df-dom 8204  df-sdom 8205  df-fin 8206  df-card 9058  df-pnf 10371  df-mnf 10372  df-xr 10373  df-ltxr 10374  df-le 10375  df-sub 10563  df-neg 10564  df-nn 11316  df-2 11376  df-n0 11580  df-xnn0 11650  df-z 11664  df-uz 11925  df-fz 12570  df-fzo 12710  df-hash 13358  df-word 13530  df-lsw 13531  df-substr 13534  df-wwlks 26974  df-wwlksn 26975  df-clwwlk 27148  df-clwwlkn 27192  df-clwwlknon 27276
This theorem is referenced by:  numclwlk2lem2f1o  27582
  Copyright terms: Public domain W3C validator