MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  numclwlk2lem2f Structured version   Visualization version   GIF version

Theorem numclwlk2lem2f 30396
Description: 𝑅 is a function mapping the "closed (n+2)-walks v(0) ... v(n-2) v(n-1) v(n) v(n+1) v(n+2) starting at 𝑋 = v(0) = v(n+2) with v(n) =/= X" to the words representing the prefix v(0) ... v(n-2) v(n-1) v(n) of the walk. (Contributed by Alexander van der Vekens, 5-Oct-2018.) (Revised by AV, 31-May-2021.) (Proof shortened by AV, 23-Mar-2022.) (Revised by AV, 1-Nov-2022.)
Hypotheses
Ref Expression
numclwwlk.v 𝑉 = (Vtx‘𝐺)
numclwwlk.q 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
numclwwlk.h 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
numclwwlk.r 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 prefix (𝑁 + 1)))
Assertion
Ref Expression
numclwlk2lem2f ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Distinct variable groups:   𝑛,𝐺,𝑣,𝑤   𝑛,𝑁,𝑣,𝑤   𝑛,𝑉,𝑣   𝑛,𝑋,𝑣,𝑤   𝑤,𝑉   𝑥,𝐺,𝑤   𝑥,𝐻   𝑥,𝑁   𝑥,𝑄   𝑥,𝑉   𝑥,𝑋
Allowed substitution hints:   𝑄(𝑤,𝑣,𝑛)   𝑅(𝑥,𝑤,𝑣,𝑛)   𝐻(𝑤,𝑣,𝑛)

Proof of Theorem numclwlk2lem2f
StepHypRef Expression
1 nnnn0 12533 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℕ0)
2 2z 12649 . . . . . . . . . . 11 2 ∈ ℤ
32a1i 11 . . . . . . . . . 10 (𝑁 ∈ ℕ → 2 ∈ ℤ)
4 nn0pzuz 12947 . . . . . . . . . 10 ((𝑁 ∈ ℕ0 ∧ 2 ∈ ℤ) → (𝑁 + 2) ∈ (ℤ‘2))
51, 3, 4syl2anc 584 . . . . . . . . 9 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘2))
65anim2i 617 . . . . . . . 8 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
763adant1 1131 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)))
8 numclwwlk.h . . . . . . . . 9 𝐻 = (𝑣𝑉, 𝑛 ∈ (ℤ‘2) ↦ {𝑤 ∈ (𝑣(ClWWalksNOn‘𝐺)𝑛) ∣ (𝑤‘(𝑛 − 2)) ≠ 𝑣})
98numclwwlkovh 30392 . . . . . . . 8 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) → (𝑋𝐻(𝑁 + 2)) = {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))})
109eleq2d 2827 . . . . . . 7 ((𝑋𝑉 ∧ (𝑁 + 2) ∈ (ℤ‘2)) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
117, 10syl 17 . . . . . 6 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ 𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))}))
12 fveq1 6905 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘0) = (𝑥‘0))
1312eqeq1d 2739 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘0) = 𝑋 ↔ (𝑥‘0) = 𝑋))
14 fveq1 6905 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑤‘((𝑁 + 2) − 2)) = (𝑥‘((𝑁 + 2) − 2)))
1514, 12neeq12d 3002 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0) ↔ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))
1613, 15anbi12d 632 . . . . . . 7 (𝑤 = 𝑥 → (((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0)) ↔ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
1716elrab 3692 . . . . . 6 (𝑥 ∈ {𝑤 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (𝑤‘((𝑁 + 2) − 2)) ≠ (𝑤‘0))} ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))))
1811, 17bitrdi 287 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↔ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))))
19 peano2nn 12278 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ)
20 nnz 12634 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
2120, 3zaddcld 12726 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ ℤ)
22 uzid 12893 . . . . . . . . . . . . . 14 ((𝑁 + 2) ∈ ℤ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
2321, 22syl 17 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘(𝑁 + 2)))
24 nncn 12274 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
25 1cnd 11256 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → 1 ∈ ℂ)
2624, 25, 25addassd 11283 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + (1 + 1)))
27 1p1e2 12391 . . . . . . . . . . . . . . . . 17 (1 + 1) = 2
2827a1i 11 . . . . . . . . . . . . . . . 16 (𝑁 ∈ ℕ → (1 + 1) = 2)
2928oveq2d 7447 . . . . . . . . . . . . . . 15 (𝑁 ∈ ℕ → (𝑁 + (1 + 1)) = (𝑁 + 2))
3026, 29eqtrd 2777 . . . . . . . . . . . . . 14 (𝑁 ∈ ℕ → ((𝑁 + 1) + 1) = (𝑁 + 2))
3130fveq2d 6910 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ → (ℤ‘((𝑁 + 1) + 1)) = (ℤ‘(𝑁 + 2)))
3223, 31eleqtrrd 2844 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1)))
3319, 32jca 511 . . . . . . . . . . 11 (𝑁 ∈ ℕ → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
34333ad2ant3 1136 . . . . . . . . . 10 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
3534adantr 480 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))))
36 simprl 771 . . . . . . . . 9 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → 𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺))
37 wwlksubclwwlk 30077 . . . . . . . . 9 (((𝑁 + 1) ∈ ℕ ∧ (𝑁 + 2) ∈ (ℤ‘((𝑁 + 1) + 1))) → (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 prefix (𝑁 + 1)) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
3835, 36, 37sylc 65 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 prefix (𝑁 + 1)) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺))
39 pncan1 11687 . . . . . . . . . . . . . 14 (𝑁 ∈ ℂ → ((𝑁 + 1) − 1) = 𝑁)
4039eqcomd 2743 . . . . . . . . . . . . 13 (𝑁 ∈ ℂ → 𝑁 = ((𝑁 + 1) − 1))
4124, 40syl 17 . . . . . . . . . . . 12 (𝑁 ∈ ℕ → 𝑁 = ((𝑁 + 1) − 1))
4241oveq1d 7446 . . . . . . . . . . 11 (𝑁 ∈ ℕ → (𝑁 WWalksN 𝐺) = (((𝑁 + 1) − 1) WWalksN 𝐺))
4342eleq2d 2827 . . . . . . . . . 10 (𝑁 ∈ ℕ → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 prefix (𝑁 + 1)) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
44433ad2ant3 1136 . . . . . . . . 9 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 prefix (𝑁 + 1)) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
4544adantr 480 . . . . . . . 8 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ↔ (𝑥 prefix (𝑁 + 1)) ∈ (((𝑁 + 1) − 1) WWalksN 𝐺)))
4638, 45mpbird 257 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺))
47 numclwwlk.v . . . . . . . . . . . . 13 𝑉 = (Vtx‘𝐺)
4847clwwlknbp 30054 . . . . . . . . . . . 12 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2)))
49 simprl 771 . . . . . . . . . . . . . . . 16 (((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (𝑥‘0) = 𝑋)
50 simprr 773 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → 𝑥 ∈ Word 𝑉)
51 peano2nn0 12566 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
521, 51syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ ℕ0)
53 nnre 12273 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
5453lep1d 12199 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → 𝑁 ≤ (𝑁 + 1))
55 elfz2nn0 13658 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ (0...(𝑁 + 1)) ↔ (𝑁 ∈ ℕ0 ∧ (𝑁 + 1) ∈ ℕ0𝑁 ≤ (𝑁 + 1)))
561, 52, 54, 55syl3anbrc 1344 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → 𝑁 ∈ (0...(𝑁 + 1)))
57 2cnd 12344 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → 2 ∈ ℂ)
58 addsubass 11518 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + (2 − 1)))
59 2m1e1 12392 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (2 − 1) = 1
6059oveq2i 7442 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 + (2 − 1)) = (𝑁 + 1)
6158, 60eqtrdi 2793 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑁 ∈ ℂ ∧ 2 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 + 2) − 1) = (𝑁 + 1))
6224, 57, 25, 61syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → ((𝑁 + 2) − 1) = (𝑁 + 1))
6362oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑁 ∈ ℕ → (0...((𝑁 + 2) − 1)) = (0...(𝑁 + 1)))
6456, 63eleqtrrd 2844 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → 𝑁 ∈ (0...((𝑁 + 2) − 1)))
65 elfzp1b 13641 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℤ ∧ (𝑁 + 2) ∈ ℤ) → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
6620, 21, 65syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑁 ∈ ℕ → (𝑁 ∈ (0...((𝑁 + 2) − 1)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
6764, 66mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
6867adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(𝑁 + 2)))
69 oveq2 7439 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((♯‘𝑥) = (𝑁 + 2) → (1...(♯‘𝑥)) = (1...(𝑁 + 2)))
7069eleq2d 2827 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((♯‘𝑥) = (𝑁 + 2) → ((𝑁 + 1) ∈ (1...(♯‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7170ad2antrl 728 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑁 + 1) ∈ (1...(♯‘𝑥)) ↔ (𝑁 + 1) ∈ (1...(𝑁 + 2))))
7268, 71mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑁 + 1) ∈ (1...(♯‘𝑥)))
73 pfxfv0 14730 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(♯‘𝑥))) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
7450, 72, 73syl2anc 584 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
7574ex 412 . . . . . . . . . . . . . . . . . . . . 21 (𝑁 ∈ ℕ → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0)))
7675adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑋𝑉𝑁 ∈ ℕ) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0)))
7776impcom 407 . . . . . . . . . . . . . . . . . . 19 ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
7877ad2antrl 728 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 prefix (𝑁 + 1))‘0) = (𝑥‘0))
79 simpl 482 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (𝑥‘0) = 𝑋)
8078, 79eqtrd 2777 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 prefix (𝑁 + 1))‘0) = 𝑋)
81 pfxfvlsw 14733 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑥 ∈ Word 𝑉 ∧ (𝑁 + 1) ∈ (1...(♯‘𝑥))) → (lastS‘(𝑥 prefix (𝑁 + 1))) = (𝑥‘((𝑁 + 1) − 1)))
8250, 72, 81syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (lastS‘(𝑥 prefix (𝑁 + 1))) = (𝑥‘((𝑁 + 1) − 1)))
8324, 39syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = 𝑁)
8424, 57pncand 11621 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (𝑁 ∈ ℕ → ((𝑁 + 2) − 2) = 𝑁)
8583, 84eqtr4d 2780 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑁 ∈ ℕ → ((𝑁 + 1) − 1) = ((𝑁 + 2) − 2))
8685fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑁 ∈ ℕ → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
8786adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 1) − 1)) = (𝑥‘((𝑁 + 2) − 2)))
8882, 87eqtr2d 2778 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑁 ∈ ℕ ∧ ((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉)) → (𝑥‘((𝑁 + 2) − 2)) = (lastS‘(𝑥 prefix (𝑁 + 1))))
8988ex 412 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑁 ∈ ℕ → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = (lastS‘(𝑥 prefix (𝑁 + 1)))))
9089adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑋𝑉𝑁 ∈ ℕ) → (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (𝑥‘((𝑁 + 2) − 2)) = (lastS‘(𝑥 prefix (𝑁 + 1)))))
9190impcom 407 . . . . . . . . . . . . . . . . . . . . . . 23 ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (𝑥‘((𝑁 + 2) − 2)) = (lastS‘(𝑥 prefix (𝑁 + 1))))
9291neeq1d 3000 . . . . . . . . . . . . . . . . . . . . . 22 ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) ↔ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0)))
9392biimpcd 249 . . . . . . . . . . . . . . . . . . . . 21 ((𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0) → ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0)))
9493adantl 481 . . . . . . . . . . . . . . . . . . . 20 (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) → (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0)))
9594impcom 407 . . . . . . . . . . . . . . . . . . 19 (((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0))
9695adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0))
97 neeq2 3004 . . . . . . . . . . . . . . . . . . . 20 (𝑋 = (𝑥‘0) → ((lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋 ↔ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0)))
9897eqcoms 2745 . . . . . . . . . . . . . . . . . . 19 ((𝑥‘0) = 𝑋 → ((lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋 ↔ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0)))
9998adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋 ↔ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ (𝑥‘0)))
10096, 99mpbird 257 . . . . . . . . . . . . . . . . 17 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)
10180, 100jca 511 . . . . . . . . . . . . . . . 16 (((𝑥‘0) = 𝑋 ∧ ((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))
10249, 101mpancom 688 . . . . . . . . . . . . . . 15 (((((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) ∧ (𝑋𝑉𝑁 ∈ ℕ)) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))
103102exp31 419 . . . . . . . . . . . . . 14 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
104103com23 86 . . . . . . . . . . . . 13 (((♯‘𝑥) = (𝑁 + 2) ∧ 𝑥 ∈ Word 𝑉) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
105104ancoms 458 . . . . . . . . . . . 12 ((𝑥 ∈ Word 𝑉 ∧ (♯‘𝑥) = (𝑁 + 2)) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
10648, 105syl 17 . . . . . . . . . . 11 (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) → (((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
107106imp 406 . . . . . . . . . 10 ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑋𝑉𝑁 ∈ ℕ) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
108107com12 32 . . . . . . . . 9 ((𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
1091083adant1 1131 . . . . . . . 8 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
110109imp 406 . . . . . . 7 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))
11146, 110jca 511 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ (𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0)))) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
112111ex 412 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → ((𝑥 ∈ ((𝑁 + 2) ClWWalksN 𝐺) ∧ ((𝑥‘0) = 𝑋 ∧ (𝑥‘((𝑁 + 2) − 2)) ≠ (𝑥‘0))) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
11318, 112sylbid 240 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
114113imp 406 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
115 3simpc 1151 . . . . . . 7 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑉𝑁 ∈ ℕ))
116115adantr 480 . . . . . 6 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑉𝑁 ∈ ℕ))
117 numclwwlk.q . . . . . . 7 𝑄 = (𝑣𝑉, 𝑛 ∈ ℕ ↦ {𝑤 ∈ (𝑛 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑣 ∧ (lastS‘𝑤) ≠ 𝑣)})
11847, 117numclwwlkovq 30393 . . . . . 6 ((𝑋𝑉𝑁 ∈ ℕ) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
119116, 118syl 17 . . . . 5 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑋𝑄𝑁) = {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)})
120119eleq2d 2827 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑋𝑄𝑁) ↔ (𝑥 prefix (𝑁 + 1)) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)}))
121 fveq1 6905 . . . . . . 7 (𝑤 = (𝑥 prefix (𝑁 + 1)) → (𝑤‘0) = ((𝑥 prefix (𝑁 + 1))‘0))
122121eqeq1d 2739 . . . . . 6 (𝑤 = (𝑥 prefix (𝑁 + 1)) → ((𝑤‘0) = 𝑋 ↔ ((𝑥 prefix (𝑁 + 1))‘0) = 𝑋))
123 fveq2 6906 . . . . . . 7 (𝑤 = (𝑥 prefix (𝑁 + 1)) → (lastS‘𝑤) = (lastS‘(𝑥 prefix (𝑁 + 1))))
124123neeq1d 3000 . . . . . 6 (𝑤 = (𝑥 prefix (𝑁 + 1)) → ((lastS‘𝑤) ≠ 𝑋 ↔ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))
125122, 124anbi12d 632 . . . . 5 (𝑤 = (𝑥 prefix (𝑁 + 1)) → (((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋) ↔ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
126125elrab 3692 . . . 4 ((𝑥 prefix (𝑁 + 1)) ∈ {𝑤 ∈ (𝑁 WWalksN 𝐺) ∣ ((𝑤‘0) = 𝑋 ∧ (lastS‘𝑤) ≠ 𝑋)} ↔ ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋)))
127120, 126bitrdi 287 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → ((𝑥 prefix (𝑁 + 1)) ∈ (𝑋𝑄𝑁) ↔ ((𝑥 prefix (𝑁 + 1)) ∈ (𝑁 WWalksN 𝐺) ∧ (((𝑥 prefix (𝑁 + 1))‘0) = 𝑋 ∧ (lastS‘(𝑥 prefix (𝑁 + 1))) ≠ 𝑋))))
128114, 127mpbird 257 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) ∧ 𝑥 ∈ (𝑋𝐻(𝑁 + 2))) → (𝑥 prefix (𝑁 + 1)) ∈ (𝑋𝑄𝑁))
129 numclwwlk.r . 2 𝑅 = (𝑥 ∈ (𝑋𝐻(𝑁 + 2)) ↦ (𝑥 prefix (𝑁 + 1)))
130128, 129fmptd 7134 1 ((𝐺 ∈ FriendGraph ∧ 𝑋𝑉𝑁 ∈ ℕ) → 𝑅:(𝑋𝐻(𝑁 + 2))⟶(𝑋𝑄𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  {crab 3436   class class class wbr 5143  cmpt 5225  wf 6557  cfv 6561  (class class class)co 7431  cmpo 7433  cc 11153  0cc0 11155  1c1 11156   + caddc 11158  cle 11296  cmin 11492  cn 12266  2c2 12321  0cn0 12526  cz 12613  cuz 12878  ...cfz 13547  chash 14369  Word cword 14552  lastSclsw 14600   prefix cpfx 14708  Vtxcvtx 29013   WWalksN cwwlksn 29846   ClWWalksN cclwwlkn 30043  ClWWalksNOncclwwlknon 30106   FriendGraph cfrgr 30277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-er 8745  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695  df-hash 14370  df-word 14553  df-lsw 14601  df-substr 14679  df-pfx 14709  df-wwlks 29850  df-wwlksn 29851  df-clwwlk 30001  df-clwwlkn 30044  df-clwwlknon 30107
This theorem is referenced by:  numclwlk2lem2f1o  30398
  Copyright terms: Public domain W3C validator