![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirf1o | Structured version Visualization version GIF version |
Description: The point inversion function 𝑀 is a bijection. Theorem 7.11 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
Ref | Expression |
---|---|
mirf1o | ⊢ (𝜑 → 𝑀:𝑃–1-1-onto→𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . . 4 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mirf 28686 | . . 3 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
10 | 9 | ffnd 6748 | . 2 ⊢ (𝜑 → 𝑀 Fn 𝑃) |
11 | 6 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝐺 ∈ TarskiG) |
12 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝐴 ∈ 𝑃) |
13 | simpr 484 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑎 ∈ 𝑃) | |
14 | 1, 2, 3, 4, 5, 11, 12, 8, 13 | mirmir 28688 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → (𝑀‘(𝑀‘𝑎)) = 𝑎) |
15 | 14 | ralrimiva 3152 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 (𝑀‘(𝑀‘𝑎)) = 𝑎) |
16 | nvocnv 7317 | . . 3 ⊢ ((𝑀:𝑃⟶𝑃 ∧ ∀𝑎 ∈ 𝑃 (𝑀‘(𝑀‘𝑎)) = 𝑎) → ◡𝑀 = 𝑀) | |
17 | 9, 15, 16 | syl2anc 583 | . 2 ⊢ (𝜑 → ◡𝑀 = 𝑀) |
18 | nvof1o 7316 | . 2 ⊢ ((𝑀 Fn 𝑃 ∧ ◡𝑀 = 𝑀) → 𝑀:𝑃–1-1-onto→𝑃) | |
19 | 10, 17, 18 | syl2anc 583 | 1 ⊢ (𝜑 → 𝑀:𝑃–1-1-onto→𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ◡ccnv 5699 Fn wfn 6568 ⟶wf 6569 –1-1-onto→wf1o 6572 ‘cfv 6573 Basecbs 17258 distcds 17320 TarskiGcstrkg 28453 Itvcitv 28459 LineGclng 28460 pInvGcmir 28678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-trkgc 28474 df-trkgb 28475 df-trkgcb 28476 df-trkg 28479 df-mir 28679 |
This theorem is referenced by: mirmot 28701 |
Copyright terms: Public domain | W3C validator |