![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirf1o | Structured version Visualization version GIF version |
Description: The point inversion function 𝑀 is a bijection. Theorem 7.11 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
Ref | Expression |
---|---|
mirf1o | ⊢ (𝜑 → 𝑀:𝑃–1-1-onto→𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . . 4 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mirf 25910 | . . 3 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
10 | 9 | ffnd 6258 | . 2 ⊢ (𝜑 → 𝑀 Fn 𝑃) |
11 | 6 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝐺 ∈ TarskiG) |
12 | 7 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝐴 ∈ 𝑃) |
13 | simpr 478 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑎 ∈ 𝑃) | |
14 | 1, 2, 3, 4, 5, 11, 12, 8, 13 | mirmir 25912 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → (𝑀‘(𝑀‘𝑎)) = 𝑎) |
15 | 14 | ralrimiva 3148 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 (𝑀‘(𝑀‘𝑎)) = 𝑎) |
16 | nvocnv 6766 | . . 3 ⊢ ((𝑀:𝑃⟶𝑃 ∧ ∀𝑎 ∈ 𝑃 (𝑀‘(𝑀‘𝑎)) = 𝑎) → ◡𝑀 = 𝑀) | |
17 | 9, 15, 16 | syl2anc 580 | . 2 ⊢ (𝜑 → ◡𝑀 = 𝑀) |
18 | nvof1o 6765 | . 2 ⊢ ((𝑀 Fn 𝑃 ∧ ◡𝑀 = 𝑀) → 𝑀:𝑃–1-1-onto→𝑃) | |
19 | 10, 17, 18 | syl2anc 580 | 1 ⊢ (𝜑 → 𝑀:𝑃–1-1-onto→𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3090 ◡ccnv 5312 Fn wfn 6097 ⟶wf 6098 –1-1-onto→wf1o 6101 ‘cfv 6102 Basecbs 16183 distcds 16275 TarskiGcstrkg 25680 Itvcitv 25686 LineGclng 25687 pInvGcmir 25902 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pr 5098 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-trkgc 25698 df-trkgb 25699 df-trkgcb 25700 df-trkg 25703 df-mir 25903 |
This theorem is referenced by: mirmot 25925 |
Copyright terms: Public domain | W3C validator |