Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > mirf1o | Structured version Visualization version GIF version |
Description: The point inversion function 𝑀 is a bijection. Theorem 7.11 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | ⊢ 𝑃 = (Base‘𝐺) |
mirval.d | ⊢ − = (dist‘𝐺) |
mirval.i | ⊢ 𝐼 = (Itv‘𝐺) |
mirval.l | ⊢ 𝐿 = (LineG‘𝐺) |
mirval.s | ⊢ 𝑆 = (pInvG‘𝐺) |
mirval.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
mirval.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
mirfv.m | ⊢ 𝑀 = (𝑆‘𝐴) |
Ref | Expression |
---|---|
mirf1o | ⊢ (𝜑 → 𝑀:𝑃–1-1-onto→𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | mirval.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | mirval.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | mirval.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | mirval.s | . . . 4 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | mirval.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | mirval.a | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | mirfv.m | . . . 4 ⊢ 𝑀 = (𝑆‘𝐴) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | mirf 27021 | . . 3 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
10 | 9 | ffnd 6601 | . 2 ⊢ (𝜑 → 𝑀 Fn 𝑃) |
11 | 6 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝐺 ∈ TarskiG) |
12 | 7 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝐴 ∈ 𝑃) |
13 | simpr 485 | . . . . 5 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → 𝑎 ∈ 𝑃) | |
14 | 1, 2, 3, 4, 5, 11, 12, 8, 13 | mirmir 27023 | . . . 4 ⊢ ((𝜑 ∧ 𝑎 ∈ 𝑃) → (𝑀‘(𝑀‘𝑎)) = 𝑎) |
15 | 14 | ralrimiva 3103 | . . 3 ⊢ (𝜑 → ∀𝑎 ∈ 𝑃 (𝑀‘(𝑀‘𝑎)) = 𝑎) |
16 | nvocnv 7153 | . . 3 ⊢ ((𝑀:𝑃⟶𝑃 ∧ ∀𝑎 ∈ 𝑃 (𝑀‘(𝑀‘𝑎)) = 𝑎) → ◡𝑀 = 𝑀) | |
17 | 9, 15, 16 | syl2anc 584 | . 2 ⊢ (𝜑 → ◡𝑀 = 𝑀) |
18 | nvof1o 7152 | . 2 ⊢ ((𝑀 Fn 𝑃 ∧ ◡𝑀 = 𝑀) → 𝑀:𝑃–1-1-onto→𝑃) | |
19 | 10, 17, 18 | syl2anc 584 | 1 ⊢ (𝜑 → 𝑀:𝑃–1-1-onto→𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ◡ccnv 5588 Fn wfn 6428 ⟶wf 6429 –1-1-onto→wf1o 6432 ‘cfv 6433 Basecbs 16912 distcds 16971 TarskiGcstrkg 26788 Itvcitv 26794 LineGclng 26795 pInvGcmir 27013 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-trkgc 26809 df-trkgb 26810 df-trkgcb 26811 df-trkg 26814 df-mir 27014 |
This theorem is referenced by: mirmot 27036 |
Copyright terms: Public domain | W3C validator |