MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirf1o Structured version   Visualization version   GIF version

Theorem mirf1o 28648
Description: The point inversion function 𝑀 is a bijection. Theorem 7.11 of [Schwabhauser] p. 50. (Contributed by Thierry Arnoux, 6-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
Assertion
Ref Expression
mirf1o (𝜑𝑀:𝑃1-1-onto𝑃)

Proof of Theorem mirf1o
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . . 4 𝑃 = (Base‘𝐺)
2 mirval.d . . . 4 = (dist‘𝐺)
3 mirval.i . . . 4 𝐼 = (Itv‘𝐺)
4 mirval.l . . . 4 𝐿 = (LineG‘𝐺)
5 mirval.s . . . 4 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . . 4 (𝜑𝐴𝑃)
8 mirfv.m . . . 4 𝑀 = (𝑆𝐴)
91, 2, 3, 4, 5, 6, 7, 8mirf 28639 . . 3 (𝜑𝑀:𝑃𝑃)
109ffnd 6657 . 2 (𝜑𝑀 Fn 𝑃)
116adantr 480 . . . . 5 ((𝜑𝑎𝑃) → 𝐺 ∈ TarskiG)
127adantr 480 . . . . 5 ((𝜑𝑎𝑃) → 𝐴𝑃)
13 simpr 484 . . . . 5 ((𝜑𝑎𝑃) → 𝑎𝑃)
141, 2, 3, 4, 5, 11, 12, 8, 13mirmir 28641 . . . 4 ((𝜑𝑎𝑃) → (𝑀‘(𝑀𝑎)) = 𝑎)
1514ralrimiva 3125 . . 3 (𝜑 → ∀𝑎𝑃 (𝑀‘(𝑀𝑎)) = 𝑎)
16 nvocnv 7221 . . 3 ((𝑀:𝑃𝑃 ∧ ∀𝑎𝑃 (𝑀‘(𝑀𝑎)) = 𝑎) → 𝑀 = 𝑀)
179, 15, 16syl2anc 584 . 2 (𝜑𝑀 = 𝑀)
18 nvof1o 7220 . 2 ((𝑀 Fn 𝑃𝑀 = 𝑀) → 𝑀:𝑃1-1-onto𝑃)
1910, 17, 18syl2anc 584 1 (𝜑𝑀:𝑃1-1-onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  ccnv 5618   Fn wfn 6481  wf 6482  1-1-ontowf1o 6485  cfv 6486  Basecbs 17122  distcds 17172  TarskiGcstrkg 28406  Itvcitv 28412  LineGclng 28413  pInvGcmir 28631
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-trkgc 28427  df-trkgb 28428  df-trkgcb 28429  df-trkg 28432  df-mir 28632
This theorem is referenced by:  mirmot  28654
  Copyright terms: Public domain W3C validator