| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapf1od | Structured version Visualization version GIF version | ||
| Description: For any base set 𝐵 the duality operator for self-mappings of subsets of that base set is one-to-one and onto. (Contributed by RP, 21-Apr-2021.) |
| Ref | Expression |
|---|---|
| dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
| dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
| Ref | Expression |
|---|---|
| dssmapf1od | ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dssmapfvd.o | . . . 4 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
| 2 | dssmapfvd.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 3 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
| 4 | 1, 2, 3 | dssmapfvd 44000 | . . 3 ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
| 5 | 3 | pwexd 5318 | . . . . . 6 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
| 6 | 5 | mptexd 7160 | . . . . 5 ⊢ (𝜑 → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V) |
| 7 | 6 | ralrimivw 3125 | . . . 4 ⊢ (𝜑 → ∀𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)(𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V) |
| 8 | nfcv 2891 | . . . . 5 ⊢ Ⅎ𝑓(𝒫 𝐵 ↑m 𝒫 𝐵) | |
| 9 | 8 | fnmptf 6618 | . . . 4 ⊢ (∀𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)(𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V → (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 10 | 7, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 11 | fneq1 6573 | . . . 4 ⊢ (𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) → (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ↔ (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑m 𝒫 𝐵))) | |
| 12 | 11 | biimprd 248 | . . 3 ⊢ (𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) → ((𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵))) |
| 13 | 4, 10, 12 | sylc 65 | . 2 ⊢ (𝜑 → 𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
| 14 | 1, 2, 3 | dssmapnvod 44003 | . 2 ⊢ (𝜑 → ◡𝐷 = 𝐷) |
| 15 | nvof1o 7217 | . 2 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ ◡𝐷 = 𝐷) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) | |
| 16 | 13, 14, 15 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3436 ∖ cdif 3900 𝒫 cpw 4551 ↦ cmpt 5173 ◡ccnv 5618 Fn wfn 6477 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 ↑m cmap 8753 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-1st 7924 df-2nd 7925 df-map 8755 |
| This theorem is referenced by: dssmap2d 44005 ntrclsf1o 44034 clsneif1o 44087 clsneikex 44089 clsneinex 44090 clsneiel1 44091 neicvgf1o 44097 neicvgmex 44100 neicvgel1 44102 dssmapntrcls 44111 dssmapclsntr 44112 |
| Copyright terms: Public domain | W3C validator |