![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > dssmapf1od | Structured version Visualization version GIF version |
Description: For any base set 𝐵 the duality operator for self-mappings of subsets of that base set is one-to-one and onto. (Contributed by RP, 21-Apr-2021.) |
Ref | Expression |
---|---|
dssmapfvd.o | ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) |
dssmapfvd.d | ⊢ 𝐷 = (𝑂‘𝐵) |
dssmapfvd.b | ⊢ (𝜑 → 𝐵 ∈ 𝑉) |
Ref | Expression |
---|---|
dssmapf1od | ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dssmapfvd.o | . . . 4 ⊢ 𝑂 = (𝑏 ∈ V ↦ (𝑓 ∈ (𝒫 𝑏 ↑m 𝒫 𝑏) ↦ (𝑠 ∈ 𝒫 𝑏 ↦ (𝑏 ∖ (𝑓‘(𝑏 ∖ 𝑠)))))) | |
2 | dssmapfvd.d | . . . 4 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | dssmapfvd.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑉) | |
4 | 1, 2, 3 | dssmapfvd 42753 | . . 3 ⊢ (𝜑 → 𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))))) |
5 | 3 | pwexd 5376 | . . . . . 6 ⊢ (𝜑 → 𝒫 𝐵 ∈ V) |
6 | 5 | mptexd 7222 | . . . . 5 ⊢ (𝜑 → (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V) |
7 | 6 | ralrimivw 3150 | . . . 4 ⊢ (𝜑 → ∀𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)(𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V) |
8 | nfcv 2903 | . . . . 5 ⊢ Ⅎ𝑓(𝒫 𝐵 ↑m 𝒫 𝐵) | |
9 | 8 | fnmptf 6683 | . . . 4 ⊢ (∀𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵)(𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠)))) ∈ V → (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
10 | 7, 9 | syl 17 | . . 3 ⊢ (𝜑 → (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
11 | fneq1 6637 | . . . 4 ⊢ (𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) → (𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ↔ (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑m 𝒫 𝐵))) | |
12 | 11 | biimprd 247 | . . 3 ⊢ (𝐷 = (𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) → ((𝑓 ∈ (𝒫 𝐵 ↑m 𝒫 𝐵) ↦ (𝑠 ∈ 𝒫 𝐵 ↦ (𝐵 ∖ (𝑓‘(𝐵 ∖ 𝑠))))) Fn (𝒫 𝐵 ↑m 𝒫 𝐵) → 𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵))) |
13 | 4, 10, 12 | sylc 65 | . 2 ⊢ (𝜑 → 𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵)) |
14 | 1, 2, 3 | dssmapnvod 42756 | . 2 ⊢ (𝜑 → ◡𝐷 = 𝐷) |
15 | nvof1o 7274 | . 2 ⊢ ((𝐷 Fn (𝒫 𝐵 ↑m 𝒫 𝐵) ∧ ◡𝐷 = 𝐷) → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) | |
16 | 13, 14, 15 | syl2anc 584 | 1 ⊢ (𝜑 → 𝐷:(𝒫 𝐵 ↑m 𝒫 𝐵)–1-1-onto→(𝒫 𝐵 ↑m 𝒫 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2106 ∀wral 3061 Vcvv 3474 ∖ cdif 3944 𝒫 cpw 4601 ↦ cmpt 5230 ◡ccnv 5674 Fn wfn 6535 –1-1-onto→wf1o 6539 ‘cfv 6540 (class class class)co 7405 ↑m cmap 8816 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-map 8818 |
This theorem is referenced by: dssmap2d 42758 ntrclsf1o 42787 clsneif1o 42840 clsneikex 42842 clsneinex 42843 clsneiel1 42844 neicvgf1o 42850 neicvgmex 42853 neicvgel1 42855 dssmapntrcls 42864 dssmapclsntr 42865 |
Copyright terms: Public domain | W3C validator |