| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > f1ocnvfvb | Structured version Visualization version GIF version | ||
| Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.) |
| Ref | Expression |
|---|---|
| f1ocnvfvb | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = 𝐷 ↔ (◡𝐹‘𝐷) = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ocnvfv 7219 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) | |
| 2 | 1 | 3adant3 1132 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
| 3 | fveq2 6826 | . . . . 5 ⊢ (𝐶 = (◡𝐹‘𝐷) → (𝐹‘𝐶) = (𝐹‘(◡𝐹‘𝐷))) | |
| 4 | 3 | eqcoms 2737 | . . . 4 ⊢ ((◡𝐹‘𝐷) = 𝐶 → (𝐹‘𝐶) = (𝐹‘(◡𝐹‘𝐷))) |
| 5 | f1ocnvfv2 7218 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐷)) = 𝐷) | |
| 6 | 5 | eqeq2d 2740 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = (𝐹‘(◡𝐹‘𝐷)) ↔ (𝐹‘𝐶) = 𝐷)) |
| 7 | 4, 6 | imbitrid 244 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → ((◡𝐹‘𝐷) = 𝐶 → (𝐹‘𝐶) = 𝐷)) |
| 8 | 7 | 3adant2 1131 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((◡𝐹‘𝐷) = 𝐶 → (𝐹‘𝐶) = 𝐷)) |
| 9 | 2, 8 | impbid 212 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = 𝐷 ↔ (◡𝐹‘𝐷) = 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ◡ccnv 5622 –1-1-onto→wf1o 6485 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 |
| This theorem is referenced by: f1ofveu 7347 f1ocnvfv3 7348 1arith2 16858 f1omvdcnv 19341 f1omvdconj 19343 rngqiprngu 21243 txhmeo 23706 iccpnfcnv 24858 dvcnvlem 25896 logeftb 26508 sqff1o 27108 bracnlnval 32076 cdlemg17h 40650 |
| Copyright terms: Public domain | W3C validator |