Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > f1ocnvfvb | Structured version Visualization version GIF version |
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.) |
Ref | Expression |
---|---|
f1ocnvfvb | ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = 𝐷 ↔ (◡𝐹‘𝐷) = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | f1ocnvfv 7144 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) | |
2 | 1 | 3adant3 1130 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = 𝐷 → (◡𝐹‘𝐷) = 𝐶)) |
3 | fveq2 6768 | . . . . 5 ⊢ (𝐶 = (◡𝐹‘𝐷) → (𝐹‘𝐶) = (𝐹‘(◡𝐹‘𝐷))) | |
4 | 3 | eqcoms 2747 | . . . 4 ⊢ ((◡𝐹‘𝐷) = 𝐶 → (𝐹‘𝐶) = (𝐹‘(◡𝐹‘𝐷))) |
5 | f1ocnvfv2 7143 | . . . . 5 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → (𝐹‘(◡𝐹‘𝐷)) = 𝐷) | |
6 | 5 | eqeq2d 2750 | . . . 4 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = (𝐹‘(◡𝐹‘𝐷)) ↔ (𝐹‘𝐶) = 𝐷)) |
7 | 4, 6 | syl5ib 243 | . . 3 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐷 ∈ 𝐵) → ((◡𝐹‘𝐷) = 𝐶 → (𝐹‘𝐶) = 𝐷)) |
8 | 7 | 3adant2 1129 | . 2 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((◡𝐹‘𝐷) = 𝐶 → (𝐹‘𝐶) = 𝐷)) |
9 | 2, 8 | impbid 211 | 1 ⊢ ((𝐹:𝐴–1-1-onto→𝐵 ∧ 𝐶 ∈ 𝐴 ∧ 𝐷 ∈ 𝐵) → ((𝐹‘𝐶) = 𝐷 ↔ (◡𝐹‘𝐷) = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ◡ccnv 5587 –1-1-onto→wf1o 6429 ‘cfv 6430 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pr 5355 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 |
This theorem is referenced by: f1ofveu 7263 f1ocnvfv3 7264 1arith2 16610 f1omvdcnv 19033 f1omvdconj 19035 txhmeo 22935 iccpnfcnv 24088 dvcnvlem 25121 logeftb 25720 sqff1o 26312 bracnlnval 30455 cdlemg17h 38661 isomuspgrlem1 45231 |
Copyright terms: Public domain | W3C validator |