MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvfvb Structured version   Visualization version   GIF version

Theorem f1ocnvfvb 7317
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfvb ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 ↔ (𝐹𝐷) = 𝐶))

Proof of Theorem f1ocnvfvb
StepHypRef Expression
1 f1ocnvfv 7316 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
213adant3 1132 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
3 fveq2 6922 . . . . 5 (𝐶 = (𝐹𝐷) → (𝐹𝐶) = (𝐹‘(𝐹𝐷)))
43eqcoms 2748 . . . 4 ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = (𝐹‘(𝐹𝐷)))
5 f1ocnvfv2 7315 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → (𝐹‘(𝐹𝐷)) = 𝐷)
65eqeq2d 2751 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → ((𝐹𝐶) = (𝐹‘(𝐹𝐷)) ↔ (𝐹𝐶) = 𝐷))
74, 6imbitrid 244 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = 𝐷))
873adant2 1131 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = 𝐷))
92, 8impbid 212 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 ↔ (𝐹𝐷) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  ccnv 5699  1-1-ontowf1o 6574  cfv 6575
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6527  df-fun 6577  df-fn 6578  df-f 6579  df-f1 6580  df-fo 6581  df-f1o 6582  df-fv 6583
This theorem is referenced by:  f1ofveu  7444  f1ocnvfv3  7445  1arith2  16977  f1omvdcnv  19488  f1omvdconj  19490  rngqiprngu  21353  txhmeo  23834  iccpnfcnv  24996  dvcnvlem  26036  logeftb  26645  sqff1o  27245  bracnlnval  32148  cdlemg17h  40627
  Copyright terms: Public domain W3C validator