MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ocnvfvb Structured version   Visualization version   GIF version

Theorem f1ocnvfvb 7220
Description: Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.)
Assertion
Ref Expression
f1ocnvfvb ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 ↔ (𝐹𝐷) = 𝐶))

Proof of Theorem f1ocnvfvb
StepHypRef Expression
1 f1ocnvfv 7219 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
213adant3 1132 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
3 fveq2 6826 . . . . 5 (𝐶 = (𝐹𝐷) → (𝐹𝐶) = (𝐹‘(𝐹𝐷)))
43eqcoms 2737 . . . 4 ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = (𝐹‘(𝐹𝐷)))
5 f1ocnvfv2 7218 . . . . 5 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → (𝐹‘(𝐹𝐷)) = 𝐷)
65eqeq2d 2740 . . . 4 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → ((𝐹𝐶) = (𝐹‘(𝐹𝐷)) ↔ (𝐹𝐶) = 𝐷))
74, 6imbitrid 244 . . 3 ((𝐹:𝐴1-1-onto𝐵𝐷𝐵) → ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = 𝐷))
873adant2 1131 . 2 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐷) = 𝐶 → (𝐹𝐶) = 𝐷))
92, 8impbid 212 1 ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 ↔ (𝐹𝐷) = 𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  ccnv 5622  1-1-ontowf1o 6485  cfv 6486
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494
This theorem is referenced by:  f1ofveu  7347  f1ocnvfv3  7348  1arith2  16858  f1omvdcnv  19341  f1omvdconj  19343  rngqiprngu  21243  txhmeo  23706  iccpnfcnv  24858  dvcnvlem  25896  logeftb  26508  sqff1o  27108  bracnlnval  32076  cdlemg17h  40650
  Copyright terms: Public domain W3C validator