![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmif1o | Structured version Visualization version GIF version |
Description: The line mirroring function 𝑀 is a bijection. Theorem 10.9 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.) |
Ref | Expression |
---|---|
ismid.p | ⊢ 𝑃 = (Base‘𝐺) |
ismid.d | ⊢ − = (dist‘𝐺) |
ismid.i | ⊢ 𝐼 = (Itv‘𝐺) |
ismid.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
ismid.1 | ⊢ (𝜑 → 𝐺DimTarskiG≥2) |
lmif.m | ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) |
lmif.l | ⊢ 𝐿 = (LineG‘𝐺) |
lmif.d | ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) |
Ref | Expression |
---|---|
lmif1o | ⊢ (𝜑 → 𝑀:𝑃–1-1-onto→𝑃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ismid.p | . . . 4 ⊢ 𝑃 = (Base‘𝐺) | |
2 | ismid.d | . . . 4 ⊢ − = (dist‘𝐺) | |
3 | ismid.i | . . . 4 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | ismid.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
5 | ismid.1 | . . . 4 ⊢ (𝜑 → 𝐺DimTarskiG≥2) | |
6 | lmif.m | . . . 4 ⊢ 𝑀 = ((lInvG‘𝐺)‘𝐷) | |
7 | lmif.l | . . . 4 ⊢ 𝐿 = (LineG‘𝐺) | |
8 | lmif.d | . . . 4 ⊢ (𝜑 → 𝐷 ∈ ran 𝐿) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | lmif 26032 | . . 3 ⊢ (𝜑 → 𝑀:𝑃⟶𝑃) |
10 | 9 | ffnd 6258 | . 2 ⊢ (𝜑 → 𝑀 Fn 𝑃) |
11 | 4 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑃) → 𝐺 ∈ TarskiG) |
12 | 5 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑃) → 𝐺DimTarskiG≥2) |
13 | 8 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑃) → 𝐷 ∈ ran 𝐿) |
14 | simpr 478 | . . . . 5 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑃) → 𝑏 ∈ 𝑃) | |
15 | 1, 2, 3, 11, 12, 6, 7, 13, 14 | lmilmi 26036 | . . . 4 ⊢ ((𝜑 ∧ 𝑏 ∈ 𝑃) → (𝑀‘(𝑀‘𝑏)) = 𝑏) |
16 | 15 | ralrimiva 3148 | . . 3 ⊢ (𝜑 → ∀𝑏 ∈ 𝑃 (𝑀‘(𝑀‘𝑏)) = 𝑏) |
17 | nvocnv 6766 | . . 3 ⊢ ((𝑀:𝑃⟶𝑃 ∧ ∀𝑏 ∈ 𝑃 (𝑀‘(𝑀‘𝑏)) = 𝑏) → ◡𝑀 = 𝑀) | |
18 | 9, 16, 17 | syl2anc 580 | . 2 ⊢ (𝜑 → ◡𝑀 = 𝑀) |
19 | nvof1o 6765 | . 2 ⊢ ((𝑀 Fn 𝑃 ∧ ◡𝑀 = 𝑀) → 𝑀:𝑃–1-1-onto→𝑃) | |
20 | 10, 18, 19 | syl2anc 580 | 1 ⊢ (𝜑 → 𝑀:𝑃–1-1-onto→𝑃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3090 class class class wbr 4844 ◡ccnv 5312 ran crn 5314 Fn wfn 6097 ⟶wf 6098 –1-1-onto→wf1o 6101 ‘cfv 6102 2c2 11367 Basecbs 16183 distcds 16275 TarskiGcstrkg 25680 DimTarskiG≥cstrkgld 25684 Itvcitv 25686 LineGclng 25687 lInvGclmi 26020 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 ax-cnex 10281 ax-resscn 10282 ax-1cn 10283 ax-icn 10284 ax-addcl 10285 ax-addrcl 10286 ax-mulcl 10287 ax-mulrcl 10288 ax-mulcom 10289 ax-addass 10290 ax-mulass 10291 ax-distr 10292 ax-i2m1 10293 ax-1ne0 10294 ax-1rid 10295 ax-rnegex 10296 ax-rrecex 10297 ax-cnre 10298 ax-pre-lttri 10299 ax-pre-lttrn 10300 ax-pre-ltadd 10301 ax-pre-mulgt0 10302 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-pss 3786 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-tp 4374 df-op 4376 df-uni 4630 df-int 4669 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-tr 4947 df-id 5221 df-eprel 5226 df-po 5234 df-so 5235 df-fr 5272 df-we 5274 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-pred 5899 df-ord 5945 df-on 5946 df-lim 5947 df-suc 5948 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-mpt2 6884 df-om 7301 df-1st 7402 df-2nd 7403 df-wrecs 7646 df-recs 7708 df-rdg 7746 df-1o 7800 df-oadd 7804 df-er 7983 df-map 8098 df-pm 8099 df-en 8197 df-dom 8198 df-sdom 8199 df-fin 8200 df-card 9052 df-cda 9279 df-pnf 10366 df-mnf 10367 df-xr 10368 df-ltxr 10369 df-le 10370 df-sub 10559 df-neg 10560 df-nn 11314 df-2 11375 df-3 11376 df-n0 11580 df-xnn0 11652 df-z 11666 df-uz 11930 df-fz 12580 df-fzo 12720 df-hash 13370 df-word 13534 df-concat 13590 df-s1 13615 df-s2 13932 df-s3 13933 df-trkgc 25698 df-trkgb 25699 df-trkgcb 25700 df-trkgld 25702 df-trkg 25703 df-cgrg 25761 df-leg 25833 df-mir 25903 df-rag 25944 df-perpg 25946 df-mid 26021 df-lmi 26022 |
This theorem is referenced by: lmimot 26045 |
Copyright terms: Public domain | W3C validator |