MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmif1o Structured version   Visualization version   GIF version

Theorem lmif1o 26596
Description: The line mirroring function 𝑀 is a bijection. Theorem 10.9 of [Schwabhauser] p. 89. (Contributed by Thierry Arnoux, 11-Dec-2019.)
Hypotheses
Ref Expression
ismid.p 𝑃 = (Base‘𝐺)
ismid.d = (dist‘𝐺)
ismid.i 𝐼 = (Itv‘𝐺)
ismid.g (𝜑𝐺 ∈ TarskiG)
ismid.1 (𝜑𝐺DimTarskiG≥2)
lmif.m 𝑀 = ((lInvG‘𝐺)‘𝐷)
lmif.l 𝐿 = (LineG‘𝐺)
lmif.d (𝜑𝐷 ∈ ran 𝐿)
Assertion
Ref Expression
lmif1o (𝜑𝑀:𝑃1-1-onto𝑃)

Proof of Theorem lmif1o
Dummy variable 𝑏 is distinct from all other variables.
StepHypRef Expression
1 ismid.p . . . 4 𝑃 = (Base‘𝐺)
2 ismid.d . . . 4 = (dist‘𝐺)
3 ismid.i . . . 4 𝐼 = (Itv‘𝐺)
4 ismid.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 ismid.1 . . . 4 (𝜑𝐺DimTarskiG≥2)
6 lmif.m . . . 4 𝑀 = ((lInvG‘𝐺)‘𝐷)
7 lmif.l . . . 4 𝐿 = (LineG‘𝐺)
8 lmif.d . . . 4 (𝜑𝐷 ∈ ran 𝐿)
91, 2, 3, 4, 5, 6, 7, 8lmif 26586 . . 3 (𝜑𝑀:𝑃𝑃)
109ffnd 6504 . 2 (𝜑𝑀 Fn 𝑃)
114adantr 484 . . . . 5 ((𝜑𝑏𝑃) → 𝐺 ∈ TarskiG)
125adantr 484 . . . . 5 ((𝜑𝑏𝑃) → 𝐺DimTarskiG≥2)
138adantr 484 . . . . 5 ((𝜑𝑏𝑃) → 𝐷 ∈ ran 𝐿)
14 simpr 488 . . . . 5 ((𝜑𝑏𝑃) → 𝑏𝑃)
151, 2, 3, 11, 12, 6, 7, 13, 14lmilmi 26590 . . . 4 ((𝜑𝑏𝑃) → (𝑀‘(𝑀𝑏)) = 𝑏)
1615ralrimiva 3177 . . 3 (𝜑 → ∀𝑏𝑃 (𝑀‘(𝑀𝑏)) = 𝑏)
17 nvocnv 7030 . . 3 ((𝑀:𝑃𝑃 ∧ ∀𝑏𝑃 (𝑀‘(𝑀𝑏)) = 𝑏) → 𝑀 = 𝑀)
189, 16, 17syl2anc 587 . 2 (𝜑𝑀 = 𝑀)
19 nvof1o 7029 . 2 ((𝑀 Fn 𝑃𝑀 = 𝑀) → 𝑀:𝑃1-1-onto𝑃)
2010, 18, 19syl2anc 587 1 (𝜑𝑀:𝑃1-1-onto𝑃)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2115  wral 3133   class class class wbr 5052  ccnv 5541  ran crn 5543   Fn wfn 6338  wf 6339  1-1-ontowf1o 6342  cfv 6343  2c2 11689  Basecbs 16483  distcds 16574  TarskiGcstrkg 26231  DimTarskiGcstrkgld 26235  Itvcitv 26237  LineGclng 26238  lInvGclmi 26574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796  ax-rep 5176  ax-sep 5189  ax-nul 5196  ax-pow 5253  ax-pr 5317  ax-un 7455  ax-cnex 10591  ax-resscn 10592  ax-1cn 10593  ax-icn 10594  ax-addcl 10595  ax-addrcl 10596  ax-mulcl 10597  ax-mulrcl 10598  ax-mulcom 10599  ax-addass 10600  ax-mulass 10601  ax-distr 10602  ax-i2m1 10603  ax-1ne0 10604  ax-1rid 10605  ax-rnegex 10606  ax-rrecex 10607  ax-cnre 10608  ax-pre-lttri 10609  ax-pre-lttrn 10610  ax-pre-ltadd 10611  ax-pre-mulgt0 10612
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2071  df-mo 2624  df-eu 2655  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ne 3015  df-nel 3119  df-ral 3138  df-rex 3139  df-reu 3140  df-rmo 3141  df-rab 3142  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-un 3924  df-in 3926  df-ss 3936  df-pss 3938  df-nul 4277  df-if 4451  df-pw 4524  df-sn 4551  df-pr 4553  df-tp 4555  df-op 4557  df-uni 4825  df-int 4863  df-iun 4907  df-br 5053  df-opab 5115  df-mpt 5133  df-tr 5159  df-id 5447  df-eprel 5452  df-po 5461  df-so 5462  df-fr 5501  df-we 5503  df-xp 5548  df-rel 5549  df-cnv 5550  df-co 5551  df-dm 5552  df-rn 5553  df-res 5554  df-ima 5555  df-pred 6135  df-ord 6181  df-on 6182  df-lim 6183  df-suc 6184  df-iota 6302  df-fun 6345  df-fn 6346  df-f 6347  df-f1 6348  df-fo 6349  df-f1o 6350  df-fv 6351  df-riota 7107  df-ov 7152  df-oprab 7153  df-mpo 7154  df-om 7575  df-1st 7684  df-2nd 7685  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-1o 8098  df-oadd 8102  df-er 8285  df-map 8404  df-pm 8405  df-en 8506  df-dom 8507  df-sdom 8508  df-fin 8509  df-dju 9327  df-card 9365  df-pnf 10675  df-mnf 10676  df-xr 10677  df-ltxr 10678  df-le 10679  df-sub 10870  df-neg 10871  df-nn 11635  df-2 11697  df-3 11698  df-n0 11895  df-xnn0 11965  df-z 11979  df-uz 12241  df-fz 12895  df-fzo 13038  df-hash 13696  df-word 13867  df-concat 13923  df-s1 13950  df-s2 14210  df-s3 14211  df-trkgc 26249  df-trkgb 26250  df-trkgcb 26251  df-trkgld 26253  df-trkg 26254  df-cgrg 26312  df-leg 26384  df-mir 26454  df-rag 26495  df-perpg 26497  df-mid 26575  df-lmi 26576
This theorem is referenced by:  lmimot  26599
  Copyright terms: Public domain W3C validator