Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omecl | Structured version Visualization version GIF version |
Description: The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omecl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omecl.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omecl.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Ref | Expression |
---|---|
omecl | ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omecl.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | omecl.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | 1, 2 | omef 43924 | . 2 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
4 | omecl.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
5 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑋 = ∪ dom 𝑂) |
6 | 1 | dmexd 7726 | . . . . . . 7 ⊢ (𝜑 → dom 𝑂 ∈ V) |
7 | 6 | uniexd 7573 | . . . . . 6 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
8 | 5, 7 | eqeltrd 2839 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
9 | 8, 4 | ssexd 5243 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
10 | elpwg 4533 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
12 | 4, 11 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
13 | 3, 12 | ffvelrnd 6944 | 1 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 𝒫 cpw 4530 ∪ cuni 4836 dom cdm 5580 ‘cfv 6418 (class class class)co 7255 0cc0 10802 +∞cpnf 10937 [,]cicc 13011 OutMeascome 43917 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 df-ome 43918 |
This theorem is referenced by: caragen0 43934 omexrcl 43935 caragenunidm 43936 omessre 43938 caragenuncllem 43940 caragendifcl 43942 omeunle 43944 omeiunle 43945 omeiunltfirp 43947 carageniuncllem2 43950 carageniuncl 43951 caratheodorylem1 43954 caratheodorylem2 43955 omege0 43961 |
Copyright terms: Public domain | W3C validator |