Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omecl Structured version   Visualization version   GIF version

Theorem omecl 43931
Description: The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omecl.o (𝜑𝑂 ∈ OutMeas)
omecl.x 𝑋 = dom 𝑂
omecl.ss (𝜑𝐴𝑋)
Assertion
Ref Expression
omecl (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))

Proof of Theorem omecl
StepHypRef Expression
1 omecl.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 omecl.x . . 3 𝑋 = dom 𝑂
31, 2omef 43924 . 2 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
4 omecl.ss . . 3 (𝜑𝐴𝑋)
52a1i 11 . . . . . 6 (𝜑𝑋 = dom 𝑂)
61dmexd 7726 . . . . . . 7 (𝜑 → dom 𝑂 ∈ V)
76uniexd 7573 . . . . . 6 (𝜑 dom 𝑂 ∈ V)
85, 7eqeltrd 2839 . . . . 5 (𝜑𝑋 ∈ V)
98, 4ssexd 5243 . . . 4 (𝜑𝐴 ∈ V)
10 elpwg 4533 . . . 4 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
119, 10syl 17 . . 3 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
124, 11mpbird 256 . 2 (𝜑𝐴 ∈ 𝒫 𝑋)
133, 12ffvelrnd 6944 1 (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  𝒫 cpw 4530   cuni 4836  dom cdm 5580  cfv 6418  (class class class)co 7255  0cc0 10802  +∞cpnf 10937  [,]cicc 13011  OutMeascome 43917
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fv 6426  df-ome 43918
This theorem is referenced by:  caragen0  43934  omexrcl  43935  caragenunidm  43936  omessre  43938  caragenuncllem  43940  caragendifcl  43942  omeunle  43944  omeiunle  43945  omeiunltfirp  43947  carageniuncllem2  43950  carageniuncl  43951  caratheodorylem1  43954  caratheodorylem2  43955  omege0  43961
  Copyright terms: Public domain W3C validator