| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omecl | Structured version Visualization version GIF version | ||
| Description: The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| omecl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omecl.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omecl.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| omecl | ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omecl.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | omecl.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 3 | 1, 2 | omef 46494 | . 2 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
| 4 | omecl.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 5 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑋 = ∪ dom 𝑂) |
| 6 | 1 | dmexd 7879 | . . . . . . 7 ⊢ (𝜑 → dom 𝑂 ∈ V) |
| 7 | 6 | uniexd 7718 | . . . . . 6 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
| 8 | 5, 7 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
| 9 | 8, 4 | ssexd 5279 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 10 | elpwg 4566 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 12 | 4, 11 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
| 13 | 3, 12 | ffvelcdmd 7057 | 1 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 𝒫 cpw 4563 ∪ cuni 4871 dom cdm 5638 ‘cfv 6511 (class class class)co 7387 0cc0 11068 +∞cpnf 11205 [,]cicc 13309 OutMeascome 46487 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-fv 6519 df-ome 46488 |
| This theorem is referenced by: caragen0 46504 omexrcl 46505 caragenunidm 46506 omessre 46508 caragenuncllem 46510 caragendifcl 46512 omeunle 46514 omeiunle 46515 omeiunltfirp 46517 carageniuncllem2 46520 carageniuncl 46521 caratheodorylem1 46524 caratheodorylem2 46525 omege0 46531 |
| Copyright terms: Public domain | W3C validator |