Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > omecl | Structured version Visualization version GIF version |
Description: The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omecl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omecl.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omecl.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Ref | Expression |
---|---|
omecl | ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omecl.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | omecl.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | 1, 2 | omef 44421 | . 2 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
4 | omecl.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
5 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑋 = ∪ dom 𝑂) |
6 | 1 | dmexd 7825 | . . . . . . 7 ⊢ (𝜑 → dom 𝑂 ∈ V) |
7 | 6 | uniexd 7662 | . . . . . 6 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
8 | 5, 7 | eqeltrd 2838 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
9 | 8, 4 | ssexd 5273 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
10 | elpwg 4555 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
12 | 4, 11 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
13 | 3, 12 | ffvelcdmd 7023 | 1 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ⊆ wss 3902 𝒫 cpw 4552 ∪ cuni 4857 dom cdm 5625 ‘cfv 6484 (class class class)co 7342 0cc0 10977 +∞cpnf 11112 [,]cicc 13188 OutMeascome 44414 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-fv 6492 df-ome 44415 |
This theorem is referenced by: caragen0 44431 omexrcl 44432 caragenunidm 44433 omessre 44435 caragenuncllem 44437 caragendifcl 44439 omeunle 44441 omeiunle 44442 omeiunltfirp 44444 carageniuncllem2 44447 carageniuncl 44448 caratheodorylem1 44451 caratheodorylem2 44452 omege0 44458 |
Copyright terms: Public domain | W3C validator |