| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omecl | Structured version Visualization version GIF version | ||
| Description: The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| omecl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omecl.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omecl.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| omecl | ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omecl.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | omecl.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 3 | 1, 2 | omef 46542 | . 2 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
| 4 | omecl.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 5 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑋 = ∪ dom 𝑂) |
| 6 | 1 | dmexd 7833 | . . . . . . 7 ⊢ (𝜑 → dom 𝑂 ∈ V) |
| 7 | 6 | uniexd 7675 | . . . . . 6 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
| 8 | 5, 7 | eqeltrd 2831 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
| 9 | 8, 4 | ssexd 5260 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 10 | elpwg 4550 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 12 | 4, 11 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
| 13 | 3, 12 | ffvelcdmd 7018 | 1 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 𝒫 cpw 4547 ∪ cuni 4856 dom cdm 5614 ‘cfv 6481 (class class class)co 7346 0cc0 11006 +∞cpnf 11143 [,]cicc 13248 OutMeascome 46535 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fv 6489 df-ome 46536 |
| This theorem is referenced by: caragen0 46552 omexrcl 46553 caragenunidm 46554 omessre 46556 caragenuncllem 46558 caragendifcl 46560 omeunle 46562 omeiunle 46563 omeiunltfirp 46565 carageniuncllem2 46568 carageniuncl 46569 caratheodorylem1 46572 caratheodorylem2 46573 omege0 46579 |
| Copyright terms: Public domain | W3C validator |