Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omecl Structured version   Visualization version   GIF version

Theorem omecl 46474
Description: The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omecl.o (𝜑𝑂 ∈ OutMeas)
omecl.x 𝑋 = dom 𝑂
omecl.ss (𝜑𝐴𝑋)
Assertion
Ref Expression
omecl (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))

Proof of Theorem omecl
StepHypRef Expression
1 omecl.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 omecl.x . . 3 𝑋 = dom 𝑂
31, 2omef 46467 . 2 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
4 omecl.ss . . 3 (𝜑𝐴𝑋)
52a1i 11 . . . . . 6 (𝜑𝑋 = dom 𝑂)
61dmexd 7859 . . . . . . 7 (𝜑 → dom 𝑂 ∈ V)
76uniexd 7698 . . . . . 6 (𝜑 dom 𝑂 ∈ V)
85, 7eqeltrd 2828 . . . . 5 (𝜑𝑋 ∈ V)
98, 4ssexd 5274 . . . 4 (𝜑𝐴 ∈ V)
10 elpwg 4562 . . . 4 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
119, 10syl 17 . . 3 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
124, 11mpbird 257 . 2 (𝜑𝐴 ∈ 𝒫 𝑋)
133, 12ffvelcdmd 7039 1 (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wcel 2109  Vcvv 3444  wss 3911  𝒫 cpw 4559   cuni 4867  dom cdm 5631  cfv 6499  (class class class)co 7369  0cc0 11044  +∞cpnf 11181  [,]cicc 13285  OutMeascome 46460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-fv 6507  df-ome 46461
This theorem is referenced by:  caragen0  46477  omexrcl  46478  caragenunidm  46479  omessre  46481  caragenuncllem  46483  caragendifcl  46485  omeunle  46487  omeiunle  46488  omeiunltfirp  46490  carageniuncllem2  46493  carageniuncl  46494  caratheodorylem1  46497  caratheodorylem2  46498  omege0  46504
  Copyright terms: Public domain W3C validator