| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omecl | Structured version Visualization version GIF version | ||
| Description: The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| omecl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omecl.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omecl.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| omecl | ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omecl.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | omecl.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 3 | 1, 2 | omef 46525 | . 2 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
| 4 | omecl.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 5 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑋 = ∪ dom 𝑂) |
| 6 | 1 | dmexd 7899 | . . . . . . 7 ⊢ (𝜑 → dom 𝑂 ∈ V) |
| 7 | 6 | uniexd 7736 | . . . . . 6 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
| 8 | 5, 7 | eqeltrd 2834 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
| 9 | 8, 4 | ssexd 5294 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 10 | elpwg 4578 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 12 | 4, 11 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
| 13 | 3, 12 | ffvelcdmd 7075 | 1 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ⊆ wss 3926 𝒫 cpw 4575 ∪ cuni 4883 dom cdm 5654 ‘cfv 6531 (class class class)co 7405 0cc0 11129 +∞cpnf 11266 [,]cicc 13365 OutMeascome 46518 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-fv 6539 df-ome 46519 |
| This theorem is referenced by: caragen0 46535 omexrcl 46536 caragenunidm 46537 omessre 46539 caragenuncllem 46541 caragendifcl 46543 omeunle 46545 omeiunle 46546 omeiunltfirp 46548 carageniuncllem2 46551 carageniuncl 46552 caratheodorylem1 46555 caratheodorylem2 46556 omege0 46562 |
| Copyright terms: Public domain | W3C validator |