![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > omecl | Structured version Visualization version GIF version |
Description: The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
omecl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
omecl.x | ⊢ 𝑋 = ∪ dom 𝑂 |
omecl.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
Ref | Expression |
---|---|
omecl | ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omecl.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
2 | omecl.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | 1, 2 | omef 45512 | . 2 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
4 | omecl.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
5 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑋 = ∪ dom 𝑂) |
6 | 1 | dmexd 7900 | . . . . . . 7 ⊢ (𝜑 → dom 𝑂 ∈ V) |
7 | 6 | uniexd 7736 | . . . . . 6 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
8 | 5, 7 | eqeltrd 2831 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
9 | 8, 4 | ssexd 5325 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
10 | elpwg 4606 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
12 | 4, 11 | mpbird 256 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
13 | 3, 12 | ffvelcdmd 7088 | 1 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2104 Vcvv 3472 ⊆ wss 3949 𝒫 cpw 4603 ∪ cuni 4909 dom cdm 5677 ‘cfv 6544 (class class class)co 7413 0cc0 11114 +∞cpnf 11251 [,]cicc 13333 OutMeascome 45505 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-fv 6552 df-ome 45506 |
This theorem is referenced by: caragen0 45522 omexrcl 45523 caragenunidm 45524 omessre 45526 caragenuncllem 45528 caragendifcl 45530 omeunle 45532 omeiunle 45533 omeiunltfirp 45535 carageniuncllem2 45538 carageniuncl 45539 caratheodorylem1 45542 caratheodorylem2 45543 omege0 45549 |
Copyright terms: Public domain | W3C validator |