| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > omecl | Structured version Visualization version GIF version | ||
| Description: The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| omecl.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| omecl.x | ⊢ 𝑋 = ∪ dom 𝑂 |
| omecl.ss | ⊢ (𝜑 → 𝐴 ⊆ 𝑋) |
| Ref | Expression |
|---|---|
| omecl | ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omecl.o | . . 3 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 2 | omecl.x | . . 3 ⊢ 𝑋 = ∪ dom 𝑂 | |
| 3 | 1, 2 | omef 46467 | . 2 ⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
| 4 | omecl.ss | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝑋) | |
| 5 | 2 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑋 = ∪ dom 𝑂) |
| 6 | 1 | dmexd 7859 | . . . . . . 7 ⊢ (𝜑 → dom 𝑂 ∈ V) |
| 7 | 6 | uniexd 7698 | . . . . . 6 ⊢ (𝜑 → ∪ dom 𝑂 ∈ V) |
| 8 | 5, 7 | eqeltrd 2828 | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ V) |
| 9 | 8, 4 | ssexd 5274 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ V) |
| 10 | elpwg 4562 | . . . 4 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) | |
| 11 | 9, 10 | syl 17 | . . 3 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝑋 ↔ 𝐴 ⊆ 𝑋)) |
| 12 | 4, 11 | mpbird 257 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝑋) |
| 13 | 3, 12 | ffvelcdmd 7039 | 1 ⊢ (𝜑 → (𝑂‘𝐴) ∈ (0[,]+∞)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ⊆ wss 3911 𝒫 cpw 4559 ∪ cuni 4867 dom cdm 5631 ‘cfv 6499 (class class class)co 7369 0cc0 11044 +∞cpnf 11181 [,]cicc 13285 OutMeascome 46460 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fv 6507 df-ome 46461 |
| This theorem is referenced by: caragen0 46477 omexrcl 46478 caragenunidm 46479 omessre 46481 caragenuncllem 46483 caragendifcl 46485 omeunle 46487 omeiunle 46488 omeiunltfirp 46490 carageniuncllem2 46493 carageniuncl 46494 caratheodorylem1 46497 caratheodorylem2 46498 omege0 46504 |
| Copyright terms: Public domain | W3C validator |