Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omecl Structured version   Visualization version   GIF version

Theorem omecl 44428
Description: The outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omecl.o (𝜑𝑂 ∈ OutMeas)
omecl.x 𝑋 = dom 𝑂
omecl.ss (𝜑𝐴𝑋)
Assertion
Ref Expression
omecl (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))

Proof of Theorem omecl
StepHypRef Expression
1 omecl.o . . 3 (𝜑𝑂 ∈ OutMeas)
2 omecl.x . . 3 𝑋 = dom 𝑂
31, 2omef 44421 . 2 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
4 omecl.ss . . 3 (𝜑𝐴𝑋)
52a1i 11 . . . . . 6 (𝜑𝑋 = dom 𝑂)
61dmexd 7825 . . . . . . 7 (𝜑 → dom 𝑂 ∈ V)
76uniexd 7662 . . . . . 6 (𝜑 dom 𝑂 ∈ V)
85, 7eqeltrd 2838 . . . . 5 (𝜑𝑋 ∈ V)
98, 4ssexd 5273 . . . 4 (𝜑𝐴 ∈ V)
10 elpwg 4555 . . . 4 (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
119, 10syl 17 . . 3 (𝜑 → (𝐴 ∈ 𝒫 𝑋𝐴𝑋))
124, 11mpbird 257 . 2 (𝜑𝐴 ∈ 𝒫 𝑋)
133, 12ffvelcdmd 7023 1 (𝜑 → (𝑂𝐴) ∈ (0[,]+∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  Vcvv 3442  wss 3902  𝒫 cpw 4552   cuni 4857  dom cdm 5625  cfv 6484  (class class class)co 7342  0cc0 10977  +∞cpnf 11112  [,]cicc 13188  OutMeascome 44414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-12 2171  ax-ext 2708  ax-sep 5248  ax-nul 5255  ax-pr 5377  ax-un 7655
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4275  df-if 4479  df-pw 4554  df-sn 4579  df-pr 4581  df-op 4585  df-uni 4858  df-br 5098  df-opab 5160  df-id 5523  df-xp 5631  df-rel 5632  df-cnv 5633  df-co 5634  df-dm 5635  df-rn 5636  df-res 5637  df-iota 6436  df-fun 6486  df-fn 6487  df-f 6488  df-fv 6492  df-ome 44415
This theorem is referenced by:  caragen0  44431  omexrcl  44432  caragenunidm  44433  omessre  44435  caragenuncllem  44437  caragendifcl  44439  omeunle  44441  omeiunle  44442  omeiunltfirp  44444  carageniuncllem2  44447  carageniuncl  44448  caratheodorylem1  44451  caratheodorylem2  44452  omege0  44458
  Copyright terms: Public domain W3C validator