Step | Hyp | Ref
| Expression |
1 | | iccssxr 13272 |
. . 3
⊢
(0[,]+∞) ⊆ ℝ* |
2 | | omeiunle.o |
. . . 4
⊢ (𝜑 → 𝑂 ∈ OutMeas) |
3 | | omeiunle.x |
. . . 4
⊢ 𝑋 = ∪
dom 𝑂 |
4 | | omeiunle.nph |
. . . . . 6
⊢
Ⅎ𝑛𝜑 |
5 | | omeiunle.e |
. . . . . . . . 9
⊢ (𝜑 → 𝐸:𝑍⟶𝒫 𝑋) |
6 | 5 | ffvelcdmda 7026 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ∈ 𝒫 𝑋) |
7 | | elpwi 4562 |
. . . . . . . 8
⊢ ((𝐸‘𝑛) ∈ 𝒫 𝑋 → (𝐸‘𝑛) ⊆ 𝑋) |
8 | 6, 7 | syl 17 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝐸‘𝑛) ⊆ 𝑋) |
9 | 8 | ex 414 |
. . . . . 6
⊢ (𝜑 → (𝑛 ∈ 𝑍 → (𝐸‘𝑛) ⊆ 𝑋)) |
10 | 4, 9 | ralrimi 3238 |
. . . . 5
⊢ (𝜑 → ∀𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ 𝑋) |
11 | | iunss 5000 |
. . . . 5
⊢ (∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ 𝑋 ↔ ∀𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ 𝑋) |
12 | 10, 11 | sylibr 233 |
. . . 4
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) ⊆ 𝑋) |
13 | 2, 3, 12 | omecl 44430 |
. . 3
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∈ (0[,]+∞)) |
14 | 1, 13 | sselid 3937 |
. 2
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ∈
ℝ*) |
15 | 5 | ffnd 6661 |
. . . . 5
⊢ (𝜑 → 𝐸 Fn 𝑍) |
16 | | omeiunle.z |
. . . . . . 7
⊢ 𝑍 =
(ℤ≥‘𝑁) |
17 | 16 | fvexi 6848 |
. . . . . 6
⊢ 𝑍 ∈ V |
18 | 17 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ V) |
19 | | fnex 7158 |
. . . . 5
⊢ ((𝐸 Fn 𝑍 ∧ 𝑍 ∈ V) → 𝐸 ∈ V) |
20 | 15, 18, 19 | syl2anc 585 |
. . . 4
⊢ (𝜑 → 𝐸 ∈ V) |
21 | | rnexg 7828 |
. . . 4
⊢ (𝐸 ∈ V → ran 𝐸 ∈ V) |
22 | 20, 21 | syl 17 |
. . 3
⊢ (𝜑 → ran 𝐸 ∈ V) |
23 | 2, 3 | omef 44423 |
. . . 4
⊢ (𝜑 → 𝑂:𝒫 𝑋⟶(0[,]+∞)) |
24 | 5 | frnd 6668 |
. . . 4
⊢ (𝜑 → ran 𝐸 ⊆ 𝒫 𝑋) |
25 | 23, 24 | fssresd 6701 |
. . 3
⊢ (𝜑 → (𝑂 ↾ ran 𝐸):ran 𝐸⟶(0[,]+∞)) |
26 | 22, 25 | sge0xrcl 44312 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑂 ↾ ran 𝐸)) ∈
ℝ*) |
27 | 2 | adantr 482 |
. . . . 5
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → 𝑂 ∈ OutMeas) |
28 | 27, 3, 8 | omecl 44430 |
. . . 4
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (𝑂‘(𝐸‘𝑛)) ∈ (0[,]+∞)) |
29 | | eqid 2737 |
. . . 4
⊢ (𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) = (𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) |
30 | 4, 28, 29 | fmptdf 7056 |
. . 3
⊢ (𝜑 → (𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))):𝑍⟶(0[,]+∞)) |
31 | 18, 30 | sge0xrcl 44312 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) ∈
ℝ*) |
32 | | fvex 6847 |
. . . . . . . 8
⊢ (𝐸‘𝑛) ∈ V |
33 | 32 | rgenw 3066 |
. . . . . . 7
⊢
∀𝑛 ∈
𝑍 (𝐸‘𝑛) ∈ V |
34 | | dfiun3g 5912 |
. . . . . . 7
⊢
(∀𝑛 ∈
𝑍 (𝐸‘𝑛) ∈ V → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) = ∪ ran (𝑛 ∈ 𝑍 ↦ (𝐸‘𝑛))) |
35 | 33, 34 | ax-mp 5 |
. . . . . 6
⊢ ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) = ∪ ran (𝑛 ∈ 𝑍 ↦ (𝐸‘𝑛)) |
36 | 35 | a1i 11 |
. . . . 5
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) = ∪ ran (𝑛 ∈ 𝑍 ↦ (𝐸‘𝑛))) |
37 | 5 | feqmptd 6902 |
. . . . . . . 8
⊢ (𝜑 → 𝐸 = (𝑚 ∈ 𝑍 ↦ (𝐸‘𝑚))) |
38 | | omeiunle.ne |
. . . . . . . . . . 11
⊢
Ⅎ𝑛𝐸 |
39 | | nfcv 2905 |
. . . . . . . . . . 11
⊢
Ⅎ𝑛𝑚 |
40 | 38, 39 | nffv 6844 |
. . . . . . . . . 10
⊢
Ⅎ𝑛(𝐸‘𝑚) |
41 | | nfcv 2905 |
. . . . . . . . . 10
⊢
Ⅎ𝑚(𝐸‘𝑛) |
42 | | fveq2 6834 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 → (𝐸‘𝑚) = (𝐸‘𝑛)) |
43 | 40, 41, 42 | cbvmpt 5211 |
. . . . . . . . 9
⊢ (𝑚 ∈ 𝑍 ↦ (𝐸‘𝑚)) = (𝑛 ∈ 𝑍 ↦ (𝐸‘𝑛)) |
44 | 43 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝑚 ∈ 𝑍 ↦ (𝐸‘𝑚)) = (𝑛 ∈ 𝑍 ↦ (𝐸‘𝑛))) |
45 | 37, 44 | eqtrd 2777 |
. . . . . . 7
⊢ (𝜑 → 𝐸 = (𝑛 ∈ 𝑍 ↦ (𝐸‘𝑛))) |
46 | 45 | rneqd 5886 |
. . . . . 6
⊢ (𝜑 → ran 𝐸 = ran (𝑛 ∈ 𝑍 ↦ (𝐸‘𝑛))) |
47 | 46 | unieqd 4874 |
. . . . 5
⊢ (𝜑 → ∪ ran 𝐸 = ∪ ran (𝑛 ∈ 𝑍 ↦ (𝐸‘𝑛))) |
48 | 36, 47 | eqtr4d 2780 |
. . . 4
⊢ (𝜑 → ∪ 𝑛 ∈ 𝑍 (𝐸‘𝑛) = ∪ ran 𝐸) |
49 | 48 | fveq2d 6838 |
. . 3
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) = (𝑂‘∪ ran
𝐸)) |
50 | | fnrndomg 10402 |
. . . . . 6
⊢ (𝑍 ∈ V → (𝐸 Fn 𝑍 → ran 𝐸 ≼ 𝑍)) |
51 | 18, 15, 50 | sylc 65 |
. . . . 5
⊢ (𝜑 → ran 𝐸 ≼ 𝑍) |
52 | 16 | uzct 42983 |
. . . . . 6
⊢ 𝑍 ≼
ω |
53 | 52 | a1i 11 |
. . . . 5
⊢ (𝜑 → 𝑍 ≼ ω) |
54 | | domtr 8877 |
. . . . 5
⊢ ((ran
𝐸 ≼ 𝑍 ∧ 𝑍 ≼ ω) → ran 𝐸 ≼
ω) |
55 | 51, 53, 54 | syl2anc 585 |
. . . 4
⊢ (𝜑 → ran 𝐸 ≼ ω) |
56 | 2, 3, 24, 55 | omeunile 44432 |
. . 3
⊢ (𝜑 → (𝑂‘∪ ran
𝐸) ≤
(Σ^‘(𝑂 ↾ ran 𝐸))) |
57 | 49, 56 | eqbrtrd 5122 |
. 2
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤
(Σ^‘(𝑂 ↾ ran 𝐸))) |
58 | | ltweuz 13791 |
. . . . . 6
⊢ < We
(ℤ≥‘𝑁) |
59 | | weeq2 5616 |
. . . . . . 7
⊢ (𝑍 =
(ℤ≥‘𝑁) → ( < We 𝑍 ↔ < We
(ℤ≥‘𝑁))) |
60 | 16, 59 | ax-mp 5 |
. . . . . 6
⊢ ( < We
𝑍 ↔ < We
(ℤ≥‘𝑁)) |
61 | 58, 60 | mpbir 230 |
. . . . 5
⊢ < We
𝑍 |
62 | 61 | a1i 11 |
. . . 4
⊢ (𝜑 → < We 𝑍) |
63 | 18, 23, 5, 62 | sge0resrn 44331 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑂 ↾ ran 𝐸)) ≤
(Σ^‘(𝑂 ∘ 𝐸))) |
64 | | fcompt 7070 |
. . . . . 6
⊢ ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝐸:𝑍⟶𝒫 𝑋) → (𝑂 ∘ 𝐸) = (𝑚 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑚)))) |
65 | | nfcv 2905 |
. . . . . . . . 9
⊢
Ⅎ𝑛𝑂 |
66 | 65, 40 | nffv 6844 |
. . . . . . . 8
⊢
Ⅎ𝑛(𝑂‘(𝐸‘𝑚)) |
67 | | nfcv 2905 |
. . . . . . . 8
⊢
Ⅎ𝑚(𝑂‘(𝐸‘𝑛)) |
68 | | 2fveq3 6839 |
. . . . . . . 8
⊢ (𝑚 = 𝑛 → (𝑂‘(𝐸‘𝑚)) = (𝑂‘(𝐸‘𝑛))) |
69 | 66, 67, 68 | cbvmpt 5211 |
. . . . . . 7
⊢ (𝑚 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑚))) = (𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))) |
70 | 69 | a1i 11 |
. . . . . 6
⊢ ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝐸:𝑍⟶𝒫 𝑋) → (𝑚 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑚))) = (𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) |
71 | 64, 70 | eqtrd 2777 |
. . . . 5
⊢ ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝐸:𝑍⟶𝒫 𝑋) → (𝑂 ∘ 𝐸) = (𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) |
72 | 23, 5, 71 | syl2anc 585 |
. . . 4
⊢ (𝜑 → (𝑂 ∘ 𝐸) = (𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛)))) |
73 | 72 | fveq2d 6838 |
. . 3
⊢ (𝜑 →
(Σ^‘(𝑂 ∘ 𝐸)) =
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))))) |
74 | 63, 73 | breqtrd 5126 |
. 2
⊢ (𝜑 →
(Σ^‘(𝑂 ↾ ran 𝐸)) ≤
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))))) |
75 | 14, 26, 31, 57, 74 | xrletrd 13006 |
1
⊢ (𝜑 → (𝑂‘∪
𝑛 ∈ 𝑍 (𝐸‘𝑛)) ≤
(Σ^‘(𝑛 ∈ 𝑍 ↦ (𝑂‘(𝐸‘𝑛))))) |