Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunle Structured version   Visualization version   GIF version

Theorem omeiunle 42361
Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunle.nph 𝑛𝜑
omeiunle.ne 𝑛𝐸
omeiunle.o (𝜑𝑂 ∈ OutMeas)
omeiunle.x 𝑋 = dom 𝑂
omeiunle.z 𝑍 = (ℤ𝑁)
omeiunle.e (𝜑𝐸:𝑍⟶𝒫 𝑋)
Assertion
Ref Expression
omeiunle (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
Distinct variable groups:   𝑛,𝑂   𝑛,𝑋   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑛)   𝐸(𝑛)   𝑁(𝑛)

Proof of Theorem omeiunle
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 12669 . . 3 (0[,]+∞) ⊆ ℝ*
2 omeiunle.o . . . 4 (𝜑𝑂 ∈ OutMeas)
3 omeiunle.x . . . 4 𝑋 = dom 𝑂
4 omeiunle.nph . . . . . 6 𝑛𝜑
5 omeiunle.e . . . . . . . . 9 (𝜑𝐸:𝑍⟶𝒫 𝑋)
65ffvelrnda 6716 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝒫 𝑋)
7 elpwi 4463 . . . . . . . 8 ((𝐸𝑛) ∈ 𝒫 𝑋 → (𝐸𝑛) ⊆ 𝑋)
86, 7syl 17 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑋)
98ex 413 . . . . . 6 (𝜑 → (𝑛𝑍 → (𝐸𝑛) ⊆ 𝑋))
104, 9ralrimi 3183 . . . . 5 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
11 iunss 4868 . . . . 5 ( 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
1210, 11sylibr 235 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
132, 3, 12omecl 42347 . . 3 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ (0[,]+∞))
141, 13sseldi 3887 . 2 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
155ffnd 6383 . . . . 5 (𝜑𝐸 Fn 𝑍)
16 omeiunle.z . . . . . . 7 𝑍 = (ℤ𝑁)
1716fvexi 6552 . . . . . 6 𝑍 ∈ V
1817a1i 11 . . . . 5 (𝜑𝑍 ∈ V)
19 fnex 6846 . . . . 5 ((𝐸 Fn 𝑍𝑍 ∈ V) → 𝐸 ∈ V)
2015, 18, 19syl2anc 584 . . . 4 (𝜑𝐸 ∈ V)
21 rnexg 7470 . . . 4 (𝐸 ∈ V → ran 𝐸 ∈ V)
2220, 21syl 17 . . 3 (𝜑 → ran 𝐸 ∈ V)
232, 3omef 42340 . . . 4 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
245frnd 6389 . . . 4 (𝜑 → ran 𝐸 ⊆ 𝒫 𝑋)
2523, 24fssresd 6413 . . 3 (𝜑 → (𝑂 ↾ ran 𝐸):ran 𝐸⟶(0[,]+∞))
2622, 25sge0xrcl 42229 . 2 (𝜑 → (Σ^‘(𝑂 ↾ ran 𝐸)) ∈ ℝ*)
272adantr 481 . . . . 5 ((𝜑𝑛𝑍) → 𝑂 ∈ OutMeas)
2827, 3, 8omecl 42347 . . . 4 ((𝜑𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
29 eqid 2795 . . . 4 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
304, 28, 29fmptdf 6744 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
3118, 30sge0xrcl 42229 . 2 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
32 fvex 6551 . . . . . . . 8 (𝐸𝑛) ∈ V
3332rgenw 3117 . . . . . . 7 𝑛𝑍 (𝐸𝑛) ∈ V
34 dfiun3g 5716 . . . . . . 7 (∀𝑛𝑍 (𝐸𝑛) ∈ V → 𝑛𝑍 (𝐸𝑛) = ran (𝑛𝑍 ↦ (𝐸𝑛)))
3533, 34ax-mp 5 . . . . . 6 𝑛𝑍 (𝐸𝑛) = ran (𝑛𝑍 ↦ (𝐸𝑛))
3635a1i 11 . . . . 5 (𝜑 𝑛𝑍 (𝐸𝑛) = ran (𝑛𝑍 ↦ (𝐸𝑛)))
375feqmptd 6601 . . . . . . . 8 (𝜑𝐸 = (𝑚𝑍 ↦ (𝐸𝑚)))
38 omeiunle.ne . . . . . . . . . . 11 𝑛𝐸
39 nfcv 2949 . . . . . . . . . . 11 𝑛𝑚
4038, 39nffv 6548 . . . . . . . . . 10 𝑛(𝐸𝑚)
41 nfcv 2949 . . . . . . . . . 10 𝑚(𝐸𝑛)
42 fveq2 6538 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐸𝑚) = (𝐸𝑛))
4340, 41, 42cbvmpt 5060 . . . . . . . . 9 (𝑚𝑍 ↦ (𝐸𝑚)) = (𝑛𝑍 ↦ (𝐸𝑛))
4443a1i 11 . . . . . . . 8 (𝜑 → (𝑚𝑍 ↦ (𝐸𝑚)) = (𝑛𝑍 ↦ (𝐸𝑛)))
4537, 44eqtrd 2831 . . . . . . 7 (𝜑𝐸 = (𝑛𝑍 ↦ (𝐸𝑛)))
4645rneqd 5690 . . . . . 6 (𝜑 → ran 𝐸 = ran (𝑛𝑍 ↦ (𝐸𝑛)))
4746unieqd 4755 . . . . 5 (𝜑 ran 𝐸 = ran (𝑛𝑍 ↦ (𝐸𝑛)))
4836, 47eqtr4d 2834 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) = ran 𝐸)
4948fveq2d 6542 . . 3 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) = (𝑂 ran 𝐸))
50 fnrndomg 9804 . . . . . 6 (𝑍 ∈ V → (𝐸 Fn 𝑍 → ran 𝐸𝑍))
5118, 15, 50sylc 65 . . . . 5 (𝜑 → ran 𝐸𝑍)
5216uzct 40883 . . . . . 6 𝑍 ≼ ω
5352a1i 11 . . . . 5 (𝜑𝑍 ≼ ω)
54 domtr 8410 . . . . 5 ((ran 𝐸𝑍𝑍 ≼ ω) → ran 𝐸 ≼ ω)
5551, 53, 54syl2anc 584 . . . 4 (𝜑 → ran 𝐸 ≼ ω)
562, 3, 24, 55omeunile 42349 . . 3 (𝜑 → (𝑂 ran 𝐸) ≤ (Σ^‘(𝑂 ↾ ran 𝐸)))
5749, 56eqbrtrd 4984 . 2 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑂 ↾ ran 𝐸)))
58 ltweuz 13179 . . . . . 6 < We (ℤ𝑁)
59 weeq2 5432 . . . . . . 7 (𝑍 = (ℤ𝑁) → ( < We 𝑍 ↔ < We (ℤ𝑁)))
6016, 59ax-mp 5 . . . . . 6 ( < We 𝑍 ↔ < We (ℤ𝑁))
6158, 60mpbir 232 . . . . 5 < We 𝑍
6261a1i 11 . . . 4 (𝜑 → < We 𝑍)
6318, 23, 5, 62sge0resrn 42248 . . 3 (𝜑 → (Σ^‘(𝑂 ↾ ran 𝐸)) ≤ (Σ^‘(𝑂𝐸)))
64 fcompt 6758 . . . . . 6 ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝐸:𝑍⟶𝒫 𝑋) → (𝑂𝐸) = (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))))
65 nfcv 2949 . . . . . . . . 9 𝑛𝑂
6665, 40nffv 6548 . . . . . . . 8 𝑛(𝑂‘(𝐸𝑚))
67 nfcv 2949 . . . . . . . 8 𝑚(𝑂‘(𝐸𝑛))
68 2fveq3 6543 . . . . . . . 8 (𝑚 = 𝑛 → (𝑂‘(𝐸𝑚)) = (𝑂‘(𝐸𝑛)))
6966, 67, 68cbvmpt 5060 . . . . . . 7 (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
7069a1i 11 . . . . . 6 ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝐸:𝑍⟶𝒫 𝑋) → (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
7164, 70eqtrd 2831 . . . . 5 ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝐸:𝑍⟶𝒫 𝑋) → (𝑂𝐸) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
7223, 5, 71syl2anc 584 . . . 4 (𝜑 → (𝑂𝐸) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
7372fveq2d 6542 . . 3 (𝜑 → (Σ^‘(𝑂𝐸)) = (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
7463, 73breqtrd 4988 . 2 (𝜑 → (Σ^‘(𝑂 ↾ ran 𝐸)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
7514, 26, 31, 57, 74xrletrd 12405 1 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1522  wnf 1765  wcel 2081  wnfc 2933  wral 3105  Vcvv 3437  wss 3859  𝒫 cpw 4453   cuni 4745   ciun 4825   class class class wbr 4962  cmpt 5041   We wwe 5401  dom cdm 5443  ran crn 5444  cres 5445  ccom 5447   Fn wfn 6220  wf 6221  cfv 6225  (class class class)co 7016  ωcom 7436  cdom 8355  0cc0 10383  +∞cpnf 10518  *cxr 10520   < clt 10521  cle 10522  cuz 12093  [,]cicc 12591  Σ^csumge0 42206  OutMeascome 42333
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5081  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-inf2 8950  ax-ac2 9731  ax-cnex 10439  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460  ax-pre-sup 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-fal 1535  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-pss 3876  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-tp 4477  df-op 4479  df-uni 4746  df-int 4783  df-iun 4827  df-br 4963  df-opab 5025  df-mpt 5042  df-tr 5064  df-id 5348  df-eprel 5353  df-po 5362  df-so 5363  df-fr 5402  df-se 5403  df-we 5404  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-pred 6023  df-ord 6069  df-on 6070  df-lim 6071  df-suc 6072  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-isom 6234  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-om 7437  df-1st 7545  df-2nd 7546  df-wrecs 7798  df-recs 7860  df-rdg 7898  df-1o 7953  df-oadd 7957  df-omul 7958  df-er 8139  df-map 8258  df-en 8358  df-dom 8359  df-sdom 8360  df-fin 8361  df-sup 8752  df-oi 8820  df-card 9214  df-acn 9217  df-ac 9388  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146  df-nn 11487  df-2 11548  df-3 11549  df-n0 11746  df-z 11830  df-uz 12094  df-rp 12240  df-ico 12594  df-icc 12595  df-fz 12743  df-fzo 12884  df-seq 13220  df-exp 13280  df-hash 13541  df-cj 14292  df-re 14293  df-im 14294  df-sqrt 14428  df-abs 14429  df-clim 14679  df-sum 14877  df-sumge0 42207  df-ome 42334
This theorem is referenced by:  omeiunltfirp  42363  omeiunlempt  42364  caratheodorylem2  42371
  Copyright terms: Public domain W3C validator