Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunle Structured version   Visualization version   GIF version

Theorem omeiunle 46473
Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunle.nph 𝑛𝜑
omeiunle.ne 𝑛𝐸
omeiunle.o (𝜑𝑂 ∈ OutMeas)
omeiunle.x 𝑋 = dom 𝑂
omeiunle.z 𝑍 = (ℤ𝑁)
omeiunle.e (𝜑𝐸:𝑍⟶𝒫 𝑋)
Assertion
Ref Expression
omeiunle (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
Distinct variable groups:   𝑛,𝑂   𝑛,𝑋   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑛)   𝐸(𝑛)   𝑁(𝑛)

Proof of Theorem omeiunle
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 13467 . . 3 (0[,]+∞) ⊆ ℝ*
2 omeiunle.o . . . 4 (𝜑𝑂 ∈ OutMeas)
3 omeiunle.x . . . 4 𝑋 = dom 𝑂
4 omeiunle.nph . . . . . 6 𝑛𝜑
5 omeiunle.e . . . . . . . . 9 (𝜑𝐸:𝑍⟶𝒫 𝑋)
65ffvelcdmda 7104 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝒫 𝑋)
7 elpwi 4612 . . . . . . . 8 ((𝐸𝑛) ∈ 𝒫 𝑋 → (𝐸𝑛) ⊆ 𝑋)
86, 7syl 17 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑋)
98ex 412 . . . . . 6 (𝜑 → (𝑛𝑍 → (𝐸𝑛) ⊆ 𝑋))
104, 9ralrimi 3255 . . . . 5 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
11 iunss 5050 . . . . 5 ( 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
1210, 11sylibr 234 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
132, 3, 12omecl 46459 . . 3 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ (0[,]+∞))
141, 13sselid 3993 . 2 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
155ffnd 6738 . . . . 5 (𝜑𝐸 Fn 𝑍)
16 omeiunle.z . . . . . . 7 𝑍 = (ℤ𝑁)
1716fvexi 6921 . . . . . 6 𝑍 ∈ V
1817a1i 11 . . . . 5 (𝜑𝑍 ∈ V)
19 fnex 7237 . . . . 5 ((𝐸 Fn 𝑍𝑍 ∈ V) → 𝐸 ∈ V)
2015, 18, 19syl2anc 584 . . . 4 (𝜑𝐸 ∈ V)
21 rnexg 7925 . . . 4 (𝐸 ∈ V → ran 𝐸 ∈ V)
2220, 21syl 17 . . 3 (𝜑 → ran 𝐸 ∈ V)
232, 3omef 46452 . . . 4 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
245frnd 6745 . . . 4 (𝜑 → ran 𝐸 ⊆ 𝒫 𝑋)
2523, 24fssresd 6776 . . 3 (𝜑 → (𝑂 ↾ ran 𝐸):ran 𝐸⟶(0[,]+∞))
2622, 25sge0xrcl 46341 . 2 (𝜑 → (Σ^‘(𝑂 ↾ ran 𝐸)) ∈ ℝ*)
272adantr 480 . . . . 5 ((𝜑𝑛𝑍) → 𝑂 ∈ OutMeas)
2827, 3, 8omecl 46459 . . . 4 ((𝜑𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
29 eqid 2735 . . . 4 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
304, 28, 29fmptdf 7137 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
3118, 30sge0xrcl 46341 . 2 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
32 fvex 6920 . . . . . . . 8 (𝐸𝑛) ∈ V
3332rgenw 3063 . . . . . . 7 𝑛𝑍 (𝐸𝑛) ∈ V
34 dfiun3g 5981 . . . . . . 7 (∀𝑛𝑍 (𝐸𝑛) ∈ V → 𝑛𝑍 (𝐸𝑛) = ran (𝑛𝑍 ↦ (𝐸𝑛)))
3533, 34ax-mp 5 . . . . . 6 𝑛𝑍 (𝐸𝑛) = ran (𝑛𝑍 ↦ (𝐸𝑛))
3635a1i 11 . . . . 5 (𝜑 𝑛𝑍 (𝐸𝑛) = ran (𝑛𝑍 ↦ (𝐸𝑛)))
375feqmptd 6977 . . . . . . . 8 (𝜑𝐸 = (𝑚𝑍 ↦ (𝐸𝑚)))
38 omeiunle.ne . . . . . . . . . . 11 𝑛𝐸
39 nfcv 2903 . . . . . . . . . . 11 𝑛𝑚
4038, 39nffv 6917 . . . . . . . . . 10 𝑛(𝐸𝑚)
41 nfcv 2903 . . . . . . . . . 10 𝑚(𝐸𝑛)
42 fveq2 6907 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐸𝑚) = (𝐸𝑛))
4340, 41, 42cbvmpt 5259 . . . . . . . . 9 (𝑚𝑍 ↦ (𝐸𝑚)) = (𝑛𝑍 ↦ (𝐸𝑛))
4443a1i 11 . . . . . . . 8 (𝜑 → (𝑚𝑍 ↦ (𝐸𝑚)) = (𝑛𝑍 ↦ (𝐸𝑛)))
4537, 44eqtrd 2775 . . . . . . 7 (𝜑𝐸 = (𝑛𝑍 ↦ (𝐸𝑛)))
4645rneqd 5952 . . . . . 6 (𝜑 → ran 𝐸 = ran (𝑛𝑍 ↦ (𝐸𝑛)))
4746unieqd 4925 . . . . 5 (𝜑 ran 𝐸 = ran (𝑛𝑍 ↦ (𝐸𝑛)))
4836, 47eqtr4d 2778 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) = ran 𝐸)
4948fveq2d 6911 . . 3 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) = (𝑂 ran 𝐸))
50 fnrndomg 10574 . . . . . 6 (𝑍 ∈ V → (𝐸 Fn 𝑍 → ran 𝐸𝑍))
5118, 15, 50sylc 65 . . . . 5 (𝜑 → ran 𝐸𝑍)
5216uzct 45003 . . . . . 6 𝑍 ≼ ω
5352a1i 11 . . . . 5 (𝜑𝑍 ≼ ω)
54 domtr 9046 . . . . 5 ((ran 𝐸𝑍𝑍 ≼ ω) → ran 𝐸 ≼ ω)
5551, 53, 54syl2anc 584 . . . 4 (𝜑 → ran 𝐸 ≼ ω)
562, 3, 24, 55omeunile 46461 . . 3 (𝜑 → (𝑂 ran 𝐸) ≤ (Σ^‘(𝑂 ↾ ran 𝐸)))
5749, 56eqbrtrd 5170 . 2 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑂 ↾ ran 𝐸)))
58 ltweuz 13999 . . . . . 6 < We (ℤ𝑁)
59 weeq2 5677 . . . . . . 7 (𝑍 = (ℤ𝑁) → ( < We 𝑍 ↔ < We (ℤ𝑁)))
6016, 59ax-mp 5 . . . . . 6 ( < We 𝑍 ↔ < We (ℤ𝑁))
6158, 60mpbir 231 . . . . 5 < We 𝑍
6261a1i 11 . . . 4 (𝜑 → < We 𝑍)
6318, 23, 5, 62sge0resrn 46360 . . 3 (𝜑 → (Σ^‘(𝑂 ↾ ran 𝐸)) ≤ (Σ^‘(𝑂𝐸)))
64 fcompt 7153 . . . . . 6 ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝐸:𝑍⟶𝒫 𝑋) → (𝑂𝐸) = (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))))
65 nfcv 2903 . . . . . . . . 9 𝑛𝑂
6665, 40nffv 6917 . . . . . . . 8 𝑛(𝑂‘(𝐸𝑚))
67 nfcv 2903 . . . . . . . 8 𝑚(𝑂‘(𝐸𝑛))
68 2fveq3 6912 . . . . . . . 8 (𝑚 = 𝑛 → (𝑂‘(𝐸𝑚)) = (𝑂‘(𝐸𝑛)))
6966, 67, 68cbvmpt 5259 . . . . . . 7 (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
7069a1i 11 . . . . . 6 ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝐸:𝑍⟶𝒫 𝑋) → (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
7164, 70eqtrd 2775 . . . . 5 ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝐸:𝑍⟶𝒫 𝑋) → (𝑂𝐸) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
7223, 5, 71syl2anc 584 . . . 4 (𝜑 → (𝑂𝐸) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
7372fveq2d 6911 . . 3 (𝜑 → (Σ^‘(𝑂𝐸)) = (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
7463, 73breqtrd 5174 . 2 (𝜑 → (Σ^‘(𝑂 ↾ ran 𝐸)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
7514, 26, 31, 57, 74xrletrd 13201 1 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wnf 1780  wcel 2106  wnfc 2888  wral 3059  Vcvv 3478  wss 3963  𝒫 cpw 4605   cuni 4912   ciun 4996   class class class wbr 5148  cmpt 5231   We wwe 5640  dom cdm 5689  ran crn 5690  cres 5691  ccom 5693   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  ωcom 7887  cdom 8982  0cc0 11153  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cuz 12876  [,]cicc 13387  Σ^csumge0 46318  OutMeascome 46445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-inf2 9679  ax-ac2 10501  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-oadd 8509  df-omul 8510  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-oi 9548  df-card 9977  df-acn 9980  df-ac 10154  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-exp 14100  df-hash 14367  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-clim 15521  df-sum 15720  df-sumge0 46319  df-ome 46446
This theorem is referenced by:  omeiunltfirp  46475  omeiunlempt  46476  caratheodorylem2  46483
  Copyright terms: Public domain W3C validator