Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  omeiunle Structured version   Visualization version   GIF version

Theorem omeiunle 46614
Description: The outer measure of the indexed union of a countable set is the less than or equal to the extended sum of the outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
omeiunle.nph 𝑛𝜑
omeiunle.ne 𝑛𝐸
omeiunle.o (𝜑𝑂 ∈ OutMeas)
omeiunle.x 𝑋 = dom 𝑂
omeiunle.z 𝑍 = (ℤ𝑁)
omeiunle.e (𝜑𝐸:𝑍⟶𝒫 𝑋)
Assertion
Ref Expression
omeiunle (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
Distinct variable groups:   𝑛,𝑂   𝑛,𝑋   𝑛,𝑍
Allowed substitution hints:   𝜑(𝑛)   𝐸(𝑛)   𝑁(𝑛)

Proof of Theorem omeiunle
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 13330 . . 3 (0[,]+∞) ⊆ ℝ*
2 omeiunle.o . . . 4 (𝜑𝑂 ∈ OutMeas)
3 omeiunle.x . . . 4 𝑋 = dom 𝑂
4 omeiunle.nph . . . . . 6 𝑛𝜑
5 omeiunle.e . . . . . . . . 9 (𝜑𝐸:𝑍⟶𝒫 𝑋)
65ffvelcdmda 7017 . . . . . . . 8 ((𝜑𝑛𝑍) → (𝐸𝑛) ∈ 𝒫 𝑋)
7 elpwi 4554 . . . . . . . 8 ((𝐸𝑛) ∈ 𝒫 𝑋 → (𝐸𝑛) ⊆ 𝑋)
86, 7syl 17 . . . . . . 7 ((𝜑𝑛𝑍) → (𝐸𝑛) ⊆ 𝑋)
98ex 412 . . . . . 6 (𝜑 → (𝑛𝑍 → (𝐸𝑛) ⊆ 𝑋))
104, 9ralrimi 3230 . . . . 5 (𝜑 → ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
11 iunss 4992 . . . . 5 ( 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋 ↔ ∀𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
1210, 11sylibr 234 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) ⊆ 𝑋)
132, 3, 12omecl 46600 . . 3 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ (0[,]+∞))
141, 13sselid 3927 . 2 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ∈ ℝ*)
155ffnd 6652 . . . . 5 (𝜑𝐸 Fn 𝑍)
16 omeiunle.z . . . . . . 7 𝑍 = (ℤ𝑁)
1716fvexi 6836 . . . . . 6 𝑍 ∈ V
1817a1i 11 . . . . 5 (𝜑𝑍 ∈ V)
19 fnex 7151 . . . . 5 ((𝐸 Fn 𝑍𝑍 ∈ V) → 𝐸 ∈ V)
2015, 18, 19syl2anc 584 . . . 4 (𝜑𝐸 ∈ V)
21 rnexg 7832 . . . 4 (𝐸 ∈ V → ran 𝐸 ∈ V)
2220, 21syl 17 . . 3 (𝜑 → ran 𝐸 ∈ V)
232, 3omef 46593 . . . 4 (𝜑𝑂:𝒫 𝑋⟶(0[,]+∞))
245frnd 6659 . . . 4 (𝜑 → ran 𝐸 ⊆ 𝒫 𝑋)
2523, 24fssresd 6690 . . 3 (𝜑 → (𝑂 ↾ ran 𝐸):ran 𝐸⟶(0[,]+∞))
2622, 25sge0xrcl 46482 . 2 (𝜑 → (Σ^‘(𝑂 ↾ ran 𝐸)) ∈ ℝ*)
272adantr 480 . . . . 5 ((𝜑𝑛𝑍) → 𝑂 ∈ OutMeas)
2827, 3, 8omecl 46600 . . . 4 ((𝜑𝑛𝑍) → (𝑂‘(𝐸𝑛)) ∈ (0[,]+∞))
29 eqid 2731 . . . 4 (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
304, 28, 29fmptdf 7050 . . 3 (𝜑 → (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))):𝑍⟶(0[,]+∞))
3118, 30sge0xrcl 46482 . 2 (𝜑 → (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))) ∈ ℝ*)
32 fvex 6835 . . . . . . . 8 (𝐸𝑛) ∈ V
3332rgenw 3051 . . . . . . 7 𝑛𝑍 (𝐸𝑛) ∈ V
34 dfiun3g 5906 . . . . . . 7 (∀𝑛𝑍 (𝐸𝑛) ∈ V → 𝑛𝑍 (𝐸𝑛) = ran (𝑛𝑍 ↦ (𝐸𝑛)))
3533, 34ax-mp 5 . . . . . 6 𝑛𝑍 (𝐸𝑛) = ran (𝑛𝑍 ↦ (𝐸𝑛))
3635a1i 11 . . . . 5 (𝜑 𝑛𝑍 (𝐸𝑛) = ran (𝑛𝑍 ↦ (𝐸𝑛)))
375feqmptd 6890 . . . . . . . 8 (𝜑𝐸 = (𝑚𝑍 ↦ (𝐸𝑚)))
38 omeiunle.ne . . . . . . . . . . 11 𝑛𝐸
39 nfcv 2894 . . . . . . . . . . 11 𝑛𝑚
4038, 39nffv 6832 . . . . . . . . . 10 𝑛(𝐸𝑚)
41 nfcv 2894 . . . . . . . . . 10 𝑚(𝐸𝑛)
42 fveq2 6822 . . . . . . . . . 10 (𝑚 = 𝑛 → (𝐸𝑚) = (𝐸𝑛))
4340, 41, 42cbvmpt 5191 . . . . . . . . 9 (𝑚𝑍 ↦ (𝐸𝑚)) = (𝑛𝑍 ↦ (𝐸𝑛))
4443a1i 11 . . . . . . . 8 (𝜑 → (𝑚𝑍 ↦ (𝐸𝑚)) = (𝑛𝑍 ↦ (𝐸𝑛)))
4537, 44eqtrd 2766 . . . . . . 7 (𝜑𝐸 = (𝑛𝑍 ↦ (𝐸𝑛)))
4645rneqd 5877 . . . . . 6 (𝜑 → ran 𝐸 = ran (𝑛𝑍 ↦ (𝐸𝑛)))
4746unieqd 4869 . . . . 5 (𝜑 ran 𝐸 = ran (𝑛𝑍 ↦ (𝐸𝑛)))
4836, 47eqtr4d 2769 . . . 4 (𝜑 𝑛𝑍 (𝐸𝑛) = ran 𝐸)
4948fveq2d 6826 . . 3 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) = (𝑂 ran 𝐸))
50 fnrndomg 10427 . . . . . 6 (𝑍 ∈ V → (𝐸 Fn 𝑍 → ran 𝐸𝑍))
5118, 15, 50sylc 65 . . . . 5 (𝜑 → ran 𝐸𝑍)
5216uzct 45159 . . . . . 6 𝑍 ≼ ω
5352a1i 11 . . . . 5 (𝜑𝑍 ≼ ω)
54 domtr 8929 . . . . 5 ((ran 𝐸𝑍𝑍 ≼ ω) → ran 𝐸 ≼ ω)
5551, 53, 54syl2anc 584 . . . 4 (𝜑 → ran 𝐸 ≼ ω)
562, 3, 24, 55omeunile 46602 . . 3 (𝜑 → (𝑂 ran 𝐸) ≤ (Σ^‘(𝑂 ↾ ran 𝐸)))
5749, 56eqbrtrd 5111 . 2 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑂 ↾ ran 𝐸)))
58 ltweuz 13868 . . . . . 6 < We (ℤ𝑁)
59 weeq2 5602 . . . . . . 7 (𝑍 = (ℤ𝑁) → ( < We 𝑍 ↔ < We (ℤ𝑁)))
6016, 59ax-mp 5 . . . . . 6 ( < We 𝑍 ↔ < We (ℤ𝑁))
6158, 60mpbir 231 . . . . 5 < We 𝑍
6261a1i 11 . . . 4 (𝜑 → < We 𝑍)
6318, 23, 5, 62sge0resrn 46501 . . 3 (𝜑 → (Σ^‘(𝑂 ↾ ran 𝐸)) ≤ (Σ^‘(𝑂𝐸)))
64 fcompt 7066 . . . . . 6 ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝐸:𝑍⟶𝒫 𝑋) → (𝑂𝐸) = (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))))
65 nfcv 2894 . . . . . . . . 9 𝑛𝑂
6665, 40nffv 6832 . . . . . . . 8 𝑛(𝑂‘(𝐸𝑚))
67 nfcv 2894 . . . . . . . 8 𝑚(𝑂‘(𝐸𝑛))
68 2fveq3 6827 . . . . . . . 8 (𝑚 = 𝑛 → (𝑂‘(𝐸𝑚)) = (𝑂‘(𝐸𝑛)))
6966, 67, 68cbvmpt 5191 . . . . . . 7 (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))
7069a1i 11 . . . . . 6 ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝐸:𝑍⟶𝒫 𝑋) → (𝑚𝑍 ↦ (𝑂‘(𝐸𝑚))) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
7164, 70eqtrd 2766 . . . . 5 ((𝑂:𝒫 𝑋⟶(0[,]+∞) ∧ 𝐸:𝑍⟶𝒫 𝑋) → (𝑂𝐸) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
7223, 5, 71syl2anc 584 . . . 4 (𝜑 → (𝑂𝐸) = (𝑛𝑍 ↦ (𝑂‘(𝐸𝑛))))
7372fveq2d 6826 . . 3 (𝜑 → (Σ^‘(𝑂𝐸)) = (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
7463, 73breqtrd 5115 . 2 (𝜑 → (Σ^‘(𝑂 ↾ ran 𝐸)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
7514, 26, 31, 57, 74xrletrd 13061 1 (𝜑 → (𝑂 𝑛𝑍 (𝐸𝑛)) ≤ (Σ^‘(𝑛𝑍 ↦ (𝑂‘(𝐸𝑛)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879  wral 3047  Vcvv 3436  wss 3897  𝒫 cpw 4547   cuni 4856   ciun 4939   class class class wbr 5089  cmpt 5170   We wwe 5566  dom cdm 5614  ran crn 5615  cres 5616  ccom 5618   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  ωcom 7796  cdom 8867  0cc0 11006  +∞cpnf 11143  *cxr 11145   < clt 11146  cle 11147  cuz 12732  [,]cicc 13248  Σ^csumge0 46459  OutMeascome 46586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-ac2 10354  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-oi 9396  df-card 9832  df-acn 9835  df-ac 10007  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-rp 12891  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-sumge0 46460  df-ome 46587
This theorem is referenced by:  omeiunltfirp  46616  omeiunlempt  46617  caratheodorylem2  46624
  Copyright terms: Public domain W3C validator