Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenel Structured version   Visualization version   GIF version

Theorem caragenel 43923
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenel.o (𝜑𝑂 ∈ OutMeas)
caragenel.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenel (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
Distinct variable groups:   𝐸,𝑎   𝑂,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑆(𝑎)

Proof of Theorem caragenel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 caragenel.s . . . 4 𝑆 = (CaraGen‘𝑂)
2 caragenel.o . . . . 5 (𝜑𝑂 ∈ OutMeas)
3 caragenval 43921 . . . . 5 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
42, 3syl 17 . . . 4 (𝜑 → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
51, 4syl5eq 2791 . . 3 (𝜑𝑆 = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
65eleq2d 2824 . 2 (𝜑 → (𝐸𝑆𝐸 ∈ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)}))
7 ineq2 4137 . . . . . . . 8 (𝑒 = 𝐸 → (𝑎𝑒) = (𝑎𝐸))
87fveq2d 6760 . . . . . . 7 (𝑒 = 𝐸 → (𝑂‘(𝑎𝑒)) = (𝑂‘(𝑎𝐸)))
9 difeq2 4047 . . . . . . . 8 (𝑒 = 𝐸 → (𝑎𝑒) = (𝑎𝐸))
109fveq2d 6760 . . . . . . 7 (𝑒 = 𝐸 → (𝑂‘(𝑎𝑒)) = (𝑂‘(𝑎𝐸)))
118, 10oveq12d 7273 . . . . . 6 (𝑒 = 𝐸 → ((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
1211eqeq1d 2740 . . . . 5 (𝑒 = 𝐸 → (((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎) ↔ ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
1312ralbidv 3120 . . . 4 (𝑒 = 𝐸 → (∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎) ↔ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
1413elrab 3617 . . 3 (𝐸 ∈ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
1514a1i 11 . 2 (𝜑 → (𝐸 ∈ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
166, 15bitrd 278 1 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wral 3063  {crab 3067  cdif 3880  cin 3882  𝒫 cpw 4530   cuni 4836  dom cdm 5580  cfv 6418  (class class class)co 7255   +𝑒 cxad 12775  OutMeascome 43917  CaraGenccaragen 43919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-caragen 43920
This theorem is referenced by:  caragensplit  43928  caragenelss  43929  carageneld  43930  caragendifcl  43942  isvonmbl  44066
  Copyright terms: Public domain W3C validator