Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenel Structured version   Visualization version   GIF version

Theorem caragenel 44033
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenel.o (𝜑𝑂 ∈ OutMeas)
caragenel.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenel (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
Distinct variable groups:   𝐸,𝑎   𝑂,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑆(𝑎)

Proof of Theorem caragenel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 caragenel.s . . . 4 𝑆 = (CaraGen‘𝑂)
2 caragenel.o . . . . 5 (𝜑𝑂 ∈ OutMeas)
3 caragenval 44031 . . . . 5 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
42, 3syl 17 . . . 4 (𝜑 → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
51, 4eqtrid 2790 . . 3 (𝜑𝑆 = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
65eleq2d 2824 . 2 (𝜑 → (𝐸𝑆𝐸 ∈ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)}))
7 ineq2 4140 . . . . . . . 8 (𝑒 = 𝐸 → (𝑎𝑒) = (𝑎𝐸))
87fveq2d 6778 . . . . . . 7 (𝑒 = 𝐸 → (𝑂‘(𝑎𝑒)) = (𝑂‘(𝑎𝐸)))
9 difeq2 4051 . . . . . . . 8 (𝑒 = 𝐸 → (𝑎𝑒) = (𝑎𝐸))
109fveq2d 6778 . . . . . . 7 (𝑒 = 𝐸 → (𝑂‘(𝑎𝑒)) = (𝑂‘(𝑎𝐸)))
118, 10oveq12d 7293 . . . . . 6 (𝑒 = 𝐸 → ((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
1211eqeq1d 2740 . . . . 5 (𝑒 = 𝐸 → (((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎) ↔ ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
1312ralbidv 3112 . . . 4 (𝑒 = 𝐸 → (∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎) ↔ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
1413elrab 3624 . . 3 (𝐸 ∈ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
1514a1i 11 . 2 (𝜑 → (𝐸 ∈ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
166, 15bitrd 278 1 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wral 3064  {crab 3068  cdif 3884  cin 3886  𝒫 cpw 4533   cuni 4839  dom cdm 5589  cfv 6433  (class class class)co 7275   +𝑒 cxad 12846  OutMeascome 44027  CaraGenccaragen 44029
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fv 6441  df-ov 7278  df-caragen 44030
This theorem is referenced by:  caragensplit  44038  caragenelss  44039  carageneld  44040  caragendifcl  44052  isvonmbl  44176
  Copyright terms: Public domain W3C validator