Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenel | Structured version Visualization version GIF version |
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenel.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragenel.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragenel | ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenel.s | . . . 4 ⊢ 𝑆 = (CaraGen‘𝑂) | |
2 | caragenel.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
3 | caragenval 43498 | . . . . 5 ⊢ (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) |
5 | 1, 4 | syl5eq 2805 | . . 3 ⊢ (𝜑 → 𝑆 = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) |
6 | 5 | eleq2d 2837 | . 2 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ 𝐸 ∈ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)})) |
7 | ineq2 4111 | . . . . . . . 8 ⊢ (𝑒 = 𝐸 → (𝑎 ∩ 𝑒) = (𝑎 ∩ 𝐸)) | |
8 | 7 | fveq2d 6662 | . . . . . . 7 ⊢ (𝑒 = 𝐸 → (𝑂‘(𝑎 ∩ 𝑒)) = (𝑂‘(𝑎 ∩ 𝐸))) |
9 | difeq2 4022 | . . . . . . . 8 ⊢ (𝑒 = 𝐸 → (𝑎 ∖ 𝑒) = (𝑎 ∖ 𝐸)) | |
10 | 9 | fveq2d 6662 | . . . . . . 7 ⊢ (𝑒 = 𝐸 → (𝑂‘(𝑎 ∖ 𝑒)) = (𝑂‘(𝑎 ∖ 𝐸))) |
11 | 8, 10 | oveq12d 7168 | . . . . . 6 ⊢ (𝑒 = 𝐸 → ((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸)))) |
12 | 11 | eqeq1d 2760 | . . . . 5 ⊢ (𝑒 = 𝐸 → (((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎) ↔ ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
13 | 12 | ralbidv 3126 | . . . 4 ⊢ (𝑒 = 𝐸 → (∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎) ↔ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
14 | 13 | elrab 3602 | . . 3 ⊢ (𝐸 ∈ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → (𝐸 ∈ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
16 | 6, 15 | bitrd 282 | 1 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∀wral 3070 {crab 3074 ∖ cdif 3855 ∩ cin 3857 𝒫 cpw 4494 ∪ cuni 4798 dom cdm 5524 ‘cfv 6335 (class class class)co 7150 +𝑒 cxad 12546 OutMeascome 43494 CaraGenccaragen 43496 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-iota 6294 df-fun 6337 df-fv 6343 df-ov 7153 df-caragen 43497 |
This theorem is referenced by: caragensplit 43505 caragenelss 43506 carageneld 43507 caragendifcl 43519 isvonmbl 43643 |
Copyright terms: Public domain | W3C validator |