![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenel | Structured version Visualization version GIF version |
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
Ref | Expression |
---|---|
caragenel.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
caragenel.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
Ref | Expression |
---|---|
caragenel | ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caragenel.s | . . . 4 ⊢ 𝑆 = (CaraGen‘𝑂) | |
2 | caragenel.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
3 | caragenval 41499 | . . . . 5 ⊢ (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) | |
4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) |
5 | 1, 4 | syl5eq 2873 | . . 3 ⊢ (𝜑 → 𝑆 = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) |
6 | 5 | eleq2d 2892 | . 2 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ 𝐸 ∈ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)})) |
7 | ineq2 4037 | . . . . . . . 8 ⊢ (𝑒 = 𝐸 → (𝑎 ∩ 𝑒) = (𝑎 ∩ 𝐸)) | |
8 | 7 | fveq2d 6441 | . . . . . . 7 ⊢ (𝑒 = 𝐸 → (𝑂‘(𝑎 ∩ 𝑒)) = (𝑂‘(𝑎 ∩ 𝐸))) |
9 | difeq2 3951 | . . . . . . . 8 ⊢ (𝑒 = 𝐸 → (𝑎 ∖ 𝑒) = (𝑎 ∖ 𝐸)) | |
10 | 9 | fveq2d 6441 | . . . . . . 7 ⊢ (𝑒 = 𝐸 → (𝑂‘(𝑎 ∖ 𝑒)) = (𝑂‘(𝑎 ∖ 𝐸))) |
11 | 8, 10 | oveq12d 6928 | . . . . . 6 ⊢ (𝑒 = 𝐸 → ((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸)))) |
12 | 11 | eqeq1d 2827 | . . . . 5 ⊢ (𝑒 = 𝐸 → (((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎) ↔ ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
13 | 12 | ralbidv 3195 | . . . 4 ⊢ (𝑒 = 𝐸 → (∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎) ↔ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
14 | 13 | elrab 3585 | . . 3 ⊢ (𝐸 ∈ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → (𝐸 ∈ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
16 | 6, 15 | bitrd 271 | 1 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 = wceq 1656 ∈ wcel 2164 ∀wral 3117 {crab 3121 ∖ cdif 3795 ∩ cin 3797 𝒫 cpw 4380 ∪ cuni 4660 dom cdm 5346 ‘cfv 6127 (class class class)co 6910 +𝑒 cxad 12237 OutMeascome 41495 CaraGenccaragen 41497 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1894 ax-4 1908 ax-5 2009 ax-6 2075 ax-7 2112 ax-8 2166 ax-9 2173 ax-10 2192 ax-11 2207 ax-12 2220 ax-13 2389 ax-ext 2803 ax-sep 5007 ax-nul 5015 ax-pow 5067 ax-pr 5129 ax-un 7214 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 879 df-3an 1113 df-tru 1660 df-ex 1879 df-nf 1883 df-sb 2068 df-mo 2605 df-eu 2640 df-clab 2812 df-cleq 2818 df-clel 2821 df-nfc 2958 df-ral 3122 df-rex 3123 df-rab 3126 df-v 3416 df-sbc 3663 df-dif 3801 df-un 3803 df-in 3805 df-ss 3812 df-nul 4147 df-if 4309 df-pw 4382 df-sn 4400 df-pr 4402 df-op 4406 df-uni 4661 df-br 4876 df-opab 4938 df-mpt 4955 df-id 5252 df-xp 5352 df-rel 5353 df-cnv 5354 df-co 5355 df-dm 5356 df-rn 5357 df-iota 6090 df-fun 6129 df-fv 6135 df-ov 6913 df-caragen 41498 |
This theorem is referenced by: caragensplit 41506 caragenelss 41507 carageneld 41508 caragendifcl 41520 isvonmbl 41644 |
Copyright terms: Public domain | W3C validator |