Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenel Structured version   Visualization version   GIF version

Theorem caragenel 45783
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenel.o (πœ‘ β†’ 𝑂 ∈ OutMeas)
caragenel.s 𝑆 = (CaraGenβ€˜π‘‚)
Assertion
Ref Expression
caragenel (πœ‘ β†’ (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž))))
Distinct variable groups:   𝐸,π‘Ž   𝑂,π‘Ž
Allowed substitution hints:   πœ‘(π‘Ž)   𝑆(π‘Ž)

Proof of Theorem caragenel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 caragenel.s . . . 4 𝑆 = (CaraGenβ€˜π‘‚)
2 caragenel.o . . . . 5 (πœ‘ β†’ 𝑂 ∈ OutMeas)
3 caragenval 45781 . . . . 5 (𝑂 ∈ OutMeas β†’ (CaraGenβ€˜π‘‚) = {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)})
42, 3syl 17 . . . 4 (πœ‘ β†’ (CaraGenβ€˜π‘‚) = {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)})
51, 4eqtrid 2778 . . 3 (πœ‘ β†’ 𝑆 = {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)})
65eleq2d 2813 . 2 (πœ‘ β†’ (𝐸 ∈ 𝑆 ↔ 𝐸 ∈ {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)}))
7 ineq2 4201 . . . . . . . 8 (𝑒 = 𝐸 β†’ (π‘Ž ∩ 𝑒) = (π‘Ž ∩ 𝐸))
87fveq2d 6889 . . . . . . 7 (𝑒 = 𝐸 β†’ (π‘‚β€˜(π‘Ž ∩ 𝑒)) = (π‘‚β€˜(π‘Ž ∩ 𝐸)))
9 difeq2 4111 . . . . . . . 8 (𝑒 = 𝐸 β†’ (π‘Ž βˆ– 𝑒) = (π‘Ž βˆ– 𝐸))
109fveq2d 6889 . . . . . . 7 (𝑒 = 𝐸 β†’ (π‘‚β€˜(π‘Ž βˆ– 𝑒)) = (π‘‚β€˜(π‘Ž βˆ– 𝐸)))
118, 10oveq12d 7423 . . . . . 6 (𝑒 = 𝐸 β†’ ((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))))
1211eqeq1d 2728 . . . . 5 (𝑒 = 𝐸 β†’ (((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž) ↔ ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž)))
1312ralbidv 3171 . . . 4 (𝑒 = 𝐸 β†’ (βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž) ↔ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž)))
1413elrab 3678 . . 3 (𝐸 ∈ {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)} ↔ (𝐸 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž)))
1514a1i 11 . 2 (πœ‘ β†’ (𝐸 ∈ {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)} ↔ (𝐸 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž))))
166, 15bitrd 279 1 (πœ‘ β†’ (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 395   = wceq 1533   ∈ wcel 2098  βˆ€wral 3055  {crab 3426   βˆ– cdif 3940   ∩ cin 3942  π’« cpw 4597  βˆͺ cuni 4902  dom cdm 5669  β€˜cfv 6537  (class class class)co 7405   +𝑒 cxad 13096  OutMeascome 45777  CaraGenccaragen 45779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-iota 6489  df-fun 6539  df-fv 6545  df-ov 7408  df-caragen 45780
This theorem is referenced by:  caragensplit  45788  caragenelss  45789  carageneld  45790  caragendifcl  45802  isvonmbl  45926
  Copyright terms: Public domain W3C validator