Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenel Structured version   Visualization version   GIF version

Theorem caragenel 44810
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenel.o (πœ‘ β†’ 𝑂 ∈ OutMeas)
caragenel.s 𝑆 = (CaraGenβ€˜π‘‚)
Assertion
Ref Expression
caragenel (πœ‘ β†’ (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž))))
Distinct variable groups:   𝐸,π‘Ž   𝑂,π‘Ž
Allowed substitution hints:   πœ‘(π‘Ž)   𝑆(π‘Ž)

Proof of Theorem caragenel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 caragenel.s . . . 4 𝑆 = (CaraGenβ€˜π‘‚)
2 caragenel.o . . . . 5 (πœ‘ β†’ 𝑂 ∈ OutMeas)
3 caragenval 44808 . . . . 5 (𝑂 ∈ OutMeas β†’ (CaraGenβ€˜π‘‚) = {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)})
42, 3syl 17 . . . 4 (πœ‘ β†’ (CaraGenβ€˜π‘‚) = {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)})
51, 4eqtrid 2789 . . 3 (πœ‘ β†’ 𝑆 = {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)})
65eleq2d 2824 . 2 (πœ‘ β†’ (𝐸 ∈ 𝑆 ↔ 𝐸 ∈ {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)}))
7 ineq2 4171 . . . . . . . 8 (𝑒 = 𝐸 β†’ (π‘Ž ∩ 𝑒) = (π‘Ž ∩ 𝐸))
87fveq2d 6851 . . . . . . 7 (𝑒 = 𝐸 β†’ (π‘‚β€˜(π‘Ž ∩ 𝑒)) = (π‘‚β€˜(π‘Ž ∩ 𝐸)))
9 difeq2 4081 . . . . . . . 8 (𝑒 = 𝐸 β†’ (π‘Ž βˆ– 𝑒) = (π‘Ž βˆ– 𝐸))
109fveq2d 6851 . . . . . . 7 (𝑒 = 𝐸 β†’ (π‘‚β€˜(π‘Ž βˆ– 𝑒)) = (π‘‚β€˜(π‘Ž βˆ– 𝐸)))
118, 10oveq12d 7380 . . . . . 6 (𝑒 = 𝐸 β†’ ((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))))
1211eqeq1d 2739 . . . . 5 (𝑒 = 𝐸 β†’ (((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž) ↔ ((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž)))
1312ralbidv 3175 . . . 4 (𝑒 = 𝐸 β†’ (βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž) ↔ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž)))
1413elrab 3650 . . 3 (𝐸 ∈ {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)} ↔ (𝐸 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž)))
1514a1i 11 . 2 (πœ‘ β†’ (𝐸 ∈ {𝑒 ∈ 𝒫 βˆͺ dom 𝑂 ∣ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝑒)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝑒))) = (π‘‚β€˜π‘Ž)} ↔ (𝐸 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž))))
166, 15bitrd 279 1 (πœ‘ β†’ (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 βˆͺ dom 𝑂 ∧ βˆ€π‘Ž ∈ 𝒫 βˆͺ dom 𝑂((π‘‚β€˜(π‘Ž ∩ 𝐸)) +𝑒 (π‘‚β€˜(π‘Ž βˆ– 𝐸))) = (π‘‚β€˜π‘Ž))))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 397   = wceq 1542   ∈ wcel 2107  βˆ€wral 3065  {crab 3410   βˆ– cdif 3912   ∩ cin 3914  π’« cpw 4565  βˆͺ cuni 4870  dom cdm 5638  β€˜cfv 6501  (class class class)co 7362   +𝑒 cxad 13038  OutMeascome 44804  CaraGenccaragen 44806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ral 3066  df-rex 3075  df-rab 3411  df-v 3450  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4871  df-br 5111  df-opab 5173  df-mpt 5194  df-id 5536  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-iota 6453  df-fun 6503  df-fv 6509  df-ov 7365  df-caragen 44807
This theorem is referenced by:  caragensplit  44815  caragenelss  44816  carageneld  44817  caragendifcl  44829  isvonmbl  44953
  Copyright terms: Public domain W3C validator