Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  caragenel Structured version   Visualization version   GIF version

Theorem caragenel 46416
Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
Hypotheses
Ref Expression
caragenel.o (𝜑𝑂 ∈ OutMeas)
caragenel.s 𝑆 = (CaraGen‘𝑂)
Assertion
Ref Expression
caragenel (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
Distinct variable groups:   𝐸,𝑎   𝑂,𝑎
Allowed substitution hints:   𝜑(𝑎)   𝑆(𝑎)

Proof of Theorem caragenel
Dummy variable 𝑒 is distinct from all other variables.
StepHypRef Expression
1 caragenel.s . . . 4 𝑆 = (CaraGen‘𝑂)
2 caragenel.o . . . . 5 (𝜑𝑂 ∈ OutMeas)
3 caragenval 46414 . . . . 5 (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
42, 3syl 17 . . . 4 (𝜑 → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
51, 4eqtrid 2792 . . 3 (𝜑𝑆 = {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)})
65eleq2d 2830 . 2 (𝜑 → (𝐸𝑆𝐸 ∈ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)}))
7 ineq2 4235 . . . . . . . 8 (𝑒 = 𝐸 → (𝑎𝑒) = (𝑎𝐸))
87fveq2d 6924 . . . . . . 7 (𝑒 = 𝐸 → (𝑂‘(𝑎𝑒)) = (𝑂‘(𝑎𝐸)))
9 difeq2 4143 . . . . . . . 8 (𝑒 = 𝐸 → (𝑎𝑒) = (𝑎𝐸))
109fveq2d 6924 . . . . . . 7 (𝑒 = 𝐸 → (𝑂‘(𝑎𝑒)) = (𝑂‘(𝑎𝐸)))
118, 10oveq12d 7466 . . . . . 6 (𝑒 = 𝐸 → ((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))))
1211eqeq1d 2742 . . . . 5 (𝑒 = 𝐸 → (((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎) ↔ ((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
1312ralbidv 3184 . . . 4 (𝑒 = 𝐸 → (∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎) ↔ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
1413elrab 3708 . . 3 (𝐸 ∈ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎)))
1514a1i 11 . 2 (𝜑 → (𝐸 ∈ {𝑒 ∈ 𝒫 dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝑒)) +𝑒 (𝑂‘(𝑎𝑒))) = (𝑂𝑎)} ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
166, 15bitrd 279 1 (𝜑 → (𝐸𝑆 ↔ (𝐸 ∈ 𝒫 dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 dom 𝑂((𝑂‘(𝑎𝐸)) +𝑒 (𝑂‘(𝑎𝐸))) = (𝑂𝑎))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wral 3067  {crab 3443  cdif 3973  cin 3975  𝒫 cpw 4622   cuni 4931  dom cdm 5700  cfv 6573  (class class class)co 7448   +𝑒 cxad 13173  OutMeascome 46410  CaraGenccaragen 46412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-caragen 46413
This theorem is referenced by:  caragensplit  46421  caragenelss  46422  carageneld  46423  caragendifcl  46435  isvonmbl  46559
  Copyright terms: Public domain W3C validator