| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > caragenel | Structured version Visualization version GIF version | ||
| Description: Membership in the Caratheodory's construction. (Contributed by Glauco Siliprandi, 17-Aug-2020.) |
| Ref | Expression |
|---|---|
| caragenel.o | ⊢ (𝜑 → 𝑂 ∈ OutMeas) |
| caragenel.s | ⊢ 𝑆 = (CaraGen‘𝑂) |
| Ref | Expression |
|---|---|
| caragenel | ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caragenel.s | . . . 4 ⊢ 𝑆 = (CaraGen‘𝑂) | |
| 2 | caragenel.o | . . . . 5 ⊢ (𝜑 → 𝑂 ∈ OutMeas) | |
| 3 | caragenval 46498 | . . . . 5 ⊢ (𝑂 ∈ OutMeas → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) | |
| 4 | 2, 3 | syl 17 | . . . 4 ⊢ (𝜑 → (CaraGen‘𝑂) = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) |
| 5 | 1, 4 | eqtrid 2777 | . . 3 ⊢ (𝜑 → 𝑆 = {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)}) |
| 6 | 5 | eleq2d 2815 | . 2 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ 𝐸 ∈ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)})) |
| 7 | ineq2 4180 | . . . . . . . 8 ⊢ (𝑒 = 𝐸 → (𝑎 ∩ 𝑒) = (𝑎 ∩ 𝐸)) | |
| 8 | 7 | fveq2d 6865 | . . . . . . 7 ⊢ (𝑒 = 𝐸 → (𝑂‘(𝑎 ∩ 𝑒)) = (𝑂‘(𝑎 ∩ 𝐸))) |
| 9 | difeq2 4086 | . . . . . . . 8 ⊢ (𝑒 = 𝐸 → (𝑎 ∖ 𝑒) = (𝑎 ∖ 𝐸)) | |
| 10 | 9 | fveq2d 6865 | . . . . . . 7 ⊢ (𝑒 = 𝐸 → (𝑂‘(𝑎 ∖ 𝑒)) = (𝑂‘(𝑎 ∖ 𝐸))) |
| 11 | 8, 10 | oveq12d 7408 | . . . . . 6 ⊢ (𝑒 = 𝐸 → ((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸)))) |
| 12 | 11 | eqeq1d 2732 | . . . . 5 ⊢ (𝑒 = 𝐸 → (((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎) ↔ ((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
| 13 | 12 | ralbidv 3157 | . . . 4 ⊢ (𝑒 = 𝐸 → (∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎) ↔ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
| 14 | 13 | elrab 3662 | . . 3 ⊢ (𝐸 ∈ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎))) |
| 15 | 14 | a1i 11 | . 2 ⊢ (𝜑 → (𝐸 ∈ {𝑒 ∈ 𝒫 ∪ dom 𝑂 ∣ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝑒)) +𝑒 (𝑂‘(𝑎 ∖ 𝑒))) = (𝑂‘𝑎)} ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
| 16 | 6, 15 | bitrd 279 | 1 ⊢ (𝜑 → (𝐸 ∈ 𝑆 ↔ (𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀𝑎 ∈ 𝒫 ∪ dom 𝑂((𝑂‘(𝑎 ∩ 𝐸)) +𝑒 (𝑂‘(𝑎 ∖ 𝐸))) = (𝑂‘𝑎)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 {crab 3408 ∖ cdif 3914 ∩ cin 3916 𝒫 cpw 4566 ∪ cuni 4874 dom cdm 5641 ‘cfv 6514 (class class class)co 7390 +𝑒 cxad 13077 OutMeascome 46494 CaraGenccaragen 46496 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-caragen 46497 |
| This theorem is referenced by: caragensplit 46505 caragenelss 46506 carageneld 46507 caragendifcl 46519 isvonmbl 46643 |
| Copyright terms: Public domain | W3C validator |