Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > omon | Structured version Visualization version GIF version |
Description: The class of natural numbers ω is either an ordinal number (if we accept the Axiom of Infinity) or the proper class of all ordinal numbers (if we deny the Axiom of Infinity). Remark in [TakeutiZaring] p. 43. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
omon | ⊢ (ω ∈ On ∨ ω = On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7782 | . 2 ⊢ Ord ω | |
2 | ordeleqon 7686 | . 2 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (ω ∈ On ∨ ω = On) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 844 = wceq 1540 ∈ wcel 2105 Ord word 6295 Oncon0 6296 ωcom 7772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5240 ax-nul 5247 ax-pr 5369 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3916 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-br 5090 df-opab 5152 df-tr 5207 df-eprel 5518 df-po 5526 df-so 5527 df-fr 5569 df-we 5571 df-ord 6299 df-on 6300 df-lim 6301 df-om 7773 |
This theorem is referenced by: omelon2 7785 infensuc 9012 elhf2 34568 |
Copyright terms: Public domain | W3C validator |