MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  omon Structured version   Visualization version   GIF version

Theorem omon 7834
Description: The class of natural numbers ω is either an ordinal number (if we accept the Axiom of Infinity) or the proper class of all ordinal numbers (if we deny the Axiom of Infinity). Remark in [TakeutiZaring] p. 43. (Contributed by NM, 10-May-1998.)
Assertion
Ref Expression
omon (ω ∈ On ∨ ω = On)

Proof of Theorem omon
StepHypRef Expression
1 ordom 7832 . 2 Ord ω
2 ordeleqon 7738 . 2 (Ord ω ↔ (ω ∈ On ∨ ω = On))
31, 2mpbi 230 1 (ω ∈ On ∨ ω = On)
Colors of variables: wff setvar class
Syntax hints:  wo 847   = wceq 1540  wcel 2109  Ord word 6319  Oncon0 6320  ωcom 7822
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-tr 5210  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-ord 6323  df-on 6324  df-lim 6325  df-om 7823
This theorem is referenced by:  omelon2  7835  infensuc  9096  elhf2  36156
  Copyright terms: Public domain W3C validator