![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omon | Structured version Visualization version GIF version |
Description: The class of natural numbers ω is either an ordinal number (if we accept the Axiom of Infinity) or the proper class of all ordinal numbers (if we deny the Axiom of Infinity). Remark in [TakeutiZaring] p. 43. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
omon | ⊢ (ω ∈ On ∨ ω = On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7886 | . 2 ⊢ Ord ω | |
2 | ordeleqon 7790 | . 2 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (ω ∈ On ∨ ω = On) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 845 = wceq 1534 ∈ wcel 2099 Ord word 6375 Oncon0 6376 ωcom 7876 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-br 5154 df-opab 5216 df-tr 5271 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-we 5639 df-ord 6379 df-on 6380 df-lim 6381 df-om 7877 |
This theorem is referenced by: omelon2 7889 infensuc 9193 elhf2 35999 |
Copyright terms: Public domain | W3C validator |