| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > omon | Structured version Visualization version GIF version | ||
| Description: The class of natural numbers ω is either an ordinal number (if we accept the Axiom of Infinity) or the proper class of all ordinal numbers (if we deny the Axiom of Infinity). Remark in [TakeutiZaring] p. 43. (Contributed by NM, 10-May-1998.) |
| Ref | Expression |
|---|---|
| omon | ⊢ (ω ∈ On ∨ ω = On) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordom 7869 | . 2 ⊢ Ord ω | |
| 2 | ordeleqon 7774 | . 2 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
| 3 | 1, 2 | mpbi 230 | 1 ⊢ (ω ∈ On ∨ ω = On) |
| Colors of variables: wff setvar class |
| Syntax hints: ∨ wo 847 = wceq 1540 ∈ wcel 2108 Ord word 6351 Oncon0 6352 ωcom 7859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-lim 6357 df-om 7860 |
| This theorem is referenced by: omelon2 7872 infensuc 9167 elhf2 36139 |
| Copyright terms: Public domain | W3C validator |