![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > omon | Structured version Visualization version GIF version |
Description: The class of natural numbers ω is either an ordinal number (if we accept the Axiom of Infinity) or the proper class of all ordinal numbers (if we deny the Axiom of Infinity). Remark in [TakeutiZaring] p. 43. (Contributed by NM, 10-May-1998.) |
Ref | Expression |
---|---|
omon | ⊢ (ω ∈ On ∨ ω = On) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7861 | . 2 ⊢ Ord ω | |
2 | ordeleqon 7765 | . 2 ⊢ (Ord ω ↔ (ω ∈ On ∨ ω = On)) | |
3 | 1, 2 | mpbi 229 | 1 ⊢ (ω ∈ On ∨ ω = On) |
Colors of variables: wff setvar class |
Syntax hints: ∨ wo 845 = wceq 1541 ∈ wcel 2106 Ord word 6360 Oncon0 6361 ωcom 7851 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2703 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2710 df-cleq 2724 df-clel 2810 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-br 5148 df-opab 5210 df-tr 5265 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-ord 6364 df-on 6365 df-lim 6366 df-om 7852 |
This theorem is referenced by: omelon2 7864 infensuc 9151 elhf2 35135 |
Copyright terms: Public domain | W3C validator |