Step | Hyp | Ref
| Expression |
1 | | elhf 34476 |
. 2
⊢ (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈
(𝑅1‘𝑥)) |
2 | | omon 7724 |
. . 3
⊢ (ω
∈ On ∨ ω = On) |
3 | | nnon 7718 |
. . . . . . . . 9
⊢ (𝑥 ∈ ω → 𝑥 ∈ On) |
4 | | elhf2.1 |
. . . . . . . . . 10
⊢ 𝐴 ∈ V |
5 | 4 | rankr1a 9594 |
. . . . . . . . 9
⊢ (𝑥 ∈ On → (𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ 𝑥)) |
6 | 3, 5 | syl 17 |
. . . . . . . 8
⊢ (𝑥 ∈ ω → (𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ 𝑥)) |
7 | 6 | adantl 482 |
. . . . . . 7
⊢ ((ω
∈ On ∧ 𝑥 ∈
ω) → (𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ 𝑥)) |
8 | | elnn 7723 |
. . . . . . . . 9
⊢
(((rank‘𝐴)
∈ 𝑥 ∧ 𝑥 ∈ ω) →
(rank‘𝐴) ∈
ω) |
9 | 8 | expcom 414 |
. . . . . . . 8
⊢ (𝑥 ∈ ω →
((rank‘𝐴) ∈
𝑥 → (rank‘𝐴) ∈
ω)) |
10 | 9 | adantl 482 |
. . . . . . 7
⊢ ((ω
∈ On ∧ 𝑥 ∈
ω) → ((rank‘𝐴) ∈ 𝑥 → (rank‘𝐴) ∈ ω)) |
11 | 7, 10 | sylbid 239 |
. . . . . 6
⊢ ((ω
∈ On ∧ 𝑥 ∈
ω) → (𝐴 ∈
(𝑅1‘𝑥) → (rank‘𝐴) ∈ ω)) |
12 | 11 | rexlimdva 3213 |
. . . . 5
⊢ (ω
∈ On → (∃𝑥
∈ ω 𝐴 ∈
(𝑅1‘𝑥) → (rank‘𝐴) ∈ ω)) |
13 | | peano2 7737 |
. . . . . . . 8
⊢
((rank‘𝐴)
∈ ω → suc (rank‘𝐴) ∈ ω) |
14 | 13 | adantr 481 |
. . . . . . 7
⊢
(((rank‘𝐴)
∈ ω ∧ ω ∈ On) → suc (rank‘𝐴) ∈
ω) |
15 | | r1rankid 9617 |
. . . . . . . . . 10
⊢ (𝐴 ∈ V → 𝐴 ⊆
(𝑅1‘(rank‘𝐴))) |
16 | 4, 15 | mp1i 13 |
. . . . . . . . 9
⊢
(((rank‘𝐴)
∈ ω ∧ ω ∈ On) → 𝐴 ⊆
(𝑅1‘(rank‘𝐴))) |
17 | 4 | elpw 4537 |
. . . . . . . . 9
⊢ (𝐴 ∈ 𝒫
(𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆
(𝑅1‘(rank‘𝐴))) |
18 | 16, 17 | sylibr 233 |
. . . . . . . 8
⊢
(((rank‘𝐴)
∈ ω ∧ ω ∈ On) → 𝐴 ∈ 𝒫
(𝑅1‘(rank‘𝐴))) |
19 | | nnon 7718 |
. . . . . . . . . 10
⊢
((rank‘𝐴)
∈ ω → (rank‘𝐴) ∈ On) |
20 | | r1suc 9528 |
. . . . . . . . . 10
⊢
((rank‘𝐴)
∈ On → (𝑅1‘suc (rank‘𝐴)) = 𝒫
(𝑅1‘(rank‘𝐴))) |
21 | 19, 20 | syl 17 |
. . . . . . . . 9
⊢
((rank‘𝐴)
∈ ω → (𝑅1‘suc (rank‘𝐴)) = 𝒫
(𝑅1‘(rank‘𝐴))) |
22 | 21 | adantr 481 |
. . . . . . . 8
⊢
(((rank‘𝐴)
∈ ω ∧ ω ∈ On) → (𝑅1‘suc
(rank‘𝐴)) = 𝒫
(𝑅1‘(rank‘𝐴))) |
23 | 18, 22 | eleqtrrd 2842 |
. . . . . . 7
⊢
(((rank‘𝐴)
∈ ω ∧ ω ∈ On) → 𝐴 ∈ (𝑅1‘suc
(rank‘𝐴))) |
24 | | fveq2 6774 |
. . . . . . . . 9
⊢ (𝑥 = suc (rank‘𝐴) →
(𝑅1‘𝑥) = (𝑅1‘suc
(rank‘𝐴))) |
25 | 24 | eleq2d 2824 |
. . . . . . . 8
⊢ (𝑥 = suc (rank‘𝐴) → (𝐴 ∈ (𝑅1‘𝑥) ↔ 𝐴 ∈ (𝑅1‘suc
(rank‘𝐴)))) |
26 | 25 | rspcev 3561 |
. . . . . . 7
⊢ ((suc
(rank‘𝐴) ∈
ω ∧ 𝐴 ∈
(𝑅1‘suc (rank‘𝐴))) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1‘𝑥)) |
27 | 14, 23, 26 | syl2anc 584 |
. . . . . 6
⊢
(((rank‘𝐴)
∈ ω ∧ ω ∈ On) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1‘𝑥)) |
28 | 27 | expcom 414 |
. . . . 5
⊢ (ω
∈ On → ((rank‘𝐴) ∈ ω → ∃𝑥 ∈ ω 𝐴 ∈
(𝑅1‘𝑥))) |
29 | 12, 28 | impbid 211 |
. . . 4
⊢ (ω
∈ On → (∃𝑥
∈ ω 𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ ω)) |
30 | 4 | tz9.13 9549 |
. . . . . 6
⊢
∃𝑥 ∈ On
𝐴 ∈
(𝑅1‘𝑥) |
31 | | rankon 9553 |
. . . . . 6
⊢
(rank‘𝐴)
∈ On |
32 | 30, 31 | 2th 263 |
. . . . 5
⊢
(∃𝑥 ∈ On
𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ On) |
33 | | rexeq 3343 |
. . . . . 6
⊢ (ω
= On → (∃𝑥
∈ ω 𝐴 ∈
(𝑅1‘𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥))) |
34 | | eleq2 2827 |
. . . . . 6
⊢ (ω
= On → ((rank‘𝐴)
∈ ω ↔ (rank‘𝐴) ∈ On)) |
35 | 33, 34 | bibi12d 346 |
. . . . 5
⊢ (ω
= On → ((∃𝑥
∈ ω 𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ ω) ↔ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ On))) |
36 | 32, 35 | mpbiri 257 |
. . . 4
⊢ (ω
= On → (∃𝑥
∈ ω 𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ ω)) |
37 | 29, 36 | jaoi 854 |
. . 3
⊢ ((ω
∈ On ∨ ω = On) → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1‘𝑥) ↔ (rank‘𝐴) ∈
ω)) |
38 | 2, 37 | ax-mp 5 |
. 2
⊢
(∃𝑥 ∈
ω 𝐴 ∈
(𝑅1‘𝑥) ↔ (rank‘𝐴) ∈ ω) |
39 | 1, 38 | bitri 274 |
1
⊢ (𝐴 ∈ Hf ↔
(rank‘𝐴) ∈
ω) |