Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhf2 Structured version   Visualization version   GIF version

Theorem elhf2 33749
Description: Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015.)
Hypothesis
Ref Expression
elhf2.1 𝐴 ∈ V
Assertion
Ref Expression
elhf2 (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)

Proof of Theorem elhf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elhf 33748 . 2 (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2 omon 7571 . . 3 (ω ∈ On ∨ ω = On)
3 nnon 7566 . . . . . . . . 9 (𝑥 ∈ ω → 𝑥 ∈ On)
4 elhf2.1 . . . . . . . . . 10 𝐴 ∈ V
54rankr1a 9249 . . . . . . . . 9 (𝑥 ∈ On → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
63, 5syl 17 . . . . . . . 8 (𝑥 ∈ ω → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
76adantl 485 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
8 elnn 7570 . . . . . . . . 9 (((rank‘𝐴) ∈ 𝑥𝑥 ∈ ω) → (rank‘𝐴) ∈ ω)
98expcom 417 . . . . . . . 8 (𝑥 ∈ ω → ((rank‘𝐴) ∈ 𝑥 → (rank‘𝐴) ∈ ω))
109adantl 485 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ ω) → ((rank‘𝐴) ∈ 𝑥 → (rank‘𝐴) ∈ ω))
117, 10sylbid 243 . . . . . 6 ((ω ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ∈ (𝑅1𝑥) → (rank‘𝐴) ∈ ω))
1211rexlimdva 3243 . . . . 5 (ω ∈ On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) → (rank‘𝐴) ∈ ω))
13 peano2 7582 . . . . . . . 8 ((rank‘𝐴) ∈ ω → suc (rank‘𝐴) ∈ ω)
1413adantr 484 . . . . . . 7 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → suc (rank‘𝐴) ∈ ω)
15 r1rankid 9272 . . . . . . . . . 10 (𝐴 ∈ V → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
164, 15mp1i 13 . . . . . . . . 9 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
174elpw 4501 . . . . . . . . 9 (𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
1816, 17sylibr 237 . . . . . . . 8 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)))
19 nnon 7566 . . . . . . . . . 10 ((rank‘𝐴) ∈ ω → (rank‘𝐴) ∈ On)
20 r1suc 9183 . . . . . . . . . 10 ((rank‘𝐴) ∈ On → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2119, 20syl 17 . . . . . . . . 9 ((rank‘𝐴) ∈ ω → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2221adantr 484 . . . . . . . 8 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2318, 22eleqtrrd 2893 . . . . . . 7 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
24 fveq2 6645 . . . . . . . . 9 (𝑥 = suc (rank‘𝐴) → (𝑅1𝑥) = (𝑅1‘suc (rank‘𝐴)))
2524eleq2d 2875 . . . . . . . 8 (𝑥 = suc (rank‘𝐴) → (𝐴 ∈ (𝑅1𝑥) ↔ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
2625rspcev 3571 . . . . . . 7 ((suc (rank‘𝐴) ∈ ω ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2714, 23, 26syl2anc 587 . . . . . 6 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2827expcom 417 . . . . 5 (ω ∈ On → ((rank‘𝐴) ∈ ω → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥)))
2912, 28impbid 215 . . . 4 (ω ∈ On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
304tz9.13 9204 . . . . . 6 𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)
31 rankon 9208 . . . . . 6 (rank‘𝐴) ∈ On
3230, 312th 267 . . . . 5 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ On)
33 rexeq 3359 . . . . . 6 (ω = On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)))
34 eleq2 2878 . . . . . 6 (ω = On → ((rank‘𝐴) ∈ ω ↔ (rank‘𝐴) ∈ On))
3533, 34bibi12d 349 . . . . 5 (ω = On → ((∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω) ↔ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ On)))
3632, 35mpbiri 261 . . . 4 (ω = On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
3729, 36jaoi 854 . . 3 ((ω ∈ On ∨ ω = On) → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
382, 37ax-mp 5 . 2 (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω)
391, 38bitri 278 1 (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844   = wceq 1538  wcel 2111  wrex 3107  Vcvv 3441  wss 3881  𝒫 cpw 4497  Oncon0 6159  suc csuc 6161  cfv 6324  ωcom 7560  𝑅1cr1 9175  rankcrnk 9176   Hf chf 33746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-reg 9040  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-r1 9177  df-rank 9178  df-hf 33747
This theorem is referenced by:  elhf2g  33750  hfsn  33753
  Copyright terms: Public domain W3C validator