Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhf2 Structured version   Visualization version   GIF version

Theorem elhf2 36163
Description: Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015.)
Hypothesis
Ref Expression
elhf2.1 𝐴 ∈ V
Assertion
Ref Expression
elhf2 (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)

Proof of Theorem elhf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elhf 36162 . 2 (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2 omon 7854 . . 3 (ω ∈ On ∨ ω = On)
3 nnon 7848 . . . . . . . . 9 (𝑥 ∈ ω → 𝑥 ∈ On)
4 elhf2.1 . . . . . . . . . 10 𝐴 ∈ V
54rankr1a 9789 . . . . . . . . 9 (𝑥 ∈ On → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
63, 5syl 17 . . . . . . . 8 (𝑥 ∈ ω → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
76adantl 481 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
8 elnn 7853 . . . . . . . . 9 (((rank‘𝐴) ∈ 𝑥𝑥 ∈ ω) → (rank‘𝐴) ∈ ω)
98expcom 413 . . . . . . . 8 (𝑥 ∈ ω → ((rank‘𝐴) ∈ 𝑥 → (rank‘𝐴) ∈ ω))
109adantl 481 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ ω) → ((rank‘𝐴) ∈ 𝑥 → (rank‘𝐴) ∈ ω))
117, 10sylbid 240 . . . . . 6 ((ω ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ∈ (𝑅1𝑥) → (rank‘𝐴) ∈ ω))
1211rexlimdva 3134 . . . . 5 (ω ∈ On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) → (rank‘𝐴) ∈ ω))
13 peano2 7866 . . . . . . . 8 ((rank‘𝐴) ∈ ω → suc (rank‘𝐴) ∈ ω)
1413adantr 480 . . . . . . 7 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → suc (rank‘𝐴) ∈ ω)
15 r1rankid 9812 . . . . . . . . . 10 (𝐴 ∈ V → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
164, 15mp1i 13 . . . . . . . . 9 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
174elpw 4567 . . . . . . . . 9 (𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
1816, 17sylibr 234 . . . . . . . 8 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)))
19 nnon 7848 . . . . . . . . . 10 ((rank‘𝐴) ∈ ω → (rank‘𝐴) ∈ On)
20 r1suc 9723 . . . . . . . . . 10 ((rank‘𝐴) ∈ On → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2119, 20syl 17 . . . . . . . . 9 ((rank‘𝐴) ∈ ω → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2221adantr 480 . . . . . . . 8 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2318, 22eleqtrrd 2831 . . . . . . 7 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
24 fveq2 6858 . . . . . . . . 9 (𝑥 = suc (rank‘𝐴) → (𝑅1𝑥) = (𝑅1‘suc (rank‘𝐴)))
2524eleq2d 2814 . . . . . . . 8 (𝑥 = suc (rank‘𝐴) → (𝐴 ∈ (𝑅1𝑥) ↔ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
2625rspcev 3588 . . . . . . 7 ((suc (rank‘𝐴) ∈ ω ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2714, 23, 26syl2anc 584 . . . . . 6 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2827expcom 413 . . . . 5 (ω ∈ On → ((rank‘𝐴) ∈ ω → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥)))
2912, 28impbid 212 . . . 4 (ω ∈ On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
304tz9.13 9744 . . . . . 6 𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)
31 rankon 9748 . . . . . 6 (rank‘𝐴) ∈ On
3230, 312th 264 . . . . 5 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ On)
33 rexeq 3295 . . . . . 6 (ω = On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)))
34 eleq2 2817 . . . . . 6 (ω = On → ((rank‘𝐴) ∈ ω ↔ (rank‘𝐴) ∈ On))
3533, 34bibi12d 345 . . . . 5 (ω = On → ((∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω) ↔ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ On)))
3632, 35mpbiri 258 . . . 4 (ω = On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
3729, 36jaoi 857 . . 3 ((ω ∈ On ∨ ω = On) → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
382, 37ax-mp 5 . 2 (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω)
391, 38bitri 275 1 (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wrex 3053  Vcvv 3447  wss 3914  𝒫 cpw 4563  Oncon0 6332  suc csuc 6334  cfv 6511  ωcom 7842  𝑅1cr1 9715  rankcrnk 9716   Hf chf 36160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-reg 9545  ax-inf2 9594
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-r1 9717  df-rank 9718  df-hf 36161
This theorem is referenced by:  elhf2g  36164  hfsn  36167
  Copyright terms: Public domain W3C validator