Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elhf2 Structured version   Visualization version   GIF version

Theorem elhf2 32816
Description: Alternate form of membership in the hereditarily finite sets. (Contributed by Scott Fenton, 13-Jul-2015.)
Hypothesis
Ref Expression
elhf2.1 𝐴 ∈ V
Assertion
Ref Expression
elhf2 (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)

Proof of Theorem elhf2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elhf 32815 . 2 (𝐴 ∈ Hf ↔ ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2 omon 7342 . . 3 (ω ∈ On ∨ ω = On)
3 nnon 7337 . . . . . . . . 9 (𝑥 ∈ ω → 𝑥 ∈ On)
4 elhf2.1 . . . . . . . . . 10 𝐴 ∈ V
54rankr1a 8983 . . . . . . . . 9 (𝑥 ∈ On → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
63, 5syl 17 . . . . . . . 8 (𝑥 ∈ ω → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
76adantl 475 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ 𝑥))
8 elnn 7341 . . . . . . . . 9 (((rank‘𝐴) ∈ 𝑥𝑥 ∈ ω) → (rank‘𝐴) ∈ ω)
98expcom 404 . . . . . . . 8 (𝑥 ∈ ω → ((rank‘𝐴) ∈ 𝑥 → (rank‘𝐴) ∈ ω))
109adantl 475 . . . . . . 7 ((ω ∈ On ∧ 𝑥 ∈ ω) → ((rank‘𝐴) ∈ 𝑥 → (rank‘𝐴) ∈ ω))
117, 10sylbid 232 . . . . . 6 ((ω ∈ On ∧ 𝑥 ∈ ω) → (𝐴 ∈ (𝑅1𝑥) → (rank‘𝐴) ∈ ω))
1211rexlimdva 3240 . . . . 5 (ω ∈ On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) → (rank‘𝐴) ∈ ω))
13 peano2 7352 . . . . . . . 8 ((rank‘𝐴) ∈ ω → suc (rank‘𝐴) ∈ ω)
1413adantr 474 . . . . . . 7 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → suc (rank‘𝐴) ∈ ω)
15 r1rankid 9006 . . . . . . . . . 10 (𝐴 ∈ V → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
164, 15mp1i 13 . . . . . . . . 9 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
174elpw 4386 . . . . . . . . 9 (𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)) ↔ 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
1816, 17sylibr 226 . . . . . . . 8 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ∈ 𝒫 (𝑅1‘(rank‘𝐴)))
19 nnon 7337 . . . . . . . . . 10 ((rank‘𝐴) ∈ ω → (rank‘𝐴) ∈ On)
20 r1suc 8917 . . . . . . . . . 10 ((rank‘𝐴) ∈ On → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2119, 20syl 17 . . . . . . . . 9 ((rank‘𝐴) ∈ ω → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2221adantr 474 . . . . . . . 8 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → (𝑅1‘suc (rank‘𝐴)) = 𝒫 (𝑅1‘(rank‘𝐴)))
2318, 22eleqtrrd 2909 . . . . . . 7 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))
24 fveq2 6437 . . . . . . . . 9 (𝑥 = suc (rank‘𝐴) → (𝑅1𝑥) = (𝑅1‘suc (rank‘𝐴)))
2524eleq2d 2892 . . . . . . . 8 (𝑥 = suc (rank‘𝐴) → (𝐴 ∈ (𝑅1𝑥) ↔ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
2625rspcev 3526 . . . . . . 7 ((suc (rank‘𝐴) ∈ ω ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2714, 23, 26syl2anc 579 . . . . . 6 (((rank‘𝐴) ∈ ω ∧ ω ∈ On) → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥))
2827expcom 404 . . . . 5 (ω ∈ On → ((rank‘𝐴) ∈ ω → ∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥)))
2912, 28impbid 204 . . . 4 (ω ∈ On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
304tz9.13 8938 . . . . . 6 𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)
31 rankon 8942 . . . . . 6 (rank‘𝐴) ∈ On
3230, 312th 256 . . . . 5 (∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ On)
33 rexeq 3351 . . . . . 6 (ω = On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ ∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥)))
34 eleq2 2895 . . . . . 6 (ω = On → ((rank‘𝐴) ∈ ω ↔ (rank‘𝐴) ∈ On))
3533, 34bibi12d 337 . . . . 5 (ω = On → ((∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω) ↔ (∃𝑥 ∈ On 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ On)))
3632, 35mpbiri 250 . . . 4 (ω = On → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
3729, 36jaoi 888 . . 3 ((ω ∈ On ∨ ω = On) → (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω))
382, 37ax-mp 5 . 2 (∃𝑥 ∈ ω 𝐴 ∈ (𝑅1𝑥) ↔ (rank‘𝐴) ∈ ω)
391, 38bitri 267 1 (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  wo 878   = wceq 1656  wcel 2164  wrex 3118  Vcvv 3414  wss 3798  𝒫 cpw 4380  Oncon0 5967  suc csuc 5969  cfv 6127  ωcom 7331  𝑅1cr1 8909  rankcrnk 8910   Hf chf 32813
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1894  ax-4 1908  ax-5 2009  ax-6 2075  ax-7 2112  ax-8 2166  ax-9 2173  ax-10 2192  ax-11 2207  ax-12 2220  ax-13 2389  ax-ext 2803  ax-rep 4996  ax-sep 5007  ax-nul 5015  ax-pow 5067  ax-pr 5129  ax-un 7214  ax-reg 8773  ax-inf2 8822
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 879  df-3or 1112  df-3an 1113  df-tru 1660  df-ex 1879  df-nf 1883  df-sb 2068  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-reu 3124  df-rab 3126  df-v 3416  df-sbc 3663  df-csb 3758  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4147  df-if 4309  df-pw 4382  df-sn 4400  df-pr 4402  df-tp 4404  df-op 4406  df-uni 4661  df-int 4700  df-iun 4744  df-br 4876  df-opab 4938  df-mpt 4955  df-tr 4978  df-id 5252  df-eprel 5257  df-po 5265  df-so 5266  df-fr 5305  df-we 5307  df-xp 5352  df-rel 5353  df-cnv 5354  df-co 5355  df-dm 5356  df-rn 5357  df-res 5358  df-ima 5359  df-pred 5924  df-ord 5970  df-on 5971  df-lim 5972  df-suc 5973  df-iota 6090  df-fun 6129  df-fn 6130  df-f 6131  df-f1 6132  df-fo 6133  df-f1o 6134  df-fv 6135  df-om 7332  df-wrecs 7677  df-recs 7739  df-rdg 7777  df-er 8014  df-en 8229  df-dom 8230  df-sdom 8231  df-r1 8911  df-rank 8912  df-hf 32814
This theorem is referenced by:  elhf2g  32817  hfsn  32820
  Copyright terms: Public domain W3C validator