| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnn | Structured version Visualization version GIF version | ||
| Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom 7814 | . 2 ⊢ Tr ω | |
| 2 | trel 5210 | . 2 ⊢ (Tr ω → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2113 Tr wtr 5202 ωcom 7805 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-ral 3049 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-ord 6317 df-on 6318 df-lim 6319 df-om 7806 |
| This theorem is referenced by: nnaordi 8542 nnmordi 8555 pssnn 9089 ssnnfi 9090 unfilem1 9200 unfilem2 9201 inf3lem5 9533 cantnflt 9573 cantnfp1lem3 9581 cantnflem1d 9589 cantnflem1 9590 cnfcomlem 9600 cnfcom 9601 ttrcltr 9617 ttrclselem2 9627 infpssrlem4 10208 axdc3lem2 10353 pwfseqlem3 10562 oldfi 27879 n0sbday 28300 onltn0s 28304 zs12bday 28414 bnj1098 34867 bnj517 34969 bnj594 34996 bnj1001 35043 bnj1118 35068 bnj1128 35074 bnj1145 35077 fineqvnttrclselem2 35214 fineqvnttrclselem3 35215 elhf2 36291 hfelhf 36297 |
| Copyright terms: Public domain | W3C validator |