| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnn | Structured version Visualization version GIF version | ||
| Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom 7831 | . 2 ⊢ Tr ω | |
| 2 | trel 5218 | . 2 ⊢ (Tr ω → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Tr wtr 5209 ωcom 7822 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-tr 5210 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-ord 6323 df-on 6324 df-lim 6325 df-om 7823 |
| This theorem is referenced by: nnaordi 8559 nnmordi 8572 pssnn 9109 ssnnfi 9110 unfilem1 9230 unfilem2 9231 inf3lem5 9561 cantnflt 9601 cantnfp1lem3 9609 cantnflem1d 9617 cantnflem1 9618 cnfcomlem 9628 cnfcom 9629 ttrcltr 9645 ttrclselem2 9655 infpssrlem4 10235 axdc3lem2 10380 pwfseqlem3 10589 oldfi 27801 n0sbday 28220 onltn0s 28224 zs12bday 28319 bnj1098 34746 bnj517 34848 bnj594 34875 bnj1001 34922 bnj1118 34947 bnj1128 34953 bnj1145 34956 elhf2 36136 hfelhf 36142 |
| Copyright terms: Public domain | W3C validator |