| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnn | Structured version Visualization version GIF version | ||
| Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom 7800 | . 2 ⊢ Tr ω | |
| 2 | trel 5201 | . 2 ⊢ (Tr ω → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 Tr wtr 5193 ωcom 7791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-tr 5194 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-we 5566 df-ord 6304 df-on 6305 df-lim 6306 df-om 7792 |
| This theorem is referenced by: nnaordi 8528 nnmordi 8541 pssnn 9073 ssnnfi 9074 unfilem1 9184 unfilem2 9185 inf3lem5 9517 cantnflt 9557 cantnfp1lem3 9565 cantnflem1d 9573 cantnflem1 9574 cnfcomlem 9584 cnfcom 9585 ttrcltr 9601 ttrclselem2 9611 infpssrlem4 10192 axdc3lem2 10337 pwfseqlem3 10546 oldfi 27854 n0sbday 28275 onltn0s 28279 zs12bday 28389 bnj1098 34787 bnj517 34889 bnj594 34916 bnj1001 34963 bnj1118 34988 bnj1128 34994 bnj1145 34997 fineqvnttrclselem2 35134 fineqvnttrclselem3 35135 elhf2 36209 hfelhf 36215 |
| Copyright terms: Public domain | W3C validator |