![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnn | Structured version Visualization version GIF version |
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
Ref | Expression |
---|---|
elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7308 | . 2 ⊢ Ord ω | |
2 | ordtr 5955 | . 2 ⊢ (Ord ω → Tr ω) | |
3 | trel 4952 | . 2 ⊢ (Tr ω → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)) | |
4 | 1, 2, 3 | mp2b 10 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 ∈ wcel 2157 Tr wtr 4945 Ord word 5940 ωcom 7299 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-tr 4946 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-om 7300 |
This theorem is referenced by: nnaordi 7938 nnmordi 7951 pssnn 8420 ssnnfi 8421 unfilem1 8466 unfilem2 8467 inf3lem5 8779 cantnflt 8819 cantnfp1lem3 8827 cantnflem1d 8835 cantnflem1 8836 cnfcomlem 8846 cnfcom 8847 infpssrlem4 9416 axdc3lem2 9561 pwfseqlem3 9770 bnj1098 31371 bnj517 31472 bnj594 31499 bnj1001 31545 bnj1118 31569 bnj1128 31575 bnj1145 31578 elhf2 32795 hfelhf 32801 |
Copyright terms: Public domain | W3C validator |