MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnn Structured version   Visualization version   GIF version

Theorem elnn 7698
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
elnn ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)

Proof of Theorem elnn
StepHypRef Expression
1 trom 7696 . 2 Tr ω
2 trel 5194 . 2 (Tr ω → ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω))
31, 2ax-mp 5 1 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Tr wtr 5187  ωcom 7687
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-ord 6254  df-on 6255  df-lim 6256  df-om 7688
This theorem is referenced by:  nnaordi  8411  nnmordi  8424  pssnn  8913  ssnnfi  8914  ssnnfiOLD  8915  pssnnOLD  8969  unfilem1  9008  unfilem2  9009  inf3lem5  9320  cantnflt  9360  cantnfp1lem3  9368  cantnflem1d  9376  cantnflem1  9377  cnfcomlem  9387  cnfcom  9388  infpssrlem4  9993  axdc3lem2  10138  pwfseqlem3  10347  bnj1098  32663  bnj517  32765  bnj594  32792  bnj1001  32839  bnj1118  32864  bnj1128  32870  bnj1145  32873  ttrcltr  33702  ttrclselem2  33712  elhf2  34404  hfelhf  34410
  Copyright terms: Public domain W3C validator