MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnn Structured version   Visualization version   GIF version

Theorem elnn 7817
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
elnn ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)

Proof of Theorem elnn
StepHypRef Expression
1 trom 7815 . 2 Tr ω
2 trel 5210 . 2 (Tr ω → ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω))
31, 2ax-mp 5 1 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Tr wtr 5202  ωcom 7806
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-tr 5203  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-we 5578  df-ord 6314  df-on 6315  df-lim 6316  df-om 7807
This theorem is referenced by:  nnaordi  8543  nnmordi  8556  pssnn  9092  ssnnfi  9093  unfilem1  9212  unfilem2  9213  inf3lem5  9547  cantnflt  9587  cantnfp1lem3  9595  cantnflem1d  9603  cantnflem1  9604  cnfcomlem  9614  cnfcom  9615  ttrcltr  9631  ttrclselem2  9641  infpssrlem4  10219  axdc3lem2  10364  pwfseqlem3  10573  oldfi  27847  n0sbday  28268  onltn0s  28272  zs12bday  28380  bnj1098  34769  bnj517  34871  bnj594  34898  bnj1001  34945  bnj1118  34970  bnj1128  34976  bnj1145  34979  elhf2  36168  hfelhf  36174
  Copyright terms: Public domain W3C validator