MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnn Structured version   Visualization version   GIF version

Theorem elnn 7856
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
elnn ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)

Proof of Theorem elnn
StepHypRef Expression
1 trom 7854 . 2 Tr ω
2 trel 5226 . 2 (Tr ω → ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω))
31, 2ax-mp 5 1 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Tr wtr 5217  ωcom 7845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-tr 5218  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-ord 6338  df-on 6339  df-lim 6340  df-om 7846
This theorem is referenced by:  nnaordi  8585  nnmordi  8598  pssnn  9138  ssnnfi  9139  unfilem1  9261  unfilem2  9262  inf3lem5  9592  cantnflt  9632  cantnfp1lem3  9640  cantnflem1d  9648  cantnflem1  9649  cnfcomlem  9659  cnfcom  9660  ttrcltr  9676  ttrclselem2  9686  infpssrlem4  10266  axdc3lem2  10411  pwfseqlem3  10620  oldfi  27832  n0sbday  28251  onltn0s  28255  zs12bday  28350  bnj1098  34780  bnj517  34882  bnj594  34909  bnj1001  34956  bnj1118  34981  bnj1128  34987  bnj1145  34990  elhf2  36170  hfelhf  36176
  Copyright terms: Public domain W3C validator