MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnn Structured version   Visualization version   GIF version

Theorem elnn 7802
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
elnn ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)

Proof of Theorem elnn
StepHypRef Expression
1 trom 7800 . 2 Tr ω
2 trel 5201 . 2 (Tr ω → ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω))
31, 2ax-mp 5 1 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  Tr wtr 5193  ωcom 7791
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-tr 5194  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-ord 6304  df-on 6305  df-lim 6306  df-om 7792
This theorem is referenced by:  nnaordi  8528  nnmordi  8541  pssnn  9073  ssnnfi  9074  unfilem1  9184  unfilem2  9185  inf3lem5  9517  cantnflt  9557  cantnfp1lem3  9565  cantnflem1d  9573  cantnflem1  9574  cnfcomlem  9584  cnfcom  9585  ttrcltr  9601  ttrclselem2  9611  infpssrlem4  10192  axdc3lem2  10337  pwfseqlem3  10546  oldfi  27854  n0sbday  28275  onltn0s  28279  zs12bday  28389  bnj1098  34787  bnj517  34889  bnj594  34916  bnj1001  34963  bnj1118  34988  bnj1128  34994  bnj1145  34997  fineqvnttrclselem2  35134  fineqvnttrclselem3  35135  elhf2  36209  hfelhf  36215
  Copyright terms: Public domain W3C validator