| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnn | Structured version Visualization version GIF version | ||
| Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom 7870 | . 2 ⊢ Tr ω | |
| 2 | trel 5238 | . 2 ⊢ (Tr ω → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Tr wtr 5229 ωcom 7861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-ne 2933 df-ral 3052 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-tr 5230 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-ord 6355 df-on 6356 df-lim 6357 df-om 7862 |
| This theorem is referenced by: nnaordi 8630 nnmordi 8643 pssnn 9182 ssnnfi 9183 unfilem1 9315 unfilem2 9316 inf3lem5 9646 cantnflt 9686 cantnfp1lem3 9694 cantnflem1d 9702 cantnflem1 9703 cnfcomlem 9713 cnfcom 9714 ttrcltr 9730 ttrclselem2 9740 infpssrlem4 10320 axdc3lem2 10465 pwfseqlem3 10674 oldfi 27877 n0sbday 28296 onltn0s 28300 zs12bday 28395 bnj1098 34814 bnj517 34916 bnj594 34943 bnj1001 34990 bnj1118 35015 bnj1128 35021 bnj1145 35024 elhf2 36193 hfelhf 36199 |
| Copyright terms: Public domain | W3C validator |