| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elnn | Structured version Visualization version GIF version | ||
| Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
| Ref | Expression |
|---|---|
| elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trom 7815 | . 2 ⊢ Tr ω | |
| 2 | trel 5210 | . 2 ⊢ (Tr ω → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 Tr wtr 5202 ωcom 7806 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-tr 5203 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-ord 6314 df-on 6315 df-lim 6316 df-om 7807 |
| This theorem is referenced by: nnaordi 8543 nnmordi 8556 pssnn 9092 ssnnfi 9093 unfilem1 9212 unfilem2 9213 inf3lem5 9547 cantnflt 9587 cantnfp1lem3 9595 cantnflem1d 9603 cantnflem1 9604 cnfcomlem 9614 cnfcom 9615 ttrcltr 9631 ttrclselem2 9641 infpssrlem4 10219 axdc3lem2 10364 pwfseqlem3 10573 oldfi 27846 n0sbday 28267 onltn0s 28271 zs12bday 28379 bnj1098 34752 bnj517 34854 bnj594 34881 bnj1001 34928 bnj1118 34953 bnj1128 34959 bnj1145 34962 elhf2 36151 hfelhf 36157 |
| Copyright terms: Public domain | W3C validator |