Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elnn | Structured version Visualization version GIF version |
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
Ref | Expression |
---|---|
elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trom 7696 | . 2 ⊢ Tr ω | |
2 | trel 5194 | . 2 ⊢ (Tr ω → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Tr wtr 5187 ωcom 7687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-11 2156 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-ord 6254 df-on 6255 df-lim 6256 df-om 7688 |
This theorem is referenced by: nnaordi 8411 nnmordi 8424 pssnn 8913 ssnnfi 8914 ssnnfiOLD 8915 pssnnOLD 8969 unfilem1 9008 unfilem2 9009 inf3lem5 9320 cantnflt 9360 cantnfp1lem3 9368 cantnflem1d 9376 cantnflem1 9377 cnfcomlem 9387 cnfcom 9388 infpssrlem4 9993 axdc3lem2 10138 pwfseqlem3 10347 bnj1098 32663 bnj517 32765 bnj594 32792 bnj1001 32839 bnj1118 32864 bnj1128 32870 bnj1145 32873 ttrcltr 33702 ttrclselem2 33712 elhf2 34404 hfelhf 34410 |
Copyright terms: Public domain | W3C validator |