![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnn | Structured version Visualization version GIF version |
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
Ref | Expression |
---|---|
elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | trom 7912 | . 2 ⊢ Tr ω | |
2 | trel 5292 | . 2 ⊢ (Tr ω → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 Tr wtr 5283 ωcom 7903 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-ral 3068 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-tr 5284 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-ord 6398 df-on 6399 df-lim 6400 df-om 7904 |
This theorem is referenced by: nnaordi 8674 nnmordi 8687 pssnn 9234 ssnnfi 9235 ssnnfiOLD 9236 unfilem1 9371 unfilem2 9372 inf3lem5 9701 cantnflt 9741 cantnfp1lem3 9749 cantnflem1d 9757 cantnflem1 9758 cnfcomlem 9768 cnfcom 9769 ttrcltr 9785 ttrclselem2 9795 infpssrlem4 10375 axdc3lem2 10520 pwfseqlem3 10729 oldfi 27969 n0sbday 28372 pw2bday 28436 zs12bday 28442 bnj1098 34759 bnj517 34861 bnj594 34888 bnj1001 34935 bnj1118 34960 bnj1128 34966 bnj1145 34969 elhf2 36139 hfelhf 36145 |
Copyright terms: Public domain | W3C validator |