MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elnn Structured version   Visualization version   GIF version

Theorem elnn 7914
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.)
Assertion
Ref Expression
elnn ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)

Proof of Theorem elnn
StepHypRef Expression
1 trom 7912 . 2 Tr ω
2 trel 5292 . 2 (Tr ω → ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω))
31, 2ax-mp 5 1 ((𝐴𝐵𝐵 ∈ ω) → 𝐴 ∈ ω)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  Tr wtr 5283  ωcom 7903
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-tr 5284  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-ord 6398  df-on 6399  df-lim 6400  df-om 7904
This theorem is referenced by:  nnaordi  8674  nnmordi  8687  pssnn  9234  ssnnfi  9235  ssnnfiOLD  9236  unfilem1  9371  unfilem2  9372  inf3lem5  9701  cantnflt  9741  cantnfp1lem3  9749  cantnflem1d  9757  cantnflem1  9758  cnfcomlem  9768  cnfcom  9769  ttrcltr  9785  ttrclselem2  9795  infpssrlem4  10375  axdc3lem2  10520  pwfseqlem3  10729  oldfi  27969  n0sbday  28372  pw2bday  28436  zs12bday  28442  bnj1098  34759  bnj517  34861  bnj594  34888  bnj1001  34935  bnj1118  34960  bnj1128  34966  bnj1145  34969  elhf2  36139  hfelhf  36145
  Copyright terms: Public domain W3C validator