MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opiedgval Structured version   Visualization version   GIF version

Theorem opiedgval 28984
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opiedgval (𝐺 ∈ (V × V) → (iEdg‘𝐺) = (2nd𝐺))

Proof of Theorem opiedgval
StepHypRef Expression
1 iedgval 28979 . 2 (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))
2 iftrue 4478 . 2 (𝐺 ∈ (V × V) → if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) = (2nd𝐺))
31, 2eqtrid 2778 1 (𝐺 ∈ (V × V) → (iEdg‘𝐺) = (2nd𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2111  Vcvv 3436  ifcif 4472   × cxp 5612  cfv 6481  2nd c2nd 7920  .efcedgf 28966  iEdgciedg 28975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-iedg 28977
This theorem is referenced by:  opiedgfv  28985
  Copyright terms: Public domain W3C validator