MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opiedgval Structured version   Visualization version   GIF version

Theorem opiedgval 28990
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 21-Sep-2020.)
Assertion
Ref Expression
opiedgval (𝐺 ∈ (V × V) → (iEdg‘𝐺) = (2nd𝐺))

Proof of Theorem opiedgval
StepHypRef Expression
1 iedgval 28985 . 2 (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺))
2 iftrue 4511 . 2 (𝐺 ∈ (V × V) → if(𝐺 ∈ (V × V), (2nd𝐺), (.ef‘𝐺)) = (2nd𝐺))
31, 2eqtrid 2783 1 (𝐺 ∈ (V × V) → (iEdg‘𝐺) = (2nd𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464  ifcif 4505   × cxp 5657  cfv 6536  2nd c2nd 7992  .efcedgf 28972  iEdgciedg 28981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-iota 6489  df-fun 6538  df-fv 6544  df-iedg 28983
This theorem is referenced by:  opiedgfv  28991
  Copyright terms: Public domain W3C validator