Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opiedgval | Structured version Visualization version GIF version |
Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges. (Contributed by AV, 21-Sep-2020.) |
Ref | Expression |
---|---|
opiedgval | ⊢ (𝐺 ∈ (V × V) → (iEdg‘𝐺) = (2nd ‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iedgval 26893 | . 2 ⊢ (iEdg‘𝐺) = if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) | |
2 | iftrue 4426 | . 2 ⊢ (𝐺 ∈ (V × V) → if(𝐺 ∈ (V × V), (2nd ‘𝐺), (.ef‘𝐺)) = (2nd ‘𝐺)) | |
3 | 1, 2 | syl5eq 2805 | 1 ⊢ (𝐺 ∈ (V × V) → (iEdg‘𝐺) = (2nd ‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ifcif 4420 × cxp 5522 ‘cfv 6335 2nd c2nd 7692 .efcedgf 26881 iEdgciedg 26889 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-iota 6294 df-fun 6337 df-fv 6343 df-iedg 26891 |
This theorem is referenced by: opiedgfv 26899 |
Copyright terms: Public domain | W3C validator |