MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itgmulc2lem1 Structured version   Visualization version   GIF version

Theorem itgmulc2lem1 25781
Description: Lemma for itgmulc2 25783: positive real case. (Contributed by Mario Carneiro, 25-Aug-2014.)
Hypotheses
Ref Expression
itgmulc2.1 (𝜑𝐶 ∈ ℂ)
itgmulc2.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2.4 (𝜑𝐶 ∈ ℝ)
itgmulc2.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgmulc2.6 (𝜑 → 0 ≤ 𝐶)
itgmulc2.7 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
itgmulc2lem1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgmulc2lem1
StepHypRef Expression
1 itgmulc2.5 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 itgmulc2.7 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
3 elrege0 13471 . . . . . . . 8 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
41, 2, 3sylanbrc 581 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
5 0e0icopnf 13475 . . . . . . . 8 0 ∈ (0[,)+∞)
65a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
74, 6ifclda 4567 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
87adantr 479 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
98fmpttd 7130 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞))
10 itgmulc2.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
111, 2iblpos 25742 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)))
1210, 11mpbid 231 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
1312simprd 494 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
14 itgmulc2.4 . . . . 5 (𝜑𝐶 ∈ ℝ)
15 itgmulc2.6 . . . . 5 (𝜑 → 0 ≤ 𝐶)
16 elrege0 13471 . . . . 5 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
1714, 15, 16sylanbrc 581 . . . 4 (𝜑𝐶 ∈ (0[,)+∞))
189, 13, 17itg2mulc 25697 . . 3 (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
19 reex 11237 . . . . . . 7 ℝ ∈ V
2019a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
2114adantr 479 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℝ)
22 fconstmpt 5744 . . . . . . 7 (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶)
2322a1i 11 . . . . . 6 (𝜑 → (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶))
24 eqidd 2729 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
2520, 21, 8, 23, 24offval2 7711 . . . . 5 (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥𝐴, 𝐵, 0))))
26 ovif2 7525 . . . . . . 7 (𝐶 · if(𝑥𝐴, 𝐵, 0)) = if(𝑥𝐴, (𝐶 · 𝐵), (𝐶 · 0))
27 itgmulc2.1 . . . . . . . . . 10 (𝜑𝐶 ∈ ℂ)
2827mul01d 11451 . . . . . . . . 9 (𝜑 → (𝐶 · 0) = 0)
2928adantr 479 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐶 · 0) = 0)
3029ifeq2d 4552 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (𝐶 · 𝐵), (𝐶 · 0)) = if(𝑥𝐴, (𝐶 · 𝐵), 0))
3126, 30eqtrid 2780 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐶 · if(𝑥𝐴, 𝐵, 0)) = if(𝑥𝐴, (𝐶 · 𝐵), 0))
3231mpteq2dva 5252 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0)))
3325, 32eqtrd 2768 . . . 4 (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0)))
3433fveq2d 6906 . . 3 (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
3518, 34eqtr3d 2770 . 2 (𝜑 → (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
361, 10, 2itgposval 25745 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
3736oveq2d 7442 . 2 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
3814adantr 479 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
3938, 1remulcld 11282 . . 3 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℝ)
40 itgmulc2.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
4127, 40, 10iblmulc2 25780 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
4215adantr 479 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
4338, 1, 42, 2mulge0d 11829 . . 3 ((𝜑𝑥𝐴) → 0 ≤ (𝐶 · 𝐵))
4439, 41, 43itgposval 25745 . 2 (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
4535, 37, 443eqtr4d 2778 1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1533  wcel 2098  Vcvv 3473  ifcif 4532  {csn 4632   class class class wbr 5152  cmpt 5235   × cxp 5680  cfv 6553  (class class class)co 7426  f cof 7689  cc 11144  cr 11145  0cc0 11146   · cmul 11151  +∞cpnf 11283  cle 11287  [,)cico 13366  MblFncmbf 25563  2citg2 25565  𝐿1cibl 25566  citg 25567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-inf2 9672  ax-cc 10466  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223  ax-pre-sup 11224  ax-addf 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-tp 4637  df-op 4639  df-uni 4913  df-int 4954  df-iun 5002  df-iin 5003  df-disj 5118  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-se 5638  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6310  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-isom 6562  df-riota 7382  df-ov 7429  df-oprab 7430  df-mpo 7431  df-of 7691  df-ofr 7692  df-om 7877  df-1st 7999  df-2nd 8000  df-supp 8172  df-frecs 8293  df-wrecs 8324  df-recs 8398  df-rdg 8437  df-1o 8493  df-2o 8494  df-oadd 8497  df-omul 8498  df-er 8731  df-map 8853  df-pm 8854  df-ixp 8923  df-en 8971  df-dom 8972  df-sdom 8973  df-fin 8974  df-fsupp 9394  df-fi 9442  df-sup 9473  df-inf 9474  df-oi 9541  df-dju 9932  df-card 9970  df-acn 9973  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-div 11910  df-nn 12251  df-2 12313  df-3 12314  df-4 12315  df-5 12316  df-6 12317  df-7 12318  df-8 12319  df-9 12320  df-n0 12511  df-z 12597  df-dec 12716  df-uz 12861  df-q 12971  df-rp 13015  df-xneg 13132  df-xadd 13133  df-xmul 13134  df-ioo 13368  df-ioc 13369  df-ico 13370  df-icc 13371  df-fz 13525  df-fzo 13668  df-fl 13797  df-mod 13875  df-seq 14007  df-exp 14067  df-hash 14330  df-cj 15086  df-re 15087  df-im 15088  df-sqrt 15222  df-abs 15223  df-clim 15472  df-rlim 15473  df-sum 15673  df-struct 17123  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17188  df-ress 17217  df-plusg 17253  df-mulr 17254  df-starv 17255  df-sca 17256  df-vsca 17257  df-ip 17258  df-tset 17259  df-ple 17260  df-ds 17262  df-unif 17263  df-hom 17264  df-cco 17265  df-rest 17411  df-topn 17412  df-0g 17430  df-gsum 17431  df-topgen 17432  df-pt 17433  df-prds 17436  df-xrs 17491  df-qtop 17496  df-imas 17497  df-xps 17499  df-mre 17573  df-mrc 17574  df-acs 17576  df-mgm 18607  df-sgrp 18686  df-mnd 18702  df-submnd 18748  df-mulg 19031  df-cntz 19275  df-cmn 19744  df-psmet 21278  df-xmet 21279  df-met 21280  df-bl 21281  df-mopn 21282  df-cnfld 21287  df-top 22816  df-topon 22833  df-topsp 22855  df-bases 22869  df-cn 23151  df-cnp 23152  df-cmp 23311  df-tx 23486  df-hmeo 23679  df-xms 24246  df-ms 24247  df-tms 24248  df-cncf 24818  df-ovol 25413  df-vol 25414  df-mbf 25568  df-itg1 25569  df-itg2 25570  df-ibl 25571  df-itg 25572  df-0p 25619
This theorem is referenced by:  itgmulc2lem2  25782
  Copyright terms: Public domain W3C validator