Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > itgmulc2lem1 | Structured version Visualization version GIF version |
Description: Lemma for itgmulc2 24903: positive real case. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
itgmulc2.1 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
itgmulc2.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
itgmulc2.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
itgmulc2.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
itgmulc2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
itgmulc2.6 | ⊢ (𝜑 → 0 ≤ 𝐶) |
itgmulc2.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
Ref | Expression |
---|---|
itgmulc2lem1 | ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgmulc2.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
2 | itgmulc2.7 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) | |
3 | elrege0 13115 | . . . . . . . 8 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
4 | 1, 2, 3 | sylanbrc 582 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
5 | 0e0icopnf 13119 | . . . . . . . 8 ⊢ 0 ∈ (0[,)+∞) | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈ (0[,)+∞)) |
7 | 4, 6 | ifclda 4491 | . . . . . 6 ⊢ (𝜑 → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
9 | 8 | fmpttd 6971 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞)) |
10 | itgmulc2.3 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
11 | 1, 2 | iblpos 24862 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ))) |
12 | 10, 11 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ)) |
13 | 12 | simprd 495 | . . . 4 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) |
14 | itgmulc2.4 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
15 | itgmulc2.6 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝐶) | |
16 | elrege0 13115 | . . . . 5 ⊢ (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) | |
17 | 14, 15, 16 | sylanbrc 582 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
18 | 9, 13, 17 | itg2mulc 24817 | . . 3 ⊢ (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))))) |
19 | reex 10893 | . . . . . . 7 ⊢ ℝ ∈ V | |
20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ V) |
21 | 14 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐶 ∈ ℝ) |
22 | fconstmpt 5640 | . . . . . . 7 ⊢ (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶) | |
23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶)) |
24 | eqidd 2739 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) | |
25 | 20, 21, 8, 23, 24 | offval2 7531 | . . . . 5 ⊢ (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
26 | ovif2 7351 | . . . . . . 7 ⊢ (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0)) = if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), (𝐶 · 0)) | |
27 | itgmulc2.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
28 | 27 | mul01d 11104 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶 · 0) = 0) |
29 | 28 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐶 · 0) = 0) |
30 | 29 | ifeq2d 4476 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), (𝐶 · 0)) = if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)) |
31 | 26, 30 | syl5eq 2791 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0)) = if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)) |
32 | 31 | mpteq2dva 5170 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0))) |
33 | 25, 32 | eqtrd 2778 | . . . 4 ⊢ (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0))) |
34 | 33 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)))) |
35 | 18, 34 | eqtr3d 2780 | . 2 ⊢ (𝜑 → (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)))) |
36 | 1, 10, 2 | itgposval 24865 | . . 3 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
37 | 36 | oveq2d 7271 | . 2 ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))))) |
38 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
39 | 38, 1 | remulcld 10936 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℝ) |
40 | itgmulc2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
41 | 27, 40, 10 | iblmulc2 24900 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1) |
42 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐶) |
43 | 38, 1, 42, 2 | mulge0d 11482 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (𝐶 · 𝐵)) |
44 | 39, 41, 43 | itgposval 24865 | . 2 ⊢ (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)))) |
45 | 35, 37, 44 | 3eqtr4d 2788 | 1 ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ifcif 4456 {csn 4558 class class class wbr 5070 ↦ cmpt 5153 × cxp 5578 ‘cfv 6418 (class class class)co 7255 ∘f cof 7509 ℂcc 10800 ℝcr 10801 0cc0 10802 · cmul 10807 +∞cpnf 10937 ≤ cle 10941 [,)cico 13010 MblFncmbf 24683 ∫2citg2 24685 𝐿1cibl 24686 ∫citg 24687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-inf2 9329 ax-cc 10122 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 ax-addf 10881 ax-mulf 10882 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-disj 5036 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-oadd 8271 df-omul 8272 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-fi 9100 df-sup 9131 df-inf 9132 df-oi 9199 df-dju 9590 df-card 9628 df-acn 9631 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-q 12618 df-rp 12660 df-xneg 12777 df-xadd 12778 df-xmul 12779 df-ioo 13012 df-ioc 13013 df-ico 13014 df-icc 13015 df-fz 13169 df-fzo 13312 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-hash 13973 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-clim 15125 df-rlim 15126 df-sum 15326 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-starv 16903 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-unif 16911 df-hom 16912 df-cco 16913 df-rest 17050 df-topn 17051 df-0g 17069 df-gsum 17070 df-topgen 17071 df-pt 17072 df-prds 17075 df-xrs 17130 df-qtop 17135 df-imas 17136 df-xps 17138 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-psmet 20502 df-xmet 20503 df-met 20504 df-bl 20505 df-mopn 20506 df-cnfld 20511 df-top 21951 df-topon 21968 df-topsp 21990 df-bases 22004 df-cn 22286 df-cnp 22287 df-cmp 22446 df-tx 22621 df-hmeo 22814 df-xms 23381 df-ms 23382 df-tms 23383 df-cncf 23947 df-ovol 24533 df-vol 24534 df-mbf 24688 df-itg1 24689 df-itg2 24690 df-ibl 24691 df-itg 24692 df-0p 24739 |
This theorem is referenced by: itgmulc2lem2 24902 |
Copyright terms: Public domain | W3C validator |