![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > itgmulc2lem1 | Structured version Visualization version GIF version |
Description: Lemma for itgmulc2 25198: positive real case. (Contributed by Mario Carneiro, 25-Aug-2014.) |
Ref | Expression |
---|---|
itgmulc2.1 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
itgmulc2.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
itgmulc2.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
itgmulc2.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
itgmulc2.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
itgmulc2.6 | ⊢ (𝜑 → 0 ≤ 𝐶) |
itgmulc2.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
Ref | Expression |
---|---|
itgmulc2lem1 | ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | itgmulc2.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
2 | itgmulc2.7 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) | |
3 | elrege0 13371 | . . . . . . . 8 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
4 | 1, 2, 3 | sylanbrc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
5 | 0e0icopnf 13375 | . . . . . . . 8 ⊢ 0 ∈ (0[,)+∞) | |
6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈ (0[,)+∞)) |
7 | 4, 6 | ifclda 4521 | . . . . . 6 ⊢ (𝜑 → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
8 | 7 | adantr 481 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
9 | 8 | fmpttd 7063 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞)) |
10 | itgmulc2.3 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
11 | 1, 2 | iblpos 25157 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ))) |
12 | 10, 11 | mpbid 231 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ)) |
13 | 12 | simprd 496 | . . . 4 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) |
14 | itgmulc2.4 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
15 | itgmulc2.6 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝐶) | |
16 | elrege0 13371 | . . . . 5 ⊢ (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) | |
17 | 14, 15, 16 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
18 | 9, 13, 17 | itg2mulc 25112 | . . 3 ⊢ (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))))) |
19 | reex 11142 | . . . . . . 7 ⊢ ℝ ∈ V | |
20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ V) |
21 | 14 | adantr 481 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐶 ∈ ℝ) |
22 | fconstmpt 5694 | . . . . . . 7 ⊢ (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶) | |
23 | 22 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶)) |
24 | eqidd 2737 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) | |
25 | 20, 21, 8, 23, 24 | offval2 7637 | . . . . 5 ⊢ (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
26 | ovif2 7455 | . . . . . . 7 ⊢ (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0)) = if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), (𝐶 · 0)) | |
27 | itgmulc2.1 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
28 | 27 | mul01d 11354 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶 · 0) = 0) |
29 | 28 | adantr 481 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐶 · 0) = 0) |
30 | 29 | ifeq2d 4506 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), (𝐶 · 0)) = if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)) |
31 | 26, 30 | eqtrid 2788 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0)) = if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)) |
32 | 31 | mpteq2dva 5205 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0))) |
33 | 25, 32 | eqtrd 2776 | . . . 4 ⊢ (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0))) |
34 | 33 | fveq2d 6846 | . . 3 ⊢ (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)))) |
35 | 18, 34 | eqtr3d 2778 | . 2 ⊢ (𝜑 → (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)))) |
36 | 1, 10, 2 | itgposval 25160 | . . 3 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
37 | 36 | oveq2d 7373 | . 2 ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))))) |
38 | 14 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
39 | 38, 1 | remulcld 11185 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℝ) |
40 | itgmulc2.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
41 | 27, 40, 10 | iblmulc2 25195 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1) |
42 | 15 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐶) |
43 | 38, 1, 42, 2 | mulge0d 11732 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (𝐶 · 𝐵)) |
44 | 39, 41, 43 | itgposval 25160 | . 2 ⊢ (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)))) |
45 | 35, 37, 44 | 3eqtr4d 2786 | 1 ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ifcif 4486 {csn 4586 class class class wbr 5105 ↦ cmpt 5188 × cxp 5631 ‘cfv 6496 (class class class)co 7357 ∘f cof 7615 ℂcc 11049 ℝcr 11050 0cc0 11051 · cmul 11056 +∞cpnf 11186 ≤ cle 11190 [,)cico 13266 MblFncmbf 24978 ∫2citg2 24980 𝐿1cibl 24981 ∫citg 24982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-rep 5242 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-inf2 9577 ax-cc 10371 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 ax-addf 11130 ax-mulf 11131 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-tp 4591 df-op 4593 df-uni 4866 df-int 4908 df-iun 4956 df-iin 4957 df-disj 5071 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-se 5589 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-isom 6505 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-of 7617 df-ofr 7618 df-om 7803 df-1st 7921 df-2nd 7922 df-supp 8093 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-1o 8412 df-2o 8413 df-oadd 8416 df-omul 8417 df-er 8648 df-map 8767 df-pm 8768 df-ixp 8836 df-en 8884 df-dom 8885 df-sdom 8886 df-fin 8887 df-fsupp 9306 df-fi 9347 df-sup 9378 df-inf 9379 df-oi 9446 df-dju 9837 df-card 9875 df-acn 9878 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-2 12216 df-3 12217 df-4 12218 df-5 12219 df-6 12220 df-7 12221 df-8 12222 df-9 12223 df-n0 12414 df-z 12500 df-dec 12619 df-uz 12764 df-q 12874 df-rp 12916 df-xneg 13033 df-xadd 13034 df-xmul 13035 df-ioo 13268 df-ioc 13269 df-ico 13270 df-icc 13271 df-fz 13425 df-fzo 13568 df-fl 13697 df-mod 13775 df-seq 13907 df-exp 13968 df-hash 14231 df-cj 14984 df-re 14985 df-im 14986 df-sqrt 15120 df-abs 15121 df-clim 15370 df-rlim 15371 df-sum 15571 df-struct 17019 df-sets 17036 df-slot 17054 df-ndx 17066 df-base 17084 df-ress 17113 df-plusg 17146 df-mulr 17147 df-starv 17148 df-sca 17149 df-vsca 17150 df-ip 17151 df-tset 17152 df-ple 17153 df-ds 17155 df-unif 17156 df-hom 17157 df-cco 17158 df-rest 17304 df-topn 17305 df-0g 17323 df-gsum 17324 df-topgen 17325 df-pt 17326 df-prds 17329 df-xrs 17384 df-qtop 17389 df-imas 17390 df-xps 17392 df-mre 17466 df-mrc 17467 df-acs 17469 df-mgm 18497 df-sgrp 18546 df-mnd 18557 df-submnd 18602 df-mulg 18873 df-cntz 19097 df-cmn 19564 df-psmet 20788 df-xmet 20789 df-met 20790 df-bl 20791 df-mopn 20792 df-cnfld 20797 df-top 22243 df-topon 22260 df-topsp 22282 df-bases 22296 df-cn 22578 df-cnp 22579 df-cmp 22738 df-tx 22913 df-hmeo 23106 df-xms 23673 df-ms 23674 df-tms 23675 df-cncf 24241 df-ovol 24828 df-vol 24829 df-mbf 24983 df-itg1 24984 df-itg2 24985 df-ibl 24986 df-itg 24987 df-0p 25034 |
This theorem is referenced by: itgmulc2lem2 25197 |
Copyright terms: Public domain | W3C validator |