Step | Hyp | Ref
| Expression |
1 | | mbff 24694 |
. . . . . . 7
⊢ (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ) |
2 | 1 | ad2antrr 722 |
. . . . . 6
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → 𝐹:dom 𝐹⟶ℂ) |
3 | 2 | ffnd 6585 |
. . . . 5
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → 𝐹 Fn dom 𝐹) |
4 | | iblmbf 24837 |
. . . . . . . 8
⊢ (𝐺 ∈ 𝐿1
→ 𝐺 ∈
MblFn) |
5 | 4 | ad2antlr 723 |
. . . . . . 7
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → 𝐺 ∈ MblFn) |
6 | | mbff 24694 |
. . . . . . 7
⊢ (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ) |
7 | 5, 6 | syl 17 |
. . . . . 6
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → 𝐺:dom 𝐺⟶ℂ) |
8 | 7 | ffnd 6585 |
. . . . 5
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → 𝐺 Fn dom 𝐺) |
9 | | mbfdm 24695 |
. . . . . 6
⊢ (𝐹 ∈ MblFn → dom 𝐹 ∈ dom
vol) |
10 | 9 | ad2antrr 722 |
. . . . 5
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → dom 𝐹 ∈ dom vol) |
11 | | mbfdm 24695 |
. . . . . 6
⊢ (𝐺 ∈ MblFn → dom 𝐺 ∈ dom
vol) |
12 | 5, 11 | syl 17 |
. . . . 5
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → dom 𝐺 ∈ dom vol) |
13 | | eqid 2738 |
. . . . 5
⊢ (dom
𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺) |
14 | | eqidd 2739 |
. . . . 5
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹‘𝑧) = (𝐹‘𝑧)) |
15 | | eqidd 2739 |
. . . . 5
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺‘𝑧) = (𝐺‘𝑧)) |
16 | 3, 8, 10, 12, 13, 14, 15 | offval 7520 |
. . . 4
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝐹 ∘f · 𝐺) = (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑧) · (𝐺‘𝑧)))) |
17 | | ovexd 7290 |
. . . . 5
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹‘𝑧) · (𝐺‘𝑧)) ∈ V) |
18 | | simpll 763 |
. . . . . . 7
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → 𝐹 ∈ MblFn) |
19 | 18, 5 | mbfmul 24796 |
. . . . . 6
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝐹 ∘f · 𝐺) ∈ MblFn) |
20 | 16, 19 | eqeltrrd 2840 |
. . . . 5
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑧) · (𝐺‘𝑧))) ∈ MblFn) |
21 | | absf 14977 |
. . . . . . . . 9
⊢
abs:ℂ⟶ℝ |
22 | 21 | a1i 11 |
. . . . . . . 8
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) →
abs:ℂ⟶ℝ) |
23 | 20, 17 | mbfmptcl 24705 |
. . . . . . . 8
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹‘𝑧) · (𝐺‘𝑧)) ∈ ℂ) |
24 | 22, 23 | cofmpt 6986 |
. . . . . . 7
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑧) · (𝐺‘𝑧)))) = (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))))) |
25 | 23 | fmpttd 6971 |
. . . . . . . 8
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑧) · (𝐺‘𝑧))):(dom 𝐹 ∩ dom 𝐺)⟶ℂ) |
26 | | ax-resscn 10859 |
. . . . . . . . . . 11
⊢ ℝ
⊆ ℂ |
27 | | ssid 3939 |
. . . . . . . . . . 11
⊢ ℂ
⊆ ℂ |
28 | | cncfss 23968 |
. . . . . . . . . . 11
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)) |
29 | 26, 27, 28 | mp2an 688 |
. . . . . . . . . 10
⊢
(ℂ–cn→ℝ)
⊆ (ℂ–cn→ℂ) |
30 | | abscncf 23970 |
. . . . . . . . . 10
⊢ abs
∈ (ℂ–cn→ℝ) |
31 | 29, 30 | sselii 3914 |
. . . . . . . . 9
⊢ abs
∈ (ℂ–cn→ℂ) |
32 | 31 | a1i 11 |
. . . . . . . 8
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → abs ∈ (ℂ–cn→ℂ)) |
33 | | cncombf 24727 |
. . . . . . . 8
⊢ (((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑧) · (𝐺‘𝑧))) ∈ MblFn ∧ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑧) · (𝐺‘𝑧))):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ abs ∈
(ℂ–cn→ℂ)) →
(abs ∘ (𝑧 ∈ (dom
𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑧) · (𝐺‘𝑧)))) ∈ MblFn) |
34 | 20, 25, 32, 33 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑧) · (𝐺‘𝑧)))) ∈ MblFn) |
35 | 24, 34 | eqeltrrd 2840 |
. . . . . 6
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹‘𝑧) · (𝐺‘𝑧)))) ∈ MblFn) |
36 | 23 | abscld 15076 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))) ∈ ℝ) |
37 | 36 | rexrd 10956 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))) ∈
ℝ*) |
38 | 23 | absge0d 15084 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘((𝐹‘𝑧) · (𝐺‘𝑧)))) |
39 | | elxrge0 13118 |
. . . . . . . . . . 11
⊢
((abs‘((𝐹‘𝑧) · (𝐺‘𝑧))) ∈ (0[,]+∞) ↔
((abs‘((𝐹‘𝑧) · (𝐺‘𝑧))) ∈ ℝ* ∧ 0 ≤
(abs‘((𝐹‘𝑧) · (𝐺‘𝑧))))) |
40 | 37, 38, 39 | sylanbrc 582 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))) ∈ (0[,]+∞)) |
41 | | 0e0iccpnf 13120 |
. . . . . . . . . . 11
⊢ 0 ∈
(0[,]+∞) |
42 | 41 | a1i 11 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈
(0[,]+∞)) |
43 | 40, 42 | ifclda 4491 |
. . . . . . . . 9
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0) ∈
(0[,]+∞)) |
44 | 43 | adantr 480 |
. . . . . . . 8
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0) ∈
(0[,]+∞)) |
45 | 44 | fmpttd 6971 |
. . . . . . 7
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))),
0)):ℝ⟶(0[,]+∞)) |
46 | | reex 10893 |
. . . . . . . . . . . . . . 15
⊢ ℝ
∈ V |
47 | 46 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ℝ ∈
V) |
48 | | simprl 767 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℝ) |
49 | 48 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢
(((((𝐹 ∈ MblFn
∧ 𝐺 ∈
𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ) |
50 | | elinel2 4126 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐺) |
51 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐺:dom 𝐺⟶ℂ ∧ 𝑧 ∈ dom 𝐺) → (𝐺‘𝑧) ∈ ℂ) |
52 | 7, 50, 51 | syl2an 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺‘𝑧) ∈ ℂ) |
53 | 52 | abscld 15076 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐺‘𝑧)) ∈ ℝ) |
54 | 52 | absge0d 15084 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘(𝐺‘𝑧))) |
55 | | elrege0 13115 |
. . . . . . . . . . . . . . . . 17
⊢
((abs‘(𝐺‘𝑧)) ∈ (0[,)+∞) ↔
((abs‘(𝐺‘𝑧)) ∈ ℝ ∧ 0 ≤
(abs‘(𝐺‘𝑧)))) |
56 | 53, 54, 55 | sylanbrc 582 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐺‘𝑧)) ∈ (0[,)+∞)) |
57 | | 0e0icopnf 13119 |
. . . . . . . . . . . . . . . . 17
⊢ 0 ∈
(0[,)+∞) |
58 | 57 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈
(0[,)+∞)) |
59 | 56, 58 | ifclda 4491 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0) ∈
(0[,)+∞)) |
60 | 59 | ad2antrr 722 |
. . . . . . . . . . . . . 14
⊢
(((((𝐹 ∈ MblFn
∧ 𝐺 ∈
𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0) ∈
(0[,)+∞)) |
61 | | fconstmpt 5640 |
. . . . . . . . . . . . . . 15
⊢ (ℝ
× {𝑥}) = (𝑧 ∈ ℝ ↦ 𝑥) |
62 | 61 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (ℝ × {𝑥}) = (𝑧 ∈ ℝ ↦ 𝑥)) |
63 | | eqidd 2739 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0))) |
64 | 47, 49, 60, 62, 63 | offval2 7531 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((ℝ × {𝑥}) ∘f ·
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0))) = (𝑧 ∈ ℝ ↦ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0)))) |
65 | | ovif2 7351 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), (𝑥 · 0)) |
66 | 48 | recnd 10934 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℂ) |
67 | 66 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ ℂ) |
68 | 67 | mul01d 11104 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · 0) = 0) |
69 | 68 | ifeq2d 4476 |
. . . . . . . . . . . . . . 15
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), (𝑥 · 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)) |
70 | 65, 69 | syl5eq 2791 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)) |
71 | 70 | mpteq2dv 5172 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) |
72 | 64, 71 | eqtrd 2778 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((ℝ × {𝑥}) ∘f ·
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) |
73 | 72 | fveq2d 6760 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) →
(∫2‘((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0)))) = (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)))) |
74 | 59 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0) ∈
(0[,)+∞)) |
75 | 74 | fmpttd 6971 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)),
0)):ℝ⟶(0[,)+∞)) |
76 | 75 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)),
0)):ℝ⟶(0[,)+∞)) |
77 | | inss2 4160 |
. . . . . . . . . . . . . . . . . 18
⊢ (dom
𝐹 ∩ dom 𝐺) ⊆ dom 𝐺 |
78 | 77 | a1i 11 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺) |
79 | 20, 17 | mbfdm2 24706 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol) |
80 | 7 | ffvelrnda 6943 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺‘𝑧) ∈ ℂ) |
81 | 7 | feqmptd 6819 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → 𝐺 = (𝑧 ∈ dom 𝐺 ↦ (𝐺‘𝑧))) |
82 | | simplr 765 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → 𝐺 ∈
𝐿1) |
83 | 81, 82 | eqeltrrd 2840 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐺 ↦ (𝐺‘𝑧)) ∈
𝐿1) |
84 | 78, 79, 80, 83 | iblss 24874 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺‘𝑧)) ∈
𝐿1) |
85 | 52, 84 | iblabs 24898 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺‘𝑧))) ∈
𝐿1) |
86 | 53, 54 | iblpos 24862 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺‘𝑧))) ∈ 𝐿1 ↔
((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺‘𝑧))) ∈ MblFn ∧
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (abs‘(𝐺‘𝑧)), 0))) ∈ ℝ))) |
87 | 85, 86 | mpbid 231 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺‘𝑧))) ∈ MblFn ∧
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (abs‘(𝐺‘𝑧)), 0))) ∈ ℝ)) |
88 | 87 | simprd 495 |
. . . . . . . . . . . . 13
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0))) ∈ ℝ) |
89 | 88 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) →
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (abs‘(𝐺‘𝑧)), 0))) ∈ ℝ) |
90 | | simplrl 773 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ ℝ) |
91 | | neq0 4276 |
. . . . . . . . . . . . . . 15
⊢ (¬
(dom 𝐹 ∩ dom 𝐺) = ∅ ↔ ∃𝑧 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) |
92 | | 0re 10908 |
. . . . . . . . . . . . . . . . . . 19
⊢ 0 ∈
ℝ |
93 | 92 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ ℝ) |
94 | | elinel1 4125 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐹) |
95 | | ffvelrn 6941 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → (𝐹‘𝑧) ∈ ℂ) |
96 | 2, 94, 95 | syl2an 595 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹‘𝑧) ∈ ℂ) |
97 | 96 | abscld 15076 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐹‘𝑧)) ∈ ℝ) |
98 | | simplrl 773 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑥 ∈ ℝ) |
99 | 96 | absge0d 15084 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘(𝐹‘𝑧))) |
100 | | simprr 769 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → ∀𝑦 ∈ dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) |
101 | | 2fveq3 6761 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑦 = 𝑧 → (abs‘(𝐹‘𝑦)) = (abs‘(𝐹‘𝑧))) |
102 | 101 | breq1d 5080 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑦 = 𝑧 → ((abs‘(𝐹‘𝑦)) ≤ 𝑥 ↔ (abs‘(𝐹‘𝑧)) ≤ 𝑥)) |
103 | 102 | rspccva 3551 |
. . . . . . . . . . . . . . . . . . 19
⊢
((∀𝑦 ∈
dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥 ∧ 𝑧 ∈ dom 𝐹) → (abs‘(𝐹‘𝑧)) ≤ 𝑥) |
104 | 100, 94, 103 | syl2an 595 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐹‘𝑧)) ≤ 𝑥) |
105 | 93, 97, 98, 99, 104 | letrd 11062 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ 𝑥) |
106 | 105 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 𝑥)) |
107 | 106 | exlimdv 1937 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (∃𝑧 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 𝑥)) |
108 | 91, 107 | syl5bi 241 |
. . . . . . . . . . . . . 14
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ → 0 ≤ 𝑥)) |
109 | 108 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 0 ≤ 𝑥) |
110 | | elrege0 13115 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ (0[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 0
≤ 𝑥)) |
111 | 90, 109, 110 | sylanbrc 582 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ (0[,)+∞)) |
112 | 76, 89, 111 | itg2mulc 24817 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) →
(∫2‘((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0)))) = (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0))))) |
113 | 73, 112 | eqtr3d 2780 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) →
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) = (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0))))) |
114 | 90, 89 | remulcld 10936 |
. . . . . . . . . 10
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺‘𝑧)), 0)))) ∈ ℝ) |
115 | 113, 114 | eqeltrd 2839 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) →
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) ∈ ℝ) |
116 | 115 | ex 412 |
. . . . . . . 8
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ →
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) ∈ ℝ)) |
117 | | noel 4261 |
. . . . . . . . . . . . . 14
⊢ ¬
𝑧 ∈
∅ |
118 | | eleq2 2827 |
. . . . . . . . . . . . . 14
⊢ ((dom
𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↔ 𝑧 ∈ ∅)) |
119 | 117, 118 | mtbiri 326 |
. . . . . . . . . . . . 13
⊢ ((dom
𝐹 ∩ dom 𝐺) = ∅ → ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) |
120 | | iffalse 4465 |
. . . . . . . . . . . . 13
⊢ (¬
𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0) = 0) |
121 | 119, 120 | syl 17 |
. . . . . . . . . . . 12
⊢ ((dom
𝐹 ∩ dom 𝐺) = ∅ → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0) = 0) |
122 | 121 | mpteq2dv 5172 |
. . . . . . . . . . 11
⊢ ((dom
𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)) = (𝑧 ∈ ℝ ↦ 0)) |
123 | | fconstmpt 5640 |
. . . . . . . . . . 11
⊢ (ℝ
× {0}) = (𝑧 ∈
ℝ ↦ 0) |
124 | 122, 123 | eqtr4di 2797 |
. . . . . . . . . 10
⊢ ((dom
𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)) = (ℝ ×
{0})) |
125 | 124 | fveq2d 6760 |
. . . . . . . . 9
⊢ ((dom
𝐹 ∩ dom 𝐺) = ∅ →
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) = (∫2‘(ℝ
× {0}))) |
126 | | itg20 24807 |
. . . . . . . . . 10
⊢
(∫2‘(ℝ × {0})) = 0 |
127 | 126, 92 | eqeltri 2835 |
. . . . . . . . 9
⊢
(∫2‘(ℝ × {0})) ∈
ℝ |
128 | 125, 127 | eqeltrdi 2847 |
. . . . . . . 8
⊢ ((dom
𝐹 ∩ dom 𝐺) = ∅ →
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) ∈ ℝ) |
129 | 116, 128 | pm2.61d2 181 |
. . . . . . 7
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) ∈ ℝ) |
130 | 98, 53 | remulcld 10936 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺‘𝑧))) ∈ ℝ) |
131 | 130 | rexrd 10956 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺‘𝑧))) ∈
ℝ*) |
132 | 98, 53, 105, 54 | mulge0d 11482 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (𝑥 · (abs‘(𝐺‘𝑧)))) |
133 | | elxrge0 13118 |
. . . . . . . . . . . 12
⊢ ((𝑥 · (abs‘(𝐺‘𝑧))) ∈ (0[,]+∞) ↔ ((𝑥 · (abs‘(𝐺‘𝑧))) ∈ ℝ* ∧ 0 ≤
(𝑥 ·
(abs‘(𝐺‘𝑧))))) |
134 | 131, 132,
133 | sylanbrc 582 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺‘𝑧))) ∈ (0[,]+∞)) |
135 | 134, 42 | ifclda 4491 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0) ∈
(0[,]+∞)) |
136 | 135 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0) ∈
(0[,]+∞)) |
137 | 136 | fmpttd 6971 |
. . . . . . . 8
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))),
0)):ℝ⟶(0[,]+∞)) |
138 | 96, 52 | absmuld 15094 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))) = ((abs‘(𝐹‘𝑧)) · (abs‘(𝐺‘𝑧)))) |
139 | | abscl 14918 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑧) ∈ ℂ → (abs‘(𝐺‘𝑧)) ∈ ℝ) |
140 | | absge0 14927 |
. . . . . . . . . . . . . . . 16
⊢ ((𝐺‘𝑧) ∈ ℂ → 0 ≤
(abs‘(𝐺‘𝑧))) |
141 | 139, 140 | jca 511 |
. . . . . . . . . . . . . . 15
⊢ ((𝐺‘𝑧) ∈ ℂ → ((abs‘(𝐺‘𝑧)) ∈ ℝ ∧ 0 ≤
(abs‘(𝐺‘𝑧)))) |
142 | 52, 141 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘(𝐺‘𝑧)) ∈ ℝ ∧ 0 ≤
(abs‘(𝐺‘𝑧)))) |
143 | | lemul1a 11759 |
. . . . . . . . . . . . . 14
⊢
((((abs‘(𝐹‘𝑧)) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((abs‘(𝐺‘𝑧)) ∈ ℝ ∧ 0 ≤
(abs‘(𝐺‘𝑧)))) ∧ (abs‘(𝐹‘𝑧)) ≤ 𝑥) → ((abs‘(𝐹‘𝑧)) · (abs‘(𝐺‘𝑧))) ≤ (𝑥 · (abs‘(𝐺‘𝑧)))) |
144 | 97, 98, 142, 104, 143 | syl31anc 1371 |
. . . . . . . . . . . . 13
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘(𝐹‘𝑧)) · (abs‘(𝐺‘𝑧))) ≤ (𝑥 · (abs‘(𝐺‘𝑧)))) |
145 | 138, 144 | eqbrtrd 5092 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))) ≤ (𝑥 · (abs‘(𝐺‘𝑧)))) |
146 | | iftrue 4462 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0) = (abs‘((𝐹‘𝑧) · (𝐺‘𝑧)))) |
147 | 146 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0) = (abs‘((𝐹‘𝑧) · (𝐺‘𝑧)))) |
148 | | iftrue 4462 |
. . . . . . . . . . . . 13
⊢ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0) = (𝑥 · (abs‘(𝐺‘𝑧)))) |
149 | 148 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0) = (𝑥 · (abs‘(𝐺‘𝑧)))) |
150 | 145, 147,
149 | 3brtr4d 5102 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)) |
151 | | 0le0 12004 |
. . . . . . . . . . . . . 14
⊢ 0 ≤
0 |
152 | 151 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (¬
𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 0) |
153 | | iffalse 4465 |
. . . . . . . . . . . . 13
⊢ (¬
𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0) = 0) |
154 | 152, 153,
120 | 3brtr4d 5102 |
. . . . . . . . . . . 12
⊢ (¬
𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)) |
155 | 154 | adantl 481 |
. . . . . . . . . . 11
⊢ ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)) |
156 | 150, 155 | pm2.61dan 809 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)) |
157 | 156 | ralrimivw 3108 |
. . . . . . . . 9
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)) |
158 | 46 | a1i 11 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → ℝ ∈ V) |
159 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0))) |
160 | | eqidd 2739 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) |
161 | 158, 44, 136, 159, 160 | ofrfval2 7532 |
. . . . . . . . 9
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)) ↔ ∀𝑧 ∈ ℝ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) |
162 | 157, 161 | mpbird 256 |
. . . . . . . 8
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) |
163 | | itg2le 24809 |
. . . . . . . 8
⊢ (((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)):ℝ⟶(0[,]+∞) ∧
(𝑧 ∈ ℝ ↦
if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) →
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0))) ≤
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)))) |
164 | 45, 137, 162, 163 | syl3anc 1369 |
. . . . . . 7
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0))) ≤
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)))) |
165 | | itg2lecl 24808 |
. . . . . . 7
⊢ (((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0)):ℝ⟶(0[,]+∞) ∧
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0))) ∈ ℝ ∧
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0))) ≤
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (𝑥 · (abs‘(𝐺‘𝑧))), 0)))) →
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0))) ∈ ℝ) |
166 | 45, 129, 164, 165 | syl3anc 1369 |
. . . . . 6
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0))) ∈ ℝ) |
167 | 36, 38 | iblpos 24862 |
. . . . . 6
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹‘𝑧) · (𝐺‘𝑧)))) ∈ 𝐿1 ↔
((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹‘𝑧) · (𝐺‘𝑧)))) ∈ MblFn ∧
(∫2‘(𝑧
∈ ℝ ↦ if(𝑧
∈ (dom 𝐹 ∩ dom
𝐺), (abs‘((𝐹‘𝑧) · (𝐺‘𝑧))), 0))) ∈ ℝ))) |
168 | 35, 166, 167 | mpbir2and 709 |
. . . . 5
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹‘𝑧) · (𝐺‘𝑧)))) ∈
𝐿1) |
169 | 17, 20, 168 | iblabsr 24899 |
. . . 4
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹‘𝑧) · (𝐺‘𝑧))) ∈
𝐿1) |
170 | 16, 169 | eqeltrd 2839 |
. . 3
⊢ (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
∧ (𝑥 ∈ ℝ
∧ ∀𝑦 ∈ dom
𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥)) → (𝐹 ∘f · 𝐺) ∈
𝐿1) |
171 | 170 | rexlimdvaa 3213 |
. 2
⊢ ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1)
→ (∃𝑥 ∈
ℝ ∀𝑦 ∈
dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥 → (𝐹 ∘f · 𝐺) ∈
𝐿1)) |
172 | 171 | 3impia 1115 |
1
⊢ ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1
∧ ∃𝑥 ∈
ℝ ∀𝑦 ∈
dom 𝐹(abs‘(𝐹‘𝑦)) ≤ 𝑥) → (𝐹 ∘f · 𝐺) ∈
𝐿1) |