MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bddmulibl Structured version   Visualization version   GIF version

Theorem bddmulibl 25203
Description: A bounded function times an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
bddmulibl ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝐹f · 𝐺) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦

Proof of Theorem bddmulibl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mbff 24989 . . . . . . 7 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
21ad2antrr 724 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹:dom 𝐹⟶ℂ)
32ffnd 6669 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹 Fn dom 𝐹)
4 iblmbf 25132 . . . . . . . 8 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
54ad2antlr 725 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 ∈ MblFn)
6 mbff 24989 . . . . . . 7 (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ)
75, 6syl 17 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺:dom 𝐺⟶ℂ)
87ffnd 6669 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 Fn dom 𝐺)
9 mbfdm 24990 . . . . . 6 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
109ad2antrr 724 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐹 ∈ dom vol)
11 mbfdm 24990 . . . . . 6 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
125, 11syl 17 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐺 ∈ dom vol)
13 eqid 2736 . . . . 5 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
14 eqidd 2737 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
15 eqidd 2737 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) = (𝐺𝑧))
163, 8, 10, 12, 13, 14, 15offval 7626 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) = (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))))
17 ovexd 7392 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ V)
18 simpll 765 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹 ∈ MblFn)
1918, 5mbfmul 25091 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) ∈ MblFn)
2016, 19eqeltrrd 2839 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ MblFn)
21 absf 15222 . . . . . . . . 9 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → abs:ℂ⟶ℝ)
2320, 17mbfmptcl 25000 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
2422, 23cofmpt 7078 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) = (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))))
2523fmpttd 7063 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))):(dom 𝐹 ∩ dom 𝐺)⟶ℂ)
26 ax-resscn 11108 . . . . . . . . . . 11 ℝ ⊆ ℂ
27 ssid 3966 . . . . . . . . . . 11 ℂ ⊆ ℂ
28 cncfss 24262 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
2926, 27, 28mp2an 690 . . . . . . . . . 10 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
30 abscncf 24264 . . . . . . . . . 10 abs ∈ (ℂ–cn→ℝ)
3129, 30sselii 3941 . . . . . . . . 9 abs ∈ (ℂ–cn→ℂ)
3231a1i 11 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → abs ∈ (ℂ–cn→ℂ))
33 cncombf 25022 . . . . . . . 8 (((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ MblFn ∧ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ abs ∈ (ℂ–cn→ℂ)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3420, 25, 32, 33syl3anc 1371 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3524, 34eqeltrrd 2839 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3623abscld 15321 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ)
3736rexrd 11205 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ*)
3823absge0d 15329 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘((𝐹𝑧) · (𝐺𝑧))))
39 elxrge0 13374 . . . . . . . . . . 11 ((abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ (0[,]+∞) ↔ ((abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝐹𝑧) · (𝐺𝑧)))))
4037, 38, 39sylanbrc 583 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ (0[,]+∞))
41 0e0iccpnf 13376 . . . . . . . . . . 11 0 ∈ (0[,]+∞)
4241a1i 11 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ (0[,]+∞))
4340, 42ifclda 4521 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ∈ (0[,]+∞))
4443adantr 481 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ∈ (0[,]+∞))
4544fmpttd 7063 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞))
46 reex 11142 . . . . . . . . . . . . . . 15 ℝ ∈ V
4746a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ℝ ∈ V)
48 simprl 769 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℝ)
4948ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ)
50 elinel2 4156 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐺)
51 ffvelcdm 7032 . . . . . . . . . . . . . . . . . . 19 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
527, 50, 51syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑧) ∈ ℂ)
5352abscld 15321 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐺𝑧)) ∈ ℝ)
5452absge0d 15329 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘(𝐺𝑧)))
55 elrege0 13371 . . . . . . . . . . . . . . . . 17 ((abs‘(𝐺𝑧)) ∈ (0[,)+∞) ↔ ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
5653, 54, 55sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐺𝑧)) ∈ (0[,)+∞))
57 0e0icopnf 13375 . . . . . . . . . . . . . . . . 17 0 ∈ (0[,)+∞)
5857a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ (0[,)+∞))
5956, 58ifclda 4521 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
6059ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
61 fconstmpt 5694 . . . . . . . . . . . . . . 15 (ℝ × {𝑥}) = (𝑧 ∈ ℝ ↦ 𝑥)
6261a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (ℝ × {𝑥}) = (𝑧 ∈ ℝ ↦ 𝑥))
63 eqidd 2737 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))
6447, 49, 60, 62, 63offval2 7637 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))))
65 ovif2 7455 . . . . . . . . . . . . . . 15 (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), (𝑥 · 0))
6648recnd 11183 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℂ)
6766adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ ℂ)
6867mul01d 11354 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · 0) = 0)
6968ifeq2d 4506 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), (𝑥 · 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
7065, 69eqtrid 2788 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
7170mpteq2dv 5207 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
7264, 71eqtrd 2776 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
7372fveq2d 6846 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) = (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
7459adantr 481 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
7574fmpttd 7063 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)):ℝ⟶(0[,)+∞))
7675adantr 481 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)):ℝ⟶(0[,)+∞))
77 inss2 4189 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
7877a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺)
7920, 17mbfdm2 25001 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
807ffvelcdmda 7035 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
817feqmptd 6910 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 = (𝑧 ∈ dom 𝐺 ↦ (𝐺𝑧)))
82 simplr 767 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 ∈ 𝐿1)
8381, 82eqeltrrd 2839 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐺 ↦ (𝐺𝑧)) ∈ 𝐿1)
8478, 79, 80, 83iblss 25169 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑧)) ∈ 𝐿1)
8552, 84iblabs 25193 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ 𝐿1)
8653, 54iblpos 25157 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ 𝐿1 ↔ ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)))
8785, 86mpbid 231 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ))
8887simprd 496 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)
8988adantr 481 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)
90 simplrl 775 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ ℝ)
91 neq0 4305 . . . . . . . . . . . . . . 15 (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ ↔ ∃𝑧 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺))
92 0re 11157 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
9392a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ ℝ)
94 elinel1 4155 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐹)
95 ffvelcdm 7032 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
962, 94, 95syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑧) ∈ ℂ)
9796abscld 15321 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐹𝑧)) ∈ ℝ)
98 simplrl 775 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑥 ∈ ℝ)
9996absge0d 15329 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘(𝐹𝑧)))
100 simprr 771 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)
101 2fveq3 6847 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑧)))
102101breq1d 5115 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → ((abs‘(𝐹𝑦)) ≤ 𝑥 ↔ (abs‘(𝐹𝑧)) ≤ 𝑥))
103102rspccva 3580 . . . . . . . . . . . . . . . . . . 19 ((∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
104100, 94, 103syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐹𝑧)) ≤ 𝑥)
10593, 97, 98, 99, 104letrd 11312 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ 𝑥)
106105ex 413 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 𝑥))
107106exlimdv 1936 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∃𝑧 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 𝑥))
10891, 107biimtrid 241 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ → 0 ≤ 𝑥))
109108imp 407 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 0 ≤ 𝑥)
110 elrege0 13371 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
11190, 109, 110sylanbrc 583 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ (0[,)+∞))
11276, 89, 111itg2mulc 25112 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) = (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))))
11373, 112eqtr3d 2778 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) = (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))))
11490, 89remulcld 11185 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) ∈ ℝ)
115113, 114eqeltrd 2838 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
116115ex 413 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ))
117 noel 4290 . . . . . . . . . . . . . 14 ¬ 𝑧 ∈ ∅
118 eleq2 2826 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↔ 𝑧 ∈ ∅))
119117, 118mtbiri 326 . . . . . . . . . . . . 13 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺))
120 iffalse 4495 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = 0)
121119, 120syl 17 . . . . . . . . . . . 12 ((dom 𝐹 ∩ dom 𝐺) = ∅ → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = 0)
122121mpteq2dv 5207 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ 0))
123 fconstmpt 5694 . . . . . . . . . . 11 (ℝ × {0}) = (𝑧 ∈ ℝ ↦ 0)
124122, 123eqtr4di 2794 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (ℝ × {0}))
125124fveq2d 6846 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) = (∫2‘(ℝ × {0})))
126 itg20 25102 . . . . . . . . . 10 (∫2‘(ℝ × {0})) = 0
127126, 92eqeltri 2834 . . . . . . . . 9 (∫2‘(ℝ × {0})) ∈ ℝ
128125, 127eqeltrdi 2846 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
129116, 128pm2.61d2 181 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
13098, 53remulcld 11185 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ)
131130rexrd 11205 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ*)
13298, 53, 105, 54mulge0d 11732 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (𝑥 · (abs‘(𝐺𝑧))))
133 elxrge0 13374 . . . . . . . . . . . 12 ((𝑥 · (abs‘(𝐺𝑧))) ∈ (0[,]+∞) ↔ ((𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ* ∧ 0 ≤ (𝑥 · (abs‘(𝐺𝑧)))))
134131, 132, 133sylanbrc 583 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ (0[,]+∞))
135134, 42ifclda 4521 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) ∈ (0[,]+∞))
136135adantr 481 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) ∈ (0[,]+∞))
137136fmpttd 7063 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)):ℝ⟶(0[,]+∞))
13896, 52absmuld 15339 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) = ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))))
139 abscl 15163 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ ℂ → (abs‘(𝐺𝑧)) ∈ ℝ)
140 absge0 15172 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ ℂ → 0 ≤ (abs‘(𝐺𝑧)))
141139, 140jca 512 . . . . . . . . . . . . . . 15 ((𝐺𝑧) ∈ ℂ → ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
14252, 141syl 17 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
143 lemul1a 12009 . . . . . . . . . . . . . 14 ((((abs‘(𝐹𝑧)) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧)))) ∧ (abs‘(𝐹𝑧)) ≤ 𝑥) → ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
14497, 98, 142, 104, 143syl31anc 1373 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
145138, 144eqbrtrd 5127 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
146 iftrue 4492 . . . . . . . . . . . . 13 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = (abs‘((𝐹𝑧) · (𝐺𝑧))))
147146adantl 482 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = (abs‘((𝐹𝑧) · (𝐺𝑧))))
148 iftrue 4492 . . . . . . . . . . . . 13 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = (𝑥 · (abs‘(𝐺𝑧))))
149148adantl 482 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = (𝑥 · (abs‘(𝐺𝑧))))
150145, 147, 1493brtr4d 5137 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
151 0le0 12254 . . . . . . . . . . . . . 14 0 ≤ 0
152151a1i 11 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 0)
153 iffalse 4495 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = 0)
154152, 153, 1203brtr4d 5137 . . . . . . . . . . . 12 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
155154adantl 482 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
156150, 155pm2.61dan 811 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
157156ralrimivw 3147 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
15846a1i 11 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ℝ ∈ V)
159 eqidd 2737 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)))
160 eqidd 2737 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
161158, 44, 136, 159, 160ofrfval2 7638 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) ↔ ∀𝑧 ∈ ℝ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
162157, 161mpbird 256 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
163 itg2le 25104 . . . . . . . 8 (((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
16445, 137, 162, 163syl3anc 1371 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
165 itg2lecl 25103 . . . . . . 7 (((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)
16645, 129, 164, 165syl3anc 1371 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)
16736, 38iblpos 25157 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ 𝐿1 ↔ ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)))
16835, 166, 167mpbir2and 711 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ 𝐿1)
16917, 20, 168iblabsr 25194 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ 𝐿1)
17016, 169eqeltrd 2838 . . 3 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) ∈ 𝐿1)
171170rexlimdvaa 3153 . 2 ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → (𝐹f · 𝐺) ∈ 𝐿1))
1721713impia 1117 1 ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝐹f · 𝐺) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  cin 3909  wss 3910  c0 4282  ifcif 4486  {csn 4586   class class class wbr 5105  cmpt 5188   × cxp 5631  dom cdm 5633  ccom 5637  wf 6492  cfv 6496  (class class class)co 7357  f cof 7615  r cofr 7616  cc 11049  cr 11050  0cc0 11051   · cmul 11056  +∞cpnf 11186  *cxr 11188  cle 11190  [,)cico 13266  [,]cicc 13267  abscabs 15119  cnccncf 24239  volcvol 24827  MblFncmbf 24978  2citg2 24980  𝐿1cibl 24981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cc 10371  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-disj 5071  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-ofr 7618  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-omul 8417  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-dju 9837  df-card 9875  df-acn 9878  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ioc 13269  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-mod 13775  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-mulg 18873  df-cntz 19097  df-cmn 19564  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-ovol 24828  df-vol 24829  df-mbf 24983  df-itg1 24984  df-itg2 24985  df-ibl 24986  df-0p 25034
This theorem is referenced by:  bddibl  25204  itgsubstlem  25412  3factsumint1  40478  fourierdlem16  44354  fourierdlem21  44359  fourierdlem22  44360  fourierdlem83  44420
  Copyright terms: Public domain W3C validator