MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bddmulibl Structured version   Visualization version   GIF version

Theorem bddmulibl 25767
Description: A bounded function times an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
bddmulibl ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝐹f · 𝐺) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦

Proof of Theorem bddmulibl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mbff 25553 . . . . . . 7 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
21ad2antrr 726 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹:dom 𝐹⟶ℂ)
32ffnd 6652 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹 Fn dom 𝐹)
4 iblmbf 25695 . . . . . . . 8 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
54ad2antlr 727 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 ∈ MblFn)
6 mbff 25553 . . . . . . 7 (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ)
75, 6syl 17 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺:dom 𝐺⟶ℂ)
87ffnd 6652 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 Fn dom 𝐺)
9 mbfdm 25554 . . . . . 6 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
109ad2antrr 726 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐹 ∈ dom vol)
11 mbfdm 25554 . . . . . 6 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
125, 11syl 17 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐺 ∈ dom vol)
13 eqid 2731 . . . . 5 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
14 eqidd 2732 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
15 eqidd 2732 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) = (𝐺𝑧))
163, 8, 10, 12, 13, 14, 15offval 7619 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) = (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))))
17 ovexd 7381 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ V)
18 simpll 766 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹 ∈ MblFn)
1918, 5mbfmul 25654 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) ∈ MblFn)
2016, 19eqeltrrd 2832 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ MblFn)
21 absf 15245 . . . . . . . . 9 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → abs:ℂ⟶ℝ)
2320, 17mbfmptcl 25564 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
2422, 23cofmpt 7065 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) = (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))))
2523fmpttd 7048 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))):(dom 𝐹 ∩ dom 𝐺)⟶ℂ)
26 ax-resscn 11063 . . . . . . . . . . 11 ℝ ⊆ ℂ
27 ssid 3952 . . . . . . . . . . 11 ℂ ⊆ ℂ
28 cncfss 24819 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
2926, 27, 28mp2an 692 . . . . . . . . . 10 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
30 abscncf 24821 . . . . . . . . . 10 abs ∈ (ℂ–cn→ℝ)
3129, 30sselii 3926 . . . . . . . . 9 abs ∈ (ℂ–cn→ℂ)
3231a1i 11 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → abs ∈ (ℂ–cn→ℂ))
33 cncombf 25586 . . . . . . . 8 (((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ MblFn ∧ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ abs ∈ (ℂ–cn→ℂ)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3420, 25, 32, 33syl3anc 1373 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3524, 34eqeltrrd 2832 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3623abscld 15346 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ)
3736rexrd 11162 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ*)
3823absge0d 15354 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘((𝐹𝑧) · (𝐺𝑧))))
39 elxrge0 13357 . . . . . . . . . . 11 ((abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ (0[,]+∞) ↔ ((abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝐹𝑧) · (𝐺𝑧)))))
4037, 38, 39sylanbrc 583 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ (0[,]+∞))
41 0e0iccpnf 13359 . . . . . . . . . . 11 0 ∈ (0[,]+∞)
4241a1i 11 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ (0[,]+∞))
4340, 42ifclda 4508 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ∈ (0[,]+∞))
4443adantr 480 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ∈ (0[,]+∞))
4544fmpttd 7048 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞))
46 reex 11097 . . . . . . . . . . . . . . 15 ℝ ∈ V
4746a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ℝ ∈ V)
48 simprl 770 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℝ)
4948ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ)
50 elinel2 4149 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐺)
51 ffvelcdm 7014 . . . . . . . . . . . . . . . . . . 19 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
527, 50, 51syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑧) ∈ ℂ)
5352abscld 15346 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐺𝑧)) ∈ ℝ)
5452absge0d 15354 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘(𝐺𝑧)))
55 elrege0 13354 . . . . . . . . . . . . . . . . 17 ((abs‘(𝐺𝑧)) ∈ (0[,)+∞) ↔ ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
5653, 54, 55sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐺𝑧)) ∈ (0[,)+∞))
57 0e0icopnf 13358 . . . . . . . . . . . . . . . . 17 0 ∈ (0[,)+∞)
5857a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ (0[,)+∞))
5956, 58ifclda 4508 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
6059ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
61 fconstmpt 5676 . . . . . . . . . . . . . . 15 (ℝ × {𝑥}) = (𝑧 ∈ ℝ ↦ 𝑥)
6261a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (ℝ × {𝑥}) = (𝑧 ∈ ℝ ↦ 𝑥))
63 eqidd 2732 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))
6447, 49, 60, 62, 63offval2 7630 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))))
65 ovif2 7445 . . . . . . . . . . . . . . 15 (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), (𝑥 · 0))
6648recnd 11140 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℂ)
6766adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ ℂ)
6867mul01d 11312 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · 0) = 0)
6968ifeq2d 4493 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), (𝑥 · 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
7065, 69eqtrid 2778 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
7170mpteq2dv 5183 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
7264, 71eqtrd 2766 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
7372fveq2d 6826 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) = (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
7459adantr 480 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
7574fmpttd 7048 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)):ℝ⟶(0[,)+∞))
7675adantr 480 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)):ℝ⟶(0[,)+∞))
77 inss2 4185 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
7877a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺)
7920, 17mbfdm2 25565 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
807ffvelcdmda 7017 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
817feqmptd 6890 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 = (𝑧 ∈ dom 𝐺 ↦ (𝐺𝑧)))
82 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 ∈ 𝐿1)
8381, 82eqeltrrd 2832 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐺 ↦ (𝐺𝑧)) ∈ 𝐿1)
8478, 79, 80, 83iblss 25733 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑧)) ∈ 𝐿1)
8552, 84iblabs 25757 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ 𝐿1)
8653, 54iblpos 25721 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ 𝐿1 ↔ ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)))
8785, 86mpbid 232 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ))
8887simprd 495 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)
8988adantr 480 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)
90 simplrl 776 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ ℝ)
91 neq0 4299 . . . . . . . . . . . . . . 15 (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ ↔ ∃𝑧 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺))
92 0re 11114 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
9392a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ ℝ)
94 elinel1 4148 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐹)
95 ffvelcdm 7014 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
962, 94, 95syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑧) ∈ ℂ)
9796abscld 15346 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐹𝑧)) ∈ ℝ)
98 simplrl 776 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑥 ∈ ℝ)
9996absge0d 15354 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘(𝐹𝑧)))
100 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)
101 2fveq3 6827 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑧)))
102101breq1d 5099 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → ((abs‘(𝐹𝑦)) ≤ 𝑥 ↔ (abs‘(𝐹𝑧)) ≤ 𝑥))
103102rspccva 3571 . . . . . . . . . . . . . . . . . . 19 ((∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
104100, 94, 103syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐹𝑧)) ≤ 𝑥)
10593, 97, 98, 99, 104letrd 11270 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ 𝑥)
106105ex 412 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 𝑥))
107106exlimdv 1934 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∃𝑧 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 𝑥))
10891, 107biimtrid 242 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ → 0 ≤ 𝑥))
109108imp 406 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 0 ≤ 𝑥)
110 elrege0 13354 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
11190, 109, 110sylanbrc 583 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ (0[,)+∞))
11276, 89, 111itg2mulc 25675 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) = (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))))
11373, 112eqtr3d 2768 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) = (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))))
11490, 89remulcld 11142 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) ∈ ℝ)
115113, 114eqeltrd 2831 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
116115ex 412 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ))
117 noel 4285 . . . . . . . . . . . . . 14 ¬ 𝑧 ∈ ∅
118 eleq2 2820 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↔ 𝑧 ∈ ∅))
119117, 118mtbiri 327 . . . . . . . . . . . . 13 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺))
120 iffalse 4481 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = 0)
121119, 120syl 17 . . . . . . . . . . . 12 ((dom 𝐹 ∩ dom 𝐺) = ∅ → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = 0)
122121mpteq2dv 5183 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ 0))
123 fconstmpt 5676 . . . . . . . . . . 11 (ℝ × {0}) = (𝑧 ∈ ℝ ↦ 0)
124122, 123eqtr4di 2784 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (ℝ × {0}))
125124fveq2d 6826 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) = (∫2‘(ℝ × {0})))
126 itg20 25665 . . . . . . . . . 10 (∫2‘(ℝ × {0})) = 0
127126, 92eqeltri 2827 . . . . . . . . 9 (∫2‘(ℝ × {0})) ∈ ℝ
128125, 127eqeltrdi 2839 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
129116, 128pm2.61d2 181 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
13098, 53remulcld 11142 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ)
131130rexrd 11162 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ*)
13298, 53, 105, 54mulge0d 11694 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (𝑥 · (abs‘(𝐺𝑧))))
133 elxrge0 13357 . . . . . . . . . . . 12 ((𝑥 · (abs‘(𝐺𝑧))) ∈ (0[,]+∞) ↔ ((𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ* ∧ 0 ≤ (𝑥 · (abs‘(𝐺𝑧)))))
134131, 132, 133sylanbrc 583 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ (0[,]+∞))
135134, 42ifclda 4508 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) ∈ (0[,]+∞))
136135adantr 480 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) ∈ (0[,]+∞))
137136fmpttd 7048 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)):ℝ⟶(0[,]+∞))
13896, 52absmuld 15364 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) = ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))))
139 abscl 15185 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ ℂ → (abs‘(𝐺𝑧)) ∈ ℝ)
140 absge0 15194 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ ℂ → 0 ≤ (abs‘(𝐺𝑧)))
141139, 140jca 511 . . . . . . . . . . . . . . 15 ((𝐺𝑧) ∈ ℂ → ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
14252, 141syl 17 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
143 lemul1a 11975 . . . . . . . . . . . . . 14 ((((abs‘(𝐹𝑧)) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧)))) ∧ (abs‘(𝐹𝑧)) ≤ 𝑥) → ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
14497, 98, 142, 104, 143syl31anc 1375 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
145138, 144eqbrtrd 5111 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
146 iftrue 4478 . . . . . . . . . . . . 13 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = (abs‘((𝐹𝑧) · (𝐺𝑧))))
147146adantl 481 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = (abs‘((𝐹𝑧) · (𝐺𝑧))))
148 iftrue 4478 . . . . . . . . . . . . 13 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = (𝑥 · (abs‘(𝐺𝑧))))
149148adantl 481 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = (𝑥 · (abs‘(𝐺𝑧))))
150145, 147, 1493brtr4d 5121 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
151 0le0 12226 . . . . . . . . . . . . . 14 0 ≤ 0
152151a1i 11 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 0)
153 iffalse 4481 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = 0)
154152, 153, 1203brtr4d 5121 . . . . . . . . . . . 12 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
155154adantl 481 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
156150, 155pm2.61dan 812 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
157156ralrimivw 3128 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
15846a1i 11 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ℝ ∈ V)
159 eqidd 2732 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)))
160 eqidd 2732 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
161158, 44, 136, 159, 160ofrfval2 7631 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) ↔ ∀𝑧 ∈ ℝ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
162157, 161mpbird 257 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
163 itg2le 25667 . . . . . . . 8 (((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
16445, 137, 162, 163syl3anc 1373 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
165 itg2lecl 25666 . . . . . . 7 (((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)
16645, 129, 164, 165syl3anc 1373 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)
16736, 38iblpos 25721 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ 𝐿1 ↔ ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)))
16835, 166, 167mpbir2and 713 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ 𝐿1)
16917, 20, 168iblabsr 25758 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ 𝐿1)
17016, 169eqeltrd 2831 . . 3 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) ∈ 𝐿1)
171170rexlimdvaa 3134 . 2 ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → (𝐹f · 𝐺) ∈ 𝐿1))
1721713impia 1117 1 ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝐹f · 𝐺) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  wral 3047  wrex 3056  Vcvv 3436  cin 3896  wss 3897  c0 4280  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  dom cdm 5614  ccom 5618  wf 6477  cfv 6481  (class class class)co 7346  f cof 7608  r cofr 7609  cc 11004  cr 11005  0cc0 11006   · cmul 11011  +∞cpnf 11143  *cxr 11145  cle 11147  [,)cico 13247  [,]cicc 13248  abscabs 15141  cnccncf 24796  volcvol 25391  MblFncmbf 25542  2citg2 25544  𝐿1cibl 25545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cc 10326  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-iin 4942  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-supp 8091  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-omul 8390  df-er 8622  df-map 8752  df-pm 8753  df-ixp 8822  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-fsupp 9246  df-fi 9295  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-acn 9835  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-ioo 13249  df-ioc 13250  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-limsup 15378  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18548  df-sgrp 18627  df-mnd 18643  df-submnd 18692  df-mulg 18981  df-cntz 19229  df-cmn 19694  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-cmp 23302  df-tx 23477  df-hmeo 23670  df-xms 24235  df-ms 24236  df-tms 24237  df-cncf 24798  df-ovol 25392  df-vol 25393  df-mbf 25547  df-itg1 25548  df-itg2 25549  df-ibl 25550  df-0p 25598
This theorem is referenced by:  bddibl  25768  itgsubstlem  25982  3factsumint1  42124  fourierdlem16  46231  fourierdlem21  46236  fourierdlem22  46237  fourierdlem83  46297
  Copyright terms: Public domain W3C validator