MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bddmulibl Structured version   Visualization version   GIF version

Theorem bddmulibl 25874
Description: A bounded function times an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
bddmulibl ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝐹f · 𝐺) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦

Proof of Theorem bddmulibl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mbff 25660 . . . . . . 7 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
21ad2antrr 726 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹:dom 𝐹⟶ℂ)
32ffnd 6737 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹 Fn dom 𝐹)
4 iblmbf 25802 . . . . . . . 8 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
54ad2antlr 727 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 ∈ MblFn)
6 mbff 25660 . . . . . . 7 (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ)
75, 6syl 17 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺:dom 𝐺⟶ℂ)
87ffnd 6737 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 Fn dom 𝐺)
9 mbfdm 25661 . . . . . 6 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
109ad2antrr 726 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐹 ∈ dom vol)
11 mbfdm 25661 . . . . . 6 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
125, 11syl 17 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐺 ∈ dom vol)
13 eqid 2737 . . . . 5 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
14 eqidd 2738 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
15 eqidd 2738 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) = (𝐺𝑧))
163, 8, 10, 12, 13, 14, 15offval 7706 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) = (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))))
17 ovexd 7466 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ V)
18 simpll 767 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹 ∈ MblFn)
1918, 5mbfmul 25761 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) ∈ MblFn)
2016, 19eqeltrrd 2842 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ MblFn)
21 absf 15376 . . . . . . . . 9 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → abs:ℂ⟶ℝ)
2320, 17mbfmptcl 25671 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
2422, 23cofmpt 7152 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) = (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))))
2523fmpttd 7135 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))):(dom 𝐹 ∩ dom 𝐺)⟶ℂ)
26 ax-resscn 11212 . . . . . . . . . . 11 ℝ ⊆ ℂ
27 ssid 4006 . . . . . . . . . . 11 ℂ ⊆ ℂ
28 cncfss 24925 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
2926, 27, 28mp2an 692 . . . . . . . . . 10 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
30 abscncf 24927 . . . . . . . . . 10 abs ∈ (ℂ–cn→ℝ)
3129, 30sselii 3980 . . . . . . . . 9 abs ∈ (ℂ–cn→ℂ)
3231a1i 11 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → abs ∈ (ℂ–cn→ℂ))
33 cncombf 25693 . . . . . . . 8 (((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ MblFn ∧ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ abs ∈ (ℂ–cn→ℂ)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3420, 25, 32, 33syl3anc 1373 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3524, 34eqeltrrd 2842 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3623abscld 15475 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ)
3736rexrd 11311 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ*)
3823absge0d 15483 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘((𝐹𝑧) · (𝐺𝑧))))
39 elxrge0 13497 . . . . . . . . . . 11 ((abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ (0[,]+∞) ↔ ((abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝐹𝑧) · (𝐺𝑧)))))
4037, 38, 39sylanbrc 583 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ (0[,]+∞))
41 0e0iccpnf 13499 . . . . . . . . . . 11 0 ∈ (0[,]+∞)
4241a1i 11 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ (0[,]+∞))
4340, 42ifclda 4561 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ∈ (0[,]+∞))
4443adantr 480 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ∈ (0[,]+∞))
4544fmpttd 7135 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞))
46 reex 11246 . . . . . . . . . . . . . . 15 ℝ ∈ V
4746a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ℝ ∈ V)
48 simprl 771 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℝ)
4948ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ)
50 elinel2 4202 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐺)
51 ffvelcdm 7101 . . . . . . . . . . . . . . . . . . 19 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
527, 50, 51syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑧) ∈ ℂ)
5352abscld 15475 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐺𝑧)) ∈ ℝ)
5452absge0d 15483 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘(𝐺𝑧)))
55 elrege0 13494 . . . . . . . . . . . . . . . . 17 ((abs‘(𝐺𝑧)) ∈ (0[,)+∞) ↔ ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
5653, 54, 55sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐺𝑧)) ∈ (0[,)+∞))
57 0e0icopnf 13498 . . . . . . . . . . . . . . . . 17 0 ∈ (0[,)+∞)
5857a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ (0[,)+∞))
5956, 58ifclda 4561 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
6059ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
61 fconstmpt 5747 . . . . . . . . . . . . . . 15 (ℝ × {𝑥}) = (𝑧 ∈ ℝ ↦ 𝑥)
6261a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (ℝ × {𝑥}) = (𝑧 ∈ ℝ ↦ 𝑥))
63 eqidd 2738 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))
6447, 49, 60, 62, 63offval2 7717 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))))
65 ovif2 7532 . . . . . . . . . . . . . . 15 (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), (𝑥 · 0))
6648recnd 11289 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℂ)
6766adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ ℂ)
6867mul01d 11460 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · 0) = 0)
6968ifeq2d 4546 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), (𝑥 · 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
7065, 69eqtrid 2789 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
7170mpteq2dv 5244 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
7264, 71eqtrd 2777 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
7372fveq2d 6910 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) = (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
7459adantr 480 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
7574fmpttd 7135 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)):ℝ⟶(0[,)+∞))
7675adantr 480 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)):ℝ⟶(0[,)+∞))
77 inss2 4238 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
7877a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺)
7920, 17mbfdm2 25672 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
807ffvelcdmda 7104 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
817feqmptd 6977 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 = (𝑧 ∈ dom 𝐺 ↦ (𝐺𝑧)))
82 simplr 769 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 ∈ 𝐿1)
8381, 82eqeltrrd 2842 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐺 ↦ (𝐺𝑧)) ∈ 𝐿1)
8478, 79, 80, 83iblss 25840 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑧)) ∈ 𝐿1)
8552, 84iblabs 25864 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ 𝐿1)
8653, 54iblpos 25828 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ 𝐿1 ↔ ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)))
8785, 86mpbid 232 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ))
8887simprd 495 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)
8988adantr 480 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)
90 simplrl 777 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ ℝ)
91 neq0 4352 . . . . . . . . . . . . . . 15 (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ ↔ ∃𝑧 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺))
92 0re 11263 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
9392a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ ℝ)
94 elinel1 4201 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐹)
95 ffvelcdm 7101 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
962, 94, 95syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑧) ∈ ℂ)
9796abscld 15475 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐹𝑧)) ∈ ℝ)
98 simplrl 777 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑥 ∈ ℝ)
9996absge0d 15483 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘(𝐹𝑧)))
100 simprr 773 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)
101 2fveq3 6911 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑧)))
102101breq1d 5153 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → ((abs‘(𝐹𝑦)) ≤ 𝑥 ↔ (abs‘(𝐹𝑧)) ≤ 𝑥))
103102rspccva 3621 . . . . . . . . . . . . . . . . . . 19 ((∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
104100, 94, 103syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐹𝑧)) ≤ 𝑥)
10593, 97, 98, 99, 104letrd 11418 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ 𝑥)
106105ex 412 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 𝑥))
107106exlimdv 1933 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∃𝑧 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 𝑥))
10891, 107biimtrid 242 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ → 0 ≤ 𝑥))
109108imp 406 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 0 ≤ 𝑥)
110 elrege0 13494 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
11190, 109, 110sylanbrc 583 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ (0[,)+∞))
11276, 89, 111itg2mulc 25782 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) = (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))))
11373, 112eqtr3d 2779 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) = (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))))
11490, 89remulcld 11291 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) ∈ ℝ)
115113, 114eqeltrd 2841 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
116115ex 412 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ))
117 noel 4338 . . . . . . . . . . . . . 14 ¬ 𝑧 ∈ ∅
118 eleq2 2830 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↔ 𝑧 ∈ ∅))
119117, 118mtbiri 327 . . . . . . . . . . . . 13 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺))
120 iffalse 4534 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = 0)
121119, 120syl 17 . . . . . . . . . . . 12 ((dom 𝐹 ∩ dom 𝐺) = ∅ → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = 0)
122121mpteq2dv 5244 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ 0))
123 fconstmpt 5747 . . . . . . . . . . 11 (ℝ × {0}) = (𝑧 ∈ ℝ ↦ 0)
124122, 123eqtr4di 2795 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (ℝ × {0}))
125124fveq2d 6910 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) = (∫2‘(ℝ × {0})))
126 itg20 25772 . . . . . . . . . 10 (∫2‘(ℝ × {0})) = 0
127126, 92eqeltri 2837 . . . . . . . . 9 (∫2‘(ℝ × {0})) ∈ ℝ
128125, 127eqeltrdi 2849 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
129116, 128pm2.61d2 181 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
13098, 53remulcld 11291 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ)
131130rexrd 11311 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ*)
13298, 53, 105, 54mulge0d 11840 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (𝑥 · (abs‘(𝐺𝑧))))
133 elxrge0 13497 . . . . . . . . . . . 12 ((𝑥 · (abs‘(𝐺𝑧))) ∈ (0[,]+∞) ↔ ((𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ* ∧ 0 ≤ (𝑥 · (abs‘(𝐺𝑧)))))
134131, 132, 133sylanbrc 583 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ (0[,]+∞))
135134, 42ifclda 4561 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) ∈ (0[,]+∞))
136135adantr 480 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) ∈ (0[,]+∞))
137136fmpttd 7135 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)):ℝ⟶(0[,]+∞))
13896, 52absmuld 15493 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) = ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))))
139 abscl 15317 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ ℂ → (abs‘(𝐺𝑧)) ∈ ℝ)
140 absge0 15326 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ ℂ → 0 ≤ (abs‘(𝐺𝑧)))
141139, 140jca 511 . . . . . . . . . . . . . . 15 ((𝐺𝑧) ∈ ℂ → ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
14252, 141syl 17 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
143 lemul1a 12121 . . . . . . . . . . . . . 14 ((((abs‘(𝐹𝑧)) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧)))) ∧ (abs‘(𝐹𝑧)) ≤ 𝑥) → ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
14497, 98, 142, 104, 143syl31anc 1375 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
145138, 144eqbrtrd 5165 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
146 iftrue 4531 . . . . . . . . . . . . 13 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = (abs‘((𝐹𝑧) · (𝐺𝑧))))
147146adantl 481 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = (abs‘((𝐹𝑧) · (𝐺𝑧))))
148 iftrue 4531 . . . . . . . . . . . . 13 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = (𝑥 · (abs‘(𝐺𝑧))))
149148adantl 481 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = (𝑥 · (abs‘(𝐺𝑧))))
150145, 147, 1493brtr4d 5175 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
151 0le0 12367 . . . . . . . . . . . . . 14 0 ≤ 0
152151a1i 11 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 0)
153 iffalse 4534 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = 0)
154152, 153, 1203brtr4d 5175 . . . . . . . . . . . 12 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
155154adantl 481 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
156150, 155pm2.61dan 813 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
157156ralrimivw 3150 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
15846a1i 11 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ℝ ∈ V)
159 eqidd 2738 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)))
160 eqidd 2738 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
161158, 44, 136, 159, 160ofrfval2 7718 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) ↔ ∀𝑧 ∈ ℝ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
162157, 161mpbird 257 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
163 itg2le 25774 . . . . . . . 8 (((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
16445, 137, 162, 163syl3anc 1373 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
165 itg2lecl 25773 . . . . . . 7 (((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)
16645, 129, 164, 165syl3anc 1373 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)
16736, 38iblpos 25828 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ 𝐿1 ↔ ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)))
16835, 166, 167mpbir2and 713 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ 𝐿1)
16917, 20, 168iblabsr 25865 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ 𝐿1)
17016, 169eqeltrd 2841 . . 3 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) ∈ 𝐿1)
171170rexlimdvaa 3156 . 2 ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → (𝐹f · 𝐺) ∈ 𝐿1))
1721713impia 1118 1 ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝐹f · 𝐺) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1540  wex 1779  wcel 2108  wral 3061  wrex 3070  Vcvv 3480  cin 3950  wss 3951  c0 4333  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  dom cdm 5685  ccom 5689  wf 6557  cfv 6561  (class class class)co 7431  f cof 7695  r cofr 7696  cc 11153  cr 11154  0cc0 11155   · cmul 11160  +∞cpnf 11292  *cxr 11294  cle 11296  [,)cico 13389  [,]cicc 13390  abscabs 15273  cnccncf 24902  volcvol 25498  MblFncmbf 25649  2citg2 25651  𝐿1cibl 25652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cc 10475  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-oadd 8510  df-omul 8511  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ioc 13392  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-limsup 15507  df-clim 15524  df-rlim 15525  df-sum 15723  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-rest 17467  df-topn 17468  df-0g 17486  df-gsum 17487  df-topgen 17488  df-pt 17489  df-prds 17492  df-xrs 17547  df-qtop 17552  df-imas 17553  df-xps 17555  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-submnd 18797  df-mulg 19086  df-cntz 19335  df-cmn 19800  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-cnfld 21365  df-top 22900  df-topon 22917  df-topsp 22939  df-bases 22953  df-cn 23235  df-cnp 23236  df-cmp 23395  df-tx 23570  df-hmeo 23763  df-xms 24330  df-ms 24331  df-tms 24332  df-cncf 24904  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-0p 25705
This theorem is referenced by:  bddibl  25875  itgsubstlem  26089  3factsumint1  42022  fourierdlem16  46138  fourierdlem21  46143  fourierdlem22  46144  fourierdlem83  46204
  Copyright terms: Public domain W3C validator