MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bddmulibl Structured version   Visualization version   GIF version

Theorem bddmulibl 25747
Description: A bounded function times an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
bddmulibl ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝐹f · 𝐺) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦

Proof of Theorem bddmulibl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mbff 25533 . . . . . . 7 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
21ad2antrr 726 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹:dom 𝐹⟶ℂ)
32ffnd 6692 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹 Fn dom 𝐹)
4 iblmbf 25675 . . . . . . . 8 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
54ad2antlr 727 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 ∈ MblFn)
6 mbff 25533 . . . . . . 7 (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ)
75, 6syl 17 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺:dom 𝐺⟶ℂ)
87ffnd 6692 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 Fn dom 𝐺)
9 mbfdm 25534 . . . . . 6 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
109ad2antrr 726 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐹 ∈ dom vol)
11 mbfdm 25534 . . . . . 6 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
125, 11syl 17 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐺 ∈ dom vol)
13 eqid 2730 . . . . 5 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
14 eqidd 2731 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
15 eqidd 2731 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) = (𝐺𝑧))
163, 8, 10, 12, 13, 14, 15offval 7665 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) = (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))))
17 ovexd 7425 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ V)
18 simpll 766 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹 ∈ MblFn)
1918, 5mbfmul 25634 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) ∈ MblFn)
2016, 19eqeltrrd 2830 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ MblFn)
21 absf 15311 . . . . . . . . 9 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → abs:ℂ⟶ℝ)
2320, 17mbfmptcl 25544 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
2422, 23cofmpt 7107 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) = (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))))
2523fmpttd 7090 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))):(dom 𝐹 ∩ dom 𝐺)⟶ℂ)
26 ax-resscn 11132 . . . . . . . . . . 11 ℝ ⊆ ℂ
27 ssid 3972 . . . . . . . . . . 11 ℂ ⊆ ℂ
28 cncfss 24799 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
2926, 27, 28mp2an 692 . . . . . . . . . 10 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
30 abscncf 24801 . . . . . . . . . 10 abs ∈ (ℂ–cn→ℝ)
3129, 30sselii 3946 . . . . . . . . 9 abs ∈ (ℂ–cn→ℂ)
3231a1i 11 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → abs ∈ (ℂ–cn→ℂ))
33 cncombf 25566 . . . . . . . 8 (((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ MblFn ∧ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ abs ∈ (ℂ–cn→ℂ)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3420, 25, 32, 33syl3anc 1373 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3524, 34eqeltrrd 2830 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3623abscld 15412 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ)
3736rexrd 11231 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ*)
3823absge0d 15420 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘((𝐹𝑧) · (𝐺𝑧))))
39 elxrge0 13425 . . . . . . . . . . 11 ((abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ (0[,]+∞) ↔ ((abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝐹𝑧) · (𝐺𝑧)))))
4037, 38, 39sylanbrc 583 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ (0[,]+∞))
41 0e0iccpnf 13427 . . . . . . . . . . 11 0 ∈ (0[,]+∞)
4241a1i 11 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ (0[,]+∞))
4340, 42ifclda 4527 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ∈ (0[,]+∞))
4443adantr 480 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ∈ (0[,]+∞))
4544fmpttd 7090 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞))
46 reex 11166 . . . . . . . . . . . . . . 15 ℝ ∈ V
4746a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ℝ ∈ V)
48 simprl 770 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℝ)
4948ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ)
50 elinel2 4168 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐺)
51 ffvelcdm 7056 . . . . . . . . . . . . . . . . . . 19 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
527, 50, 51syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑧) ∈ ℂ)
5352abscld 15412 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐺𝑧)) ∈ ℝ)
5452absge0d 15420 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘(𝐺𝑧)))
55 elrege0 13422 . . . . . . . . . . . . . . . . 17 ((abs‘(𝐺𝑧)) ∈ (0[,)+∞) ↔ ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
5653, 54, 55sylanbrc 583 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐺𝑧)) ∈ (0[,)+∞))
57 0e0icopnf 13426 . . . . . . . . . . . . . . . . 17 0 ∈ (0[,)+∞)
5857a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ (0[,)+∞))
5956, 58ifclda 4527 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
6059ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
61 fconstmpt 5703 . . . . . . . . . . . . . . 15 (ℝ × {𝑥}) = (𝑧 ∈ ℝ ↦ 𝑥)
6261a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (ℝ × {𝑥}) = (𝑧 ∈ ℝ ↦ 𝑥))
63 eqidd 2731 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))
6447, 49, 60, 62, 63offval2 7676 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))))
65 ovif2 7491 . . . . . . . . . . . . . . 15 (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), (𝑥 · 0))
6648recnd 11209 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℂ)
6766adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ ℂ)
6867mul01d 11380 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · 0) = 0)
6968ifeq2d 4512 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), (𝑥 · 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
7065, 69eqtrid 2777 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
7170mpteq2dv 5204 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
7264, 71eqtrd 2765 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
7372fveq2d 6865 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) = (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
7459adantr 480 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
7574fmpttd 7090 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)):ℝ⟶(0[,)+∞))
7675adantr 480 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)):ℝ⟶(0[,)+∞))
77 inss2 4204 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
7877a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺)
7920, 17mbfdm2 25545 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
807ffvelcdmda 7059 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
817feqmptd 6932 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 = (𝑧 ∈ dom 𝐺 ↦ (𝐺𝑧)))
82 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 ∈ 𝐿1)
8381, 82eqeltrrd 2830 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐺 ↦ (𝐺𝑧)) ∈ 𝐿1)
8478, 79, 80, 83iblss 25713 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑧)) ∈ 𝐿1)
8552, 84iblabs 25737 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ 𝐿1)
8653, 54iblpos 25701 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ 𝐿1 ↔ ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)))
8785, 86mpbid 232 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ))
8887simprd 495 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)
8988adantr 480 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)
90 simplrl 776 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ ℝ)
91 neq0 4318 . . . . . . . . . . . . . . 15 (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ ↔ ∃𝑧 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺))
92 0re 11183 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
9392a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ ℝ)
94 elinel1 4167 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐹)
95 ffvelcdm 7056 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
962, 94, 95syl2an 596 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑧) ∈ ℂ)
9796abscld 15412 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐹𝑧)) ∈ ℝ)
98 simplrl 776 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑥 ∈ ℝ)
9996absge0d 15420 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘(𝐹𝑧)))
100 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)
101 2fveq3 6866 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑧)))
102101breq1d 5120 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → ((abs‘(𝐹𝑦)) ≤ 𝑥 ↔ (abs‘(𝐹𝑧)) ≤ 𝑥))
103102rspccva 3590 . . . . . . . . . . . . . . . . . . 19 ((∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
104100, 94, 103syl2an 596 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐹𝑧)) ≤ 𝑥)
10593, 97, 98, 99, 104letrd 11338 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ 𝑥)
106105ex 412 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 𝑥))
107106exlimdv 1933 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∃𝑧 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 𝑥))
10891, 107biimtrid 242 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ → 0 ≤ 𝑥))
109108imp 406 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 0 ≤ 𝑥)
110 elrege0 13422 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
11190, 109, 110sylanbrc 583 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ (0[,)+∞))
11276, 89, 111itg2mulc 25655 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) = (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))))
11373, 112eqtr3d 2767 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) = (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))))
11490, 89remulcld 11211 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) ∈ ℝ)
115113, 114eqeltrd 2829 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
116115ex 412 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ))
117 noel 4304 . . . . . . . . . . . . . 14 ¬ 𝑧 ∈ ∅
118 eleq2 2818 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↔ 𝑧 ∈ ∅))
119117, 118mtbiri 327 . . . . . . . . . . . . 13 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺))
120 iffalse 4500 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = 0)
121119, 120syl 17 . . . . . . . . . . . 12 ((dom 𝐹 ∩ dom 𝐺) = ∅ → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = 0)
122121mpteq2dv 5204 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ 0))
123 fconstmpt 5703 . . . . . . . . . . 11 (ℝ × {0}) = (𝑧 ∈ ℝ ↦ 0)
124122, 123eqtr4di 2783 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (ℝ × {0}))
125124fveq2d 6865 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) = (∫2‘(ℝ × {0})))
126 itg20 25645 . . . . . . . . . 10 (∫2‘(ℝ × {0})) = 0
127126, 92eqeltri 2825 . . . . . . . . 9 (∫2‘(ℝ × {0})) ∈ ℝ
128125, 127eqeltrdi 2837 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
129116, 128pm2.61d2 181 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
13098, 53remulcld 11211 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ)
131130rexrd 11231 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ*)
13298, 53, 105, 54mulge0d 11762 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (𝑥 · (abs‘(𝐺𝑧))))
133 elxrge0 13425 . . . . . . . . . . . 12 ((𝑥 · (abs‘(𝐺𝑧))) ∈ (0[,]+∞) ↔ ((𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ* ∧ 0 ≤ (𝑥 · (abs‘(𝐺𝑧)))))
134131, 132, 133sylanbrc 583 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ (0[,]+∞))
135134, 42ifclda 4527 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) ∈ (0[,]+∞))
136135adantr 480 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) ∈ (0[,]+∞))
137136fmpttd 7090 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)):ℝ⟶(0[,]+∞))
13896, 52absmuld 15430 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) = ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))))
139 abscl 15251 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ ℂ → (abs‘(𝐺𝑧)) ∈ ℝ)
140 absge0 15260 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ ℂ → 0 ≤ (abs‘(𝐺𝑧)))
141139, 140jca 511 . . . . . . . . . . . . . . 15 ((𝐺𝑧) ∈ ℂ → ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
14252, 141syl 17 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
143 lemul1a 12043 . . . . . . . . . . . . . 14 ((((abs‘(𝐹𝑧)) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧)))) ∧ (abs‘(𝐹𝑧)) ≤ 𝑥) → ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
14497, 98, 142, 104, 143syl31anc 1375 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
145138, 144eqbrtrd 5132 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
146 iftrue 4497 . . . . . . . . . . . . 13 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = (abs‘((𝐹𝑧) · (𝐺𝑧))))
147146adantl 481 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = (abs‘((𝐹𝑧) · (𝐺𝑧))))
148 iftrue 4497 . . . . . . . . . . . . 13 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = (𝑥 · (abs‘(𝐺𝑧))))
149148adantl 481 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = (𝑥 · (abs‘(𝐺𝑧))))
150145, 147, 1493brtr4d 5142 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
151 0le0 12294 . . . . . . . . . . . . . 14 0 ≤ 0
152151a1i 11 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 0)
153 iffalse 4500 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = 0)
154152, 153, 1203brtr4d 5142 . . . . . . . . . . . 12 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
155154adantl 481 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
156150, 155pm2.61dan 812 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
157156ralrimivw 3130 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
15846a1i 11 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ℝ ∈ V)
159 eqidd 2731 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)))
160 eqidd 2731 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
161158, 44, 136, 159, 160ofrfval2 7677 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) ↔ ∀𝑧 ∈ ℝ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
162157, 161mpbird 257 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
163 itg2le 25647 . . . . . . . 8 (((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
16445, 137, 162, 163syl3anc 1373 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
165 itg2lecl 25646 . . . . . . 7 (((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)
16645, 129, 164, 165syl3anc 1373 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)
16736, 38iblpos 25701 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ 𝐿1 ↔ ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)))
16835, 166, 167mpbir2and 713 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ 𝐿1)
16917, 20, 168iblabsr 25738 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ 𝐿1)
17016, 169eqeltrd 2829 . . 3 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) ∈ 𝐿1)
171170rexlimdvaa 3136 . 2 ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → (𝐹f · 𝐺) ∈ 𝐿1))
1721713impia 1117 1 ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝐹f · 𝐺) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3045  wrex 3054  Vcvv 3450  cin 3916  wss 3917  c0 4299  ifcif 4491  {csn 4592   class class class wbr 5110  cmpt 5191   × cxp 5639  dom cdm 5641  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654  r cofr 7655  cc 11073  cr 11074  0cc0 11075   · cmul 11080  +∞cpnf 11212  *cxr 11214  cle 11216  [,)cico 13315  [,]cicc 13316  abscabs 15207  cnccncf 24776  volcvol 25371  MblFncmbf 25522  2citg2 25524  𝐿1cibl 25525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cc 10395  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-fi 9369  df-sup 9400  df-inf 9401  df-oi 9470  df-dju 9861  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-q 12915  df-rp 12959  df-xneg 13079  df-xadd 13080  df-xmul 13081  df-ioo 13317  df-ioc 13318  df-ico 13319  df-icc 13320  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-limsup 15444  df-clim 15461  df-rlim 15462  df-sum 15660  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-rest 17392  df-topn 17393  df-0g 17411  df-gsum 17412  df-topgen 17413  df-pt 17414  df-prds 17417  df-xrs 17472  df-qtop 17477  df-imas 17478  df-xps 17480  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-submnd 18718  df-mulg 19007  df-cntz 19256  df-cmn 19719  df-psmet 21263  df-xmet 21264  df-met 21265  df-bl 21266  df-mopn 21267  df-cnfld 21272  df-top 22788  df-topon 22805  df-topsp 22827  df-bases 22840  df-cn 23121  df-cnp 23122  df-cmp 23281  df-tx 23456  df-hmeo 23649  df-xms 24215  df-ms 24216  df-tms 24217  df-cncf 24778  df-ovol 25372  df-vol 25373  df-mbf 25527  df-itg1 25528  df-itg2 25529  df-ibl 25530  df-0p 25578
This theorem is referenced by:  bddibl  25748  itgsubstlem  25962  3factsumint1  42016  fourierdlem16  46128  fourierdlem21  46133  fourierdlem22  46134  fourierdlem83  46194
  Copyright terms: Public domain W3C validator