MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bddmulibl Structured version   Visualization version   GIF version

Theorem bddmulibl 25894
Description: A bounded function times an integrable function is integrable. (Contributed by Mario Carneiro, 12-Aug-2014.)
Assertion
Ref Expression
bddmulibl ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝐹f · 𝐺) ∈ 𝐿1)
Distinct variable groups:   𝑥,𝑦,𝐹   𝑥,𝐺,𝑦

Proof of Theorem bddmulibl
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mbff 25679 . . . . . . 7 (𝐹 ∈ MblFn → 𝐹:dom 𝐹⟶ℂ)
21ad2antrr 725 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹:dom 𝐹⟶ℂ)
32ffnd 6748 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹 Fn dom 𝐹)
4 iblmbf 25822 . . . . . . . 8 (𝐺 ∈ 𝐿1𝐺 ∈ MblFn)
54ad2antlr 726 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 ∈ MblFn)
6 mbff 25679 . . . . . . 7 (𝐺 ∈ MblFn → 𝐺:dom 𝐺⟶ℂ)
75, 6syl 17 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺:dom 𝐺⟶ℂ)
87ffnd 6748 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 Fn dom 𝐺)
9 mbfdm 25680 . . . . . 6 (𝐹 ∈ MblFn → dom 𝐹 ∈ dom vol)
109ad2antrr 725 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐹 ∈ dom vol)
11 mbfdm 25680 . . . . . 6 (𝐺 ∈ MblFn → dom 𝐺 ∈ dom vol)
125, 11syl 17 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → dom 𝐺 ∈ dom vol)
13 eqid 2740 . . . . 5 (dom 𝐹 ∩ dom 𝐺) = (dom 𝐹 ∩ dom 𝐺)
14 eqidd 2741 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) = (𝐹𝑧))
15 eqidd 2741 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) = (𝐺𝑧))
163, 8, 10, 12, 13, 14, 15offval 7723 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) = (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))))
17 ovexd 7483 . . . . 5 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ V)
18 simpll 766 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐹 ∈ MblFn)
1918, 5mbfmul 25781 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) ∈ MblFn)
2016, 19eqeltrrd 2845 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ MblFn)
21 absf 15386 . . . . . . . . 9 abs:ℂ⟶ℝ
2221a1i 11 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → abs:ℂ⟶ℝ)
2320, 17mbfmptcl 25690 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((𝐹𝑧) · (𝐺𝑧)) ∈ ℂ)
2422, 23cofmpt 7166 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) = (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))))
2523fmpttd 7149 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))):(dom 𝐹 ∩ dom 𝐺)⟶ℂ)
26 ax-resscn 11241 . . . . . . . . . . 11 ℝ ⊆ ℂ
27 ssid 4031 . . . . . . . . . . 11 ℂ ⊆ ℂ
28 cncfss 24944 . . . . . . . . . . 11 ((ℝ ⊆ ℂ ∧ ℂ ⊆ ℂ) → (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ))
2926, 27, 28mp2an 691 . . . . . . . . . 10 (ℂ–cn→ℝ) ⊆ (ℂ–cn→ℂ)
30 abscncf 24946 . . . . . . . . . 10 abs ∈ (ℂ–cn→ℝ)
3129, 30sselii 4005 . . . . . . . . 9 abs ∈ (ℂ–cn→ℂ)
3231a1i 11 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → abs ∈ (ℂ–cn→ℂ))
33 cncombf 25712 . . . . . . . 8 (((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ MblFn ∧ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))):(dom 𝐹 ∩ dom 𝐺)⟶ℂ ∧ abs ∈ (ℂ–cn→ℂ)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3420, 25, 32, 33syl3anc 1371 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (abs ∘ (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3524, 34eqeltrrd 2845 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn)
3623abscld 15485 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ)
3736rexrd 11340 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ*)
3823absge0d 15493 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘((𝐹𝑧) · (𝐺𝑧))))
39 elxrge0 13517 . . . . . . . . . . 11 ((abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ (0[,]+∞) ↔ ((abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ ℝ* ∧ 0 ≤ (abs‘((𝐹𝑧) · (𝐺𝑧)))))
4037, 38, 39sylanbrc 582 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ∈ (0[,]+∞))
41 0e0iccpnf 13519 . . . . . . . . . . 11 0 ∈ (0[,]+∞)
4241a1i 11 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ (0[,]+∞))
4340, 42ifclda 4583 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ∈ (0[,]+∞))
4443adantr 480 . . . . . . . 8 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ∈ (0[,]+∞))
4544fmpttd 7149 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞))
46 reex 11275 . . . . . . . . . . . . . . 15 ℝ ∈ V
4746a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ℝ ∈ V)
48 simprl 770 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℝ)
4948ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑧 ∈ ℝ) → 𝑥 ∈ ℝ)
50 elinel2 4225 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐺)
51 ffvelcdm 7115 . . . . . . . . . . . . . . . . . . 19 ((𝐺:dom 𝐺⟶ℂ ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
527, 50, 51syl2an 595 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐺𝑧) ∈ ℂ)
5352abscld 15485 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐺𝑧)) ∈ ℝ)
5452absge0d 15493 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘(𝐺𝑧)))
55 elrege0 13514 . . . . . . . . . . . . . . . . 17 ((abs‘(𝐺𝑧)) ∈ (0[,)+∞) ↔ ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
5653, 54, 55sylanbrc 582 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐺𝑧)) ∈ (0[,)+∞))
57 0e0icopnf 13518 . . . . . . . . . . . . . . . . 17 0 ∈ (0[,)+∞)
5857a1i 11 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ (0[,)+∞))
5956, 58ifclda 4583 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
6059ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
61 fconstmpt 5762 . . . . . . . . . . . . . . 15 (ℝ × {𝑥}) = (𝑧 ∈ ℝ ↦ 𝑥)
6261a1i 11 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (ℝ × {𝑥}) = (𝑧 ∈ ℝ ↦ 𝑥))
63 eqidd 2741 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))
6447, 49, 60, 62, 63offval2 7734 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))))
65 ovif2 7549 . . . . . . . . . . . . . . 15 (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), (𝑥 · 0))
6648recnd 11318 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝑥 ∈ ℂ)
6766adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ ℂ)
6867mul01d 11489 . . . . . . . . . . . . . . . 16 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · 0) = 0)
6968ifeq2d 4568 . . . . . . . . . . . . . . 15 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), (𝑥 · 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
7065, 69eqtrid 2792 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)) = if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
7170mpteq2dv 5268 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ (𝑥 · if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
7264, 71eqtrd 2780 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → ((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
7372fveq2d 6924 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) = (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
7459adantr 480 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0) ∈ (0[,)+∞))
7574fmpttd 7149 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)):ℝ⟶(0[,)+∞))
7675adantr 480 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)):ℝ⟶(0[,)+∞))
77 inss2 4259 . . . . . . . . . . . . . . . . . 18 (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺
7877a1i 11 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (dom 𝐹 ∩ dom 𝐺) ⊆ dom 𝐺)
7920, 17mbfdm2 25691 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (dom 𝐹 ∩ dom 𝐺) ∈ dom vol)
807ffvelcdmda 7118 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ dom 𝐺) → (𝐺𝑧) ∈ ℂ)
817feqmptd 6990 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 = (𝑧 ∈ dom 𝐺 ↦ (𝐺𝑧)))
82 simplr 768 . . . . . . . . . . . . . . . . . 18 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → 𝐺 ∈ 𝐿1)
8381, 82eqeltrrd 2845 . . . . . . . . . . . . . . . . 17 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ dom 𝐺 ↦ (𝐺𝑧)) ∈ 𝐿1)
8478, 79, 80, 83iblss 25860 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (𝐺𝑧)) ∈ 𝐿1)
8552, 84iblabs 25884 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ 𝐿1)
8653, 54iblpos 25848 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ 𝐿1 ↔ ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)))
8785, 86mpbid 232 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘(𝐺𝑧))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ))
8887simprd 495 . . . . . . . . . . . . 13 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)
8988adantr 480 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0))) ∈ ℝ)
90 simplrl 776 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ ℝ)
91 neq0 4375 . . . . . . . . . . . . . . 15 (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ ↔ ∃𝑧 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺))
92 0re 11292 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
9392a1i 11 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ∈ ℝ)
94 elinel1 4224 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 𝑧 ∈ dom 𝐹)
95 ffvelcdm 7115 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:dom 𝐹⟶ℂ ∧ 𝑧 ∈ dom 𝐹) → (𝐹𝑧) ∈ ℂ)
962, 94, 95syl2an 595 . . . . . . . . . . . . . . . . . . 19 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝐹𝑧) ∈ ℂ)
9796abscld 15485 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐹𝑧)) ∈ ℝ)
98 simplrl 776 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 𝑥 ∈ ℝ)
9996absge0d 15493 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (abs‘(𝐹𝑧)))
100 simprr 772 . . . . . . . . . . . . . . . . . . 19 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)
101 2fveq3 6925 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑧 → (abs‘(𝐹𝑦)) = (abs‘(𝐹𝑧)))
102101breq1d 5176 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑧 → ((abs‘(𝐹𝑦)) ≤ 𝑥 ↔ (abs‘(𝐹𝑧)) ≤ 𝑥))
103102rspccva 3634 . . . . . . . . . . . . . . . . . . 19 ((∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥𝑧 ∈ dom 𝐹) → (abs‘(𝐹𝑧)) ≤ 𝑥)
104100, 94, 103syl2an 595 . . . . . . . . . . . . . . . . . 18 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘(𝐹𝑧)) ≤ 𝑥)
10593, 97, 98, 99, 104letrd 11447 . . . . . . . . . . . . . . . . 17 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ 𝑥)
106105ex 412 . . . . . . . . . . . . . . . 16 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 𝑥))
107106exlimdv 1932 . . . . . . . . . . . . . . 15 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∃𝑧 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 𝑥))
10891, 107biimtrid 242 . . . . . . . . . . . . . 14 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ → 0 ≤ 𝑥))
109108imp 406 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 0 ≤ 𝑥)
110 elrege0 13514 . . . . . . . . . . . . 13 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
11190, 109, 110sylanbrc 582 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → 𝑥 ∈ (0[,)+∞))
11276, 89, 111itg2mulc 25802 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘((ℝ × {𝑥}) ∘f · (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) = (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))))
11373, 112eqtr3d 2782 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) = (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))))
11490, 89remulcld 11320 . . . . . . . . . 10 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (𝑥 · (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘(𝐺𝑧)), 0)))) ∈ ℝ)
115113, 114eqeltrd 2844 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ (dom 𝐹 ∩ dom 𝐺) = ∅) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
116115ex 412 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (¬ (dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ))
117 noel 4360 . . . . . . . . . . . . . 14 ¬ 𝑧 ∈ ∅
118 eleq2 2833 . . . . . . . . . . . . . 14 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↔ 𝑧 ∈ ∅))
119117, 118mtbiri 327 . . . . . . . . . . . . 13 ((dom 𝐹 ∩ dom 𝐺) = ∅ → ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺))
120 iffalse 4557 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = 0)
121119, 120syl 17 . . . . . . . . . . . 12 ((dom 𝐹 ∩ dom 𝐺) = ∅ → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = 0)
122121mpteq2dv 5268 . . . . . . . . . . 11 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ 0))
123 fconstmpt 5762 . . . . . . . . . . 11 (ℝ × {0}) = (𝑧 ∈ ℝ ↦ 0)
124122, 123eqtr4di 2798 . . . . . . . . . 10 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (ℝ × {0}))
125124fveq2d 6924 . . . . . . . . 9 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) = (∫2‘(ℝ × {0})))
126 itg20 25792 . . . . . . . . . 10 (∫2‘(ℝ × {0})) = 0
127126, 92eqeltri 2840 . . . . . . . . 9 (∫2‘(ℝ × {0})) ∈ ℝ
128125, 127eqeltrdi 2852 . . . . . . . 8 ((dom 𝐹 ∩ dom 𝐺) = ∅ → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
129116, 128pm2.61d2 181 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ)
13098, 53remulcld 11320 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ)
131130rexrd 11340 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ*)
13298, 53, 105, 54mulge0d 11867 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → 0 ≤ (𝑥 · (abs‘(𝐺𝑧))))
133 elxrge0 13517 . . . . . . . . . . . 12 ((𝑥 · (abs‘(𝐺𝑧))) ∈ (0[,]+∞) ↔ ((𝑥 · (abs‘(𝐺𝑧))) ∈ ℝ* ∧ 0 ≤ (𝑥 · (abs‘(𝐺𝑧)))))
134131, 132, 133sylanbrc 582 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (𝑥 · (abs‘(𝐺𝑧))) ∈ (0[,]+∞))
135134, 42ifclda 4583 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) ∈ (0[,]+∞))
136135adantr 480 . . . . . . . . 9 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ ℝ) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) ∈ (0[,]+∞))
137136fmpttd 7149 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)):ℝ⟶(0[,]+∞))
13896, 52absmuld 15503 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) = ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))))
139 abscl 15327 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ ℂ → (abs‘(𝐺𝑧)) ∈ ℝ)
140 absge0 15336 . . . . . . . . . . . . . . . 16 ((𝐺𝑧) ∈ ℂ → 0 ≤ (abs‘(𝐺𝑧)))
141139, 140jca 511 . . . . . . . . . . . . . . 15 ((𝐺𝑧) ∈ ℂ → ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
14252, 141syl 17 . . . . . . . . . . . . . 14 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧))))
143 lemul1a 12148 . . . . . . . . . . . . . 14 ((((abs‘(𝐹𝑧)) ∈ ℝ ∧ 𝑥 ∈ ℝ ∧ ((abs‘(𝐺𝑧)) ∈ ℝ ∧ 0 ≤ (abs‘(𝐺𝑧)))) ∧ (abs‘(𝐹𝑧)) ≤ 𝑥) → ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
14497, 98, 142, 104, 143syl31anc 1373 . . . . . . . . . . . . 13 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → ((abs‘(𝐹𝑧)) · (abs‘(𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
145138, 144eqbrtrd 5188 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → (abs‘((𝐹𝑧) · (𝐺𝑧))) ≤ (𝑥 · (abs‘(𝐺𝑧))))
146 iftrue 4554 . . . . . . . . . . . . 13 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = (abs‘((𝐹𝑧) · (𝐺𝑧))))
147146adantl 481 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = (abs‘((𝐹𝑧) · (𝐺𝑧))))
148 iftrue 4554 . . . . . . . . . . . . 13 (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = (𝑥 · (abs‘(𝐺𝑧))))
149148adantl 481 . . . . . . . . . . . 12 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0) = (𝑥 · (abs‘(𝐺𝑧))))
150145, 147, 1493brtr4d 5198 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
151 0le0 12394 . . . . . . . . . . . . . 14 0 ≤ 0
152151a1i 11 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → 0 ≤ 0)
153 iffalse 4557 . . . . . . . . . . . . 13 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) = 0)
154152, 153, 1203brtr4d 5198 . . . . . . . . . . . 12 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
155154adantl 481 . . . . . . . . . . 11 ((((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) ∧ ¬ 𝑧 ∈ (dom 𝐹 ∩ dom 𝐺)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
156150, 155pm2.61dan 812 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
157156ralrimivw 3156 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ∀𝑧 ∈ ℝ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))
15846a1i 11 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ℝ ∈ V)
159 eqidd 2741 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)))
160 eqidd 2741 . . . . . . . . . 10 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) = (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
161158, 44, 136, 159, 160ofrfval2 7735 . . . . . . . . 9 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)) ↔ ∀𝑧 ∈ ℝ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0) ≤ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
162157, 161mpbird 257 . . . . . . . 8 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))
163 itg2le 25794 . . . . . . . 8 (((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)) ∘r ≤ (𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
16445, 137, 162, 163syl3anc 1371 . . . . . . 7 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))))
165 itg2lecl 25793 . . . . . . 7 (((𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0)):ℝ⟶(0[,]+∞) ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0))) ∈ ℝ ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ≤ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (𝑥 · (abs‘(𝐺𝑧))), 0)))) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)
16645, 129, 164, 165syl3anc 1371 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)
16736, 38iblpos 25848 . . . . . 6 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ 𝐿1 ↔ ((𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ MblFn ∧ (∫2‘(𝑧 ∈ ℝ ↦ if(𝑧 ∈ (dom 𝐹 ∩ dom 𝐺), (abs‘((𝐹𝑧) · (𝐺𝑧))), 0))) ∈ ℝ)))
16835, 166, 167mpbir2and 712 . . . . 5 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ (abs‘((𝐹𝑧) · (𝐺𝑧)))) ∈ 𝐿1)
16917, 20, 168iblabsr 25885 . . . 4 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝑧 ∈ (dom 𝐹 ∩ dom 𝐺) ↦ ((𝐹𝑧) · (𝐺𝑧))) ∈ 𝐿1)
17016, 169eqeltrd 2844 . . 3 (((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) ∧ (𝑥 ∈ ℝ ∧ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥)) → (𝐹f · 𝐺) ∈ 𝐿1)
171170rexlimdvaa 3162 . 2 ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1) → (∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥 → (𝐹f · 𝐺) ∈ 𝐿1))
1721713impia 1117 1 ((𝐹 ∈ MblFn ∧ 𝐺 ∈ 𝐿1 ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ dom 𝐹(abs‘(𝐹𝑦)) ≤ 𝑥) → (𝐹f · 𝐺) ∈ 𝐿1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wral 3067  wrex 3076  Vcvv 3488  cin 3975  wss 3976  c0 4352  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700  ccom 5704  wf 6569  cfv 6573  (class class class)co 7448  f cof 7712  r cofr 7713  cc 11182  cr 11183  0cc0 11184   · cmul 11189  +∞cpnf 11321  *cxr 11323  cle 11325  [,)cico 13409  [,]cicc 13410  abscabs 15283  cnccncf 24921  volcvol 25517  MblFncmbf 25668  2citg2 25670  𝐿1cibl 25671
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cc 10504  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-supp 8202  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-omul 8527  df-er 8763  df-map 8886  df-pm 8887  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-fsupp 9432  df-fi 9480  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-acn 10011  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ioo 13411  df-ioc 13412  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-limsup 15517  df-clim 15534  df-rlim 15535  df-sum 15735  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-starv 17326  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-0g 17501  df-gsum 17502  df-topgen 17503  df-pt 17504  df-prds 17507  df-xrs 17562  df-qtop 17567  df-imas 17568  df-xps 17570  df-mre 17644  df-mrc 17645  df-acs 17647  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-mulg 19108  df-cntz 19357  df-cmn 19824  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-cmp 23416  df-tx 23591  df-hmeo 23784  df-xms 24351  df-ms 24352  df-tms 24353  df-cncf 24923  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-ibl 25676  df-0p 25724
This theorem is referenced by:  bddibl  25895  itgsubstlem  26109  3factsumint1  41978  fourierdlem16  46044  fourierdlem21  46049  fourierdlem22  46050  fourierdlem83  46110
  Copyright terms: Public domain W3C validator