MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const Structured version   Visualization version   GIF version

Theorem itg2const 25698
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
itg2const ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itg2const
StepHypRef Expression
1 reex 11225 . . . . . . 7 ℝ ∈ V
21a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ℝ ∈ V)
3 simpl3 1194 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ (0[,)+∞))
4 1re 11240 . . . . . . . 8 1 ∈ ℝ
5 0re 11242 . . . . . . . 8 0 ∈ ℝ
64, 5ifcli 4553 . . . . . . 7 if(𝑥𝐴, 1, 0) ∈ ℝ
76a1i 11 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 1, 0) ∈ ℝ)
8 fconstmpt 5721 . . . . . . 7 (ℝ × {𝐵}) = (𝑥 ∈ ℝ ↦ 𝐵)
98a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (ℝ × {𝐵}) = (𝑥 ∈ ℝ ↦ 𝐵))
10 eqidd 2737 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))
112, 3, 7, 9, 10offval2 7696 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ (𝐵 · if(𝑥𝐴, 1, 0))))
12 ovif2 7511 . . . . . . 7 (𝐵 · if(𝑥𝐴, 1, 0)) = if(𝑥𝐴, (𝐵 · 1), (𝐵 · 0))
13 simp3 1138 . . . . . . . . . . . 12 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ (0[,)+∞))
14 elrege0 13476 . . . . . . . . . . . 12 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1513, 14sylib 218 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1615simpld 494 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ ℝ)
1716recnd 11268 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ)
1817mulridd 11257 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · 1) = 𝐵)
1917mul01d 11439 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · 0) = 0)
2018, 19ifeq12d 4527 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → if(𝑥𝐴, (𝐵 · 1), (𝐵 · 0)) = if(𝑥𝐴, 𝐵, 0))
2112, 20eqtrid 2783 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · if(𝑥𝐴, 1, 0)) = if(𝑥𝐴, 𝐵, 0))
2221mpteq2dv 5220 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ (𝐵 · if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
2311, 22eqtrd 2771 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
24 eqid 2736 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
2524i1f1 25648 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) ∈ dom ∫1)
26253adant3 1132 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) ∈ dom ∫1)
2726, 16i1fmulc 25661 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) ∈ dom ∫1)
2823, 27eqeltrrd 2836 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ dom ∫1)
2915simprd 495 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
30 0le0 12346 . . . . . 6 0 ≤ 0
31 breq2 5128 . . . . . . 7 (𝐵 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
32 breq2 5128 . . . . . . 7 (0 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
3331, 32ifboth 4545 . . . . . 6 ((0 ≤ 𝐵 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
3429, 30, 33sylancl 586 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
3534ralrimivw 3137 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0))
36 ax-resscn 11191 . . . . . . 7 ℝ ⊆ ℂ
3736a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ℝ ⊆ ℂ)
3816adantr 480 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
39 ifcl 4551 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
4038, 5, 39sylancl 586 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
4140ralrimiva 3133 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ∀𝑥 ∈ ℝ if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
42 eqid 2736 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))
4342fnmpt 6683 . . . . . . 7 (∀𝑥 ∈ ℝ if(𝑥𝐴, 𝐵, 0) ∈ ℝ → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) Fn ℝ)
4441, 43syl 17 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) Fn ℝ)
4537, 440pledm 25631 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
465a1i 11 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
47 fconstmpt 5721 . . . . . . 7 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
4847a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0))
49 eqidd 2737 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
502, 46, 40, 48, 49ofrfval2 7697 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
5145, 50bitrd 279 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
5235, 51mpbird 257 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
53 itg2itg1 25694 . . 3 (((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5428, 52, 53syl2anc 584 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5526, 16itg1mulc 25662 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (𝐵 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))))
5623fveq2d 6885 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5724itg11 25649 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (vol‘𝐴))
58573adant3 1132 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (vol‘𝐴))
5958oveq2d 7426 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (𝐵 · (vol‘𝐴)))
6055, 56, 593eqtr3d 2779 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
6154, 60eqtrd 2771 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  Vcvv 3464  wss 3931  ifcif 4505  {csn 4606   class class class wbr 5124  cmpt 5206   × cxp 5657  dom cdm 5659   Fn wfn 6531  cfv 6536  (class class class)co 7410  f cof 7674  r cofr 7675  cc 11132  cr 11133  0cc0 11134  1c1 11135   · cmul 11139  +∞cpnf 11271  cle 11275  [,)cico 13369  volcvol 25421  1citg1 25573  2citg2 25574  0𝑝c0p 25627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-disj 5092  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-ofr 7677  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-oi 9529  df-dju 9920  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-n0 12507  df-z 12594  df-uz 12858  df-q 12970  df-rp 13014  df-xadd 13134  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-sum 15708  df-xmet 21313  df-met 21314  df-ovol 25422  df-vol 25423  df-mbf 25577  df-itg1 25578  df-itg2 25579  df-0p 25628
This theorem is referenced by:  itg2const2  25699  itg2gt0  25718  itg2cnlem2  25720  iblconst  25776  itgconst  25777  bddiblnc  25800  itg2gt0cn  37704  ftc1anclem7  37728
  Copyright terms: Public domain W3C validator