MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const Structured version   Visualization version   GIF version

Theorem itg2const 25700
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
itg2const ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))) = (๐ต ยท (volโ€˜๐ด)))
Distinct variable groups:   ๐‘ฅ,๐ด   ๐‘ฅ,๐ต

Proof of Theorem itg2const
StepHypRef Expression
1 reex 11229 . . . . . . 7 โ„ โˆˆ V
21a1i 11 . . . . . 6 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ โ„ โˆˆ V)
3 simpl3 1190 . . . . . 6 (((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โˆง ๐‘ฅ โˆˆ โ„) โ†’ ๐ต โˆˆ (0[,)+โˆž))
4 1re 11244 . . . . . . . 8 1 โˆˆ โ„
5 0re 11246 . . . . . . . 8 0 โˆˆ โ„
64, 5ifcli 4576 . . . . . . 7 if(๐‘ฅ โˆˆ ๐ด, 1, 0) โˆˆ โ„
76a1i 11 . . . . . 6 (((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โˆง ๐‘ฅ โˆˆ โ„) โ†’ if(๐‘ฅ โˆˆ ๐ด, 1, 0) โˆˆ โ„)
8 fconstmpt 5739 . . . . . . 7 (โ„ ร— {๐ต}) = (๐‘ฅ โˆˆ โ„ โ†ฆ ๐ต)
98a1i 11 . . . . . 6 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (โ„ ร— {๐ต}) = (๐‘ฅ โˆˆ โ„ โ†ฆ ๐ต))
10 eqidd 2726 . . . . . 6 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0)))
112, 3, 7, 9, 10offval2 7703 . . . . 5 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ ((โ„ ร— {๐ต}) โˆ˜f ยท (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0))) = (๐‘ฅ โˆˆ โ„ โ†ฆ (๐ต ยท if(๐‘ฅ โˆˆ ๐ด, 1, 0))))
12 ovif2 7517 . . . . . . 7 (๐ต ยท if(๐‘ฅ โˆˆ ๐ด, 1, 0)) = if(๐‘ฅ โˆˆ ๐ด, (๐ต ยท 1), (๐ต ยท 0))
13 simp3 1135 . . . . . . . . . . . 12 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ ๐ต โˆˆ (0[,)+โˆž))
14 elrege0 13463 . . . . . . . . . . . 12 (๐ต โˆˆ (0[,)+โˆž) โ†” (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต))
1513, 14sylib 217 . . . . . . . . . . 11 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (๐ต โˆˆ โ„ โˆง 0 โ‰ค ๐ต))
1615simpld 493 . . . . . . . . . 10 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ ๐ต โˆˆ โ„)
1716recnd 11272 . . . . . . . . 9 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ ๐ต โˆˆ โ„‚)
1817mulridd 11261 . . . . . . . 8 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (๐ต ยท 1) = ๐ต)
1917mul01d 11443 . . . . . . . 8 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (๐ต ยท 0) = 0)
2018, 19ifeq12d 4550 . . . . . . 7 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ if(๐‘ฅ โˆˆ ๐ด, (๐ต ยท 1), (๐ต ยท 0)) = if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))
2112, 20eqtrid 2777 . . . . . 6 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (๐ต ยท if(๐‘ฅ โˆˆ ๐ด, 1, 0)) = if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))
2221mpteq2dv 5250 . . . . 5 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ (๐ต ยท if(๐‘ฅ โˆˆ ๐ด, 1, 0))) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)))
2311, 22eqtrd 2765 . . . 4 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ ((โ„ ร— {๐ต}) โˆ˜f ยท (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0))) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)))
24 eqid 2725 . . . . . . 7 (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0))
2524i1f1 25649 . . . . . 6 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„) โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0)) โˆˆ dom โˆซ1)
26253adant3 1129 . . . . 5 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0)) โˆˆ dom โˆซ1)
2726, 16i1fmulc 25663 . . . 4 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ ((โ„ ร— {๐ต}) โˆ˜f ยท (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0))) โˆˆ dom โˆซ1)
2823, 27eqeltrrd 2826 . . 3 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)) โˆˆ dom โˆซ1)
2915simprd 494 . . . . . 6 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ 0 โ‰ค ๐ต)
30 0le0 12343 . . . . . 6 0 โ‰ค 0
31 breq2 5152 . . . . . . 7 (๐ต = if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0) โ†’ (0 โ‰ค ๐ต โ†” 0 โ‰ค if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)))
32 breq2 5152 . . . . . . 7 (0 = if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0) โ†’ (0 โ‰ค 0 โ†” 0 โ‰ค if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)))
3331, 32ifboth 4568 . . . . . 6 ((0 โ‰ค ๐ต โˆง 0 โ‰ค 0) โ†’ 0 โ‰ค if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))
3429, 30, 33sylancl 584 . . . . 5 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ 0 โ‰ค if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))
3534ralrimivw 3140 . . . 4 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ โˆ€๐‘ฅ โˆˆ โ„ 0 โ‰ค if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))
36 ax-resscn 11195 . . . . . . 7 โ„ โІ โ„‚
3736a1i 11 . . . . . 6 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ โ„ โІ โ„‚)
3816adantr 479 . . . . . . . . 9 (((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โˆง ๐‘ฅ โˆˆ โ„) โ†’ ๐ต โˆˆ โ„)
39 ifcl 4574 . . . . . . . . 9 ((๐ต โˆˆ โ„ โˆง 0 โˆˆ โ„) โ†’ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0) โˆˆ โ„)
4038, 5, 39sylancl 584 . . . . . . . 8 (((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โˆง ๐‘ฅ โˆˆ โ„) โ†’ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0) โˆˆ โ„)
4140ralrimiva 3136 . . . . . . 7 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ โˆ€๐‘ฅ โˆˆ โ„ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0) โˆˆ โ„)
42 eqid 2725 . . . . . . . 8 (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))
4342fnmpt 6694 . . . . . . 7 (โˆ€๐‘ฅ โˆˆ โ„ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0) โˆˆ โ„ โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)) Fn โ„)
4441, 43syl 17 . . . . . 6 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)) Fn โ„)
4537, 440pledm 25632 . . . . 5 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (0๐‘ โˆ˜r โ‰ค (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)) โ†” (โ„ ร— {0}) โˆ˜r โ‰ค (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))))
465a1i 11 . . . . . 6 (((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โˆง ๐‘ฅ โˆˆ โ„) โ†’ 0 โˆˆ โ„)
47 fconstmpt 5739 . . . . . . 7 (โ„ ร— {0}) = (๐‘ฅ โˆˆ โ„ โ†ฆ 0)
4847a1i 11 . . . . . 6 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (โ„ ร— {0}) = (๐‘ฅ โˆˆ โ„ โ†ฆ 0))
49 eqidd 2726 . . . . . 6 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)) = (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)))
502, 46, 40, 48, 49ofrfval2 7704 . . . . 5 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ ((โ„ ร— {0}) โˆ˜r โ‰ค (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)) โ†” โˆ€๐‘ฅ โˆˆ โ„ 0 โ‰ค if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)))
5145, 50bitrd 278 . . . 4 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (0๐‘ โˆ˜r โ‰ค (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)) โ†” โˆ€๐‘ฅ โˆˆ โ„ 0 โ‰ค if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)))
5235, 51mpbird 256 . . 3 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ 0๐‘ โˆ˜r โ‰ค (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)))
53 itg2itg1 25696 . . 3 (((๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0)) โˆˆ dom โˆซ1 โˆง 0๐‘ โˆ˜r โ‰ค (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))) โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))) = (โˆซ1โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))))
5428, 52, 53syl2anc 582 . 2 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))) = (โˆซ1โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))))
5526, 16itg1mulc 25664 . . 3 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (โˆซ1โ€˜((โ„ ร— {๐ต}) โˆ˜f ยท (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0)))) = (๐ต ยท (โˆซ1โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0)))))
5623fveq2d 6898 . . 3 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (โˆซ1โ€˜((โ„ ร— {๐ต}) โˆ˜f ยท (๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0)))) = (โˆซ1โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))))
5724itg11 25650 . . . . 5 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„) โ†’ (โˆซ1โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0))) = (volโ€˜๐ด))
58573adant3 1129 . . . 4 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (โˆซ1โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0))) = (volโ€˜๐ด))
5958oveq2d 7433 . . 3 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (๐ต ยท (โˆซ1โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, 1, 0)))) = (๐ต ยท (volโ€˜๐ด)))
6055, 56, 593eqtr3d 2773 . 2 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (โˆซ1โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))) = (๐ต ยท (volโ€˜๐ด)))
6154, 60eqtrd 2765 1 ((๐ด โˆˆ dom vol โˆง (volโ€˜๐ด) โˆˆ โ„ โˆง ๐ต โˆˆ (0[,)+โˆž)) โ†’ (โˆซ2โ€˜(๐‘ฅ โˆˆ โ„ โ†ฆ if(๐‘ฅ โˆˆ ๐ด, ๐ต, 0))) = (๐ต ยท (volโ€˜๐ด)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง wa 394   โˆง w3a 1084   = wceq 1533   โˆˆ wcel 2098  โˆ€wral 3051  Vcvv 3463   โІ wss 3945  ifcif 4529  {csn 4629   class class class wbr 5148   โ†ฆ cmpt 5231   ร— cxp 5675  dom cdm 5677   Fn wfn 6542  โ€˜cfv 6547  (class class class)co 7417   โˆ˜f cof 7681   โˆ˜r cofr 7682  โ„‚cc 11136  โ„cr 11137  0cc0 11138  1c1 11139   ยท cmul 11143  +โˆžcpnf 11275   โ‰ค cle 11279  [,)cico 13358  volcvol 25422  โˆซ1citg1 25574  โˆซ2citg2 25575  0๐‘c0p 25628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-inf2 9664  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215  ax-pre-sup 11216  ax-addf 11217
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3965  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-disj 5114  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-isom 6556  df-riota 7373  df-ov 7420  df-oprab 7421  df-mpo 7422  df-of 7683  df-ofr 7684  df-om 7870  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8723  df-map 8845  df-pm 8846  df-en 8963  df-dom 8964  df-sdom 8965  df-fin 8966  df-sup 9465  df-inf 9466  df-oi 9533  df-dju 9924  df-card 9962  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-div 11902  df-nn 12243  df-2 12305  df-3 12306  df-n0 12503  df-z 12589  df-uz 12853  df-q 12963  df-rp 13007  df-xadd 13125  df-ioo 13360  df-ico 13362  df-icc 13363  df-fz 13517  df-fzo 13660  df-fl 13789  df-seq 13999  df-exp 14059  df-hash 14322  df-cj 15078  df-re 15079  df-im 15080  df-sqrt 15214  df-abs 15215  df-clim 15464  df-sum 15665  df-xmet 21276  df-met 21277  df-ovol 25423  df-vol 25424  df-mbf 25578  df-itg1 25579  df-itg2 25580  df-0p 25629
This theorem is referenced by:  itg2const2  25701  itg2gt0  25720  itg2cnlem2  25722  iblconst  25777  itgconst  25778  bddiblnc  25801  itg2gt0cn  37218  ftc1anclem7  37242
  Copyright terms: Public domain W3C validator