MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const Structured version   Visualization version   GIF version

Theorem itg2const 25668
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
itg2const ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itg2const
StepHypRef Expression
1 reex 11097 . . . . . . 7 ℝ ∈ V
21a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ℝ ∈ V)
3 simpl3 1194 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ (0[,)+∞))
4 1re 11112 . . . . . . . 8 1 ∈ ℝ
5 0re 11114 . . . . . . . 8 0 ∈ ℝ
64, 5ifcli 4520 . . . . . . 7 if(𝑥𝐴, 1, 0) ∈ ℝ
76a1i 11 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 1, 0) ∈ ℝ)
8 fconstmpt 5676 . . . . . . 7 (ℝ × {𝐵}) = (𝑥 ∈ ℝ ↦ 𝐵)
98a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (ℝ × {𝐵}) = (𝑥 ∈ ℝ ↦ 𝐵))
10 eqidd 2732 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))
112, 3, 7, 9, 10offval2 7630 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ (𝐵 · if(𝑥𝐴, 1, 0))))
12 ovif2 7445 . . . . . . 7 (𝐵 · if(𝑥𝐴, 1, 0)) = if(𝑥𝐴, (𝐵 · 1), (𝐵 · 0))
13 simp3 1138 . . . . . . . . . . . 12 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ (0[,)+∞))
14 elrege0 13354 . . . . . . . . . . . 12 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1513, 14sylib 218 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1615simpld 494 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ ℝ)
1716recnd 11140 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ)
1817mulridd 11129 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · 1) = 𝐵)
1917mul01d 11312 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · 0) = 0)
2018, 19ifeq12d 4494 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → if(𝑥𝐴, (𝐵 · 1), (𝐵 · 0)) = if(𝑥𝐴, 𝐵, 0))
2112, 20eqtrid 2778 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · if(𝑥𝐴, 1, 0)) = if(𝑥𝐴, 𝐵, 0))
2221mpteq2dv 5183 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ (𝐵 · if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
2311, 22eqtrd 2766 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
24 eqid 2731 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
2524i1f1 25618 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) ∈ dom ∫1)
26253adant3 1132 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) ∈ dom ∫1)
2726, 16i1fmulc 25631 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) ∈ dom ∫1)
2823, 27eqeltrrd 2832 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ dom ∫1)
2915simprd 495 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
30 0le0 12226 . . . . . 6 0 ≤ 0
31 breq2 5093 . . . . . . 7 (𝐵 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
32 breq2 5093 . . . . . . 7 (0 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
3331, 32ifboth 4512 . . . . . 6 ((0 ≤ 𝐵 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
3429, 30, 33sylancl 586 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
3534ralrimivw 3128 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0))
36 ax-resscn 11063 . . . . . . 7 ℝ ⊆ ℂ
3736a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ℝ ⊆ ℂ)
3816adantr 480 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
39 ifcl 4518 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
4038, 5, 39sylancl 586 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
4140ralrimiva 3124 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ∀𝑥 ∈ ℝ if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
42 eqid 2731 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))
4342fnmpt 6621 . . . . . . 7 (∀𝑥 ∈ ℝ if(𝑥𝐴, 𝐵, 0) ∈ ℝ → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) Fn ℝ)
4441, 43syl 17 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) Fn ℝ)
4537, 440pledm 25601 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
465a1i 11 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
47 fconstmpt 5676 . . . . . . 7 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
4847a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0))
49 eqidd 2732 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
502, 46, 40, 48, 49ofrfval2 7631 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
5145, 50bitrd 279 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
5235, 51mpbird 257 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
53 itg2itg1 25664 . . 3 (((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5428, 52, 53syl2anc 584 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5526, 16itg1mulc 25632 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (𝐵 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))))
5623fveq2d 6826 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5724itg11 25619 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (vol‘𝐴))
58573adant3 1132 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (vol‘𝐴))
5958oveq2d 7362 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (𝐵 · (vol‘𝐴)))
6055, 56, 593eqtr3d 2774 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
6154, 60eqtrd 2766 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  Vcvv 3436  wss 3897  ifcif 4472  {csn 4573   class class class wbr 5089  cmpt 5170   × cxp 5612  dom cdm 5614   Fn wfn 6476  cfv 6481  (class class class)co 7346  f cof 7608  r cofr 7609  cc 11004  cr 11005  0cc0 11006  1c1 11007   · cmul 11011  +∞cpnf 11143  cle 11147  [,)cico 13247  volcvol 25391  1citg1 25543  2citg2 25544  0𝑝c0p 25597
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-inf2 9531  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-disj 5057  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-of 7610  df-ofr 7611  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-oi 9396  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-n0 12382  df-z 12469  df-uz 12733  df-q 12847  df-rp 12891  df-xadd 13012  df-ioo 13249  df-ico 13251  df-icc 13252  df-fz 13408  df-fzo 13555  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-sum 15594  df-xmet 21284  df-met 21285  df-ovol 25392  df-vol 25393  df-mbf 25547  df-itg1 25548  df-itg2 25549  df-0p 25598
This theorem is referenced by:  itg2const2  25669  itg2gt0  25688  itg2cnlem2  25690  iblconst  25746  itgconst  25747  bddiblnc  25770  itg2gt0cn  37725  ftc1anclem7  37749
  Copyright terms: Public domain W3C validator