MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  itg2const Structured version   Visualization version   GIF version

Theorem itg2const 25795
Description: Integral of a constant function. (Contributed by Mario Carneiro, 12-Aug-2014.) (Revised by Mario Carneiro, 23-Aug-2014.)
Assertion
Ref Expression
itg2const ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem itg2const
StepHypRef Expression
1 reex 11275 . . . . . . 7 ℝ ∈ V
21a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ℝ ∈ V)
3 simpl3 1193 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ (0[,)+∞))
4 1re 11290 . . . . . . . 8 1 ∈ ℝ
5 0re 11292 . . . . . . . 8 0 ∈ ℝ
64, 5ifcli 4595 . . . . . . 7 if(𝑥𝐴, 1, 0) ∈ ℝ
76a1i 11 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 1, 0) ∈ ℝ)
8 fconstmpt 5762 . . . . . . 7 (ℝ × {𝐵}) = (𝑥 ∈ ℝ ↦ 𝐵)
98a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (ℝ × {𝐵}) = (𝑥 ∈ ℝ ↦ 𝐵))
10 eqidd 2741 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))
112, 3, 7, 9, 10offval2 7734 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ (𝐵 · if(𝑥𝐴, 1, 0))))
12 ovif2 7549 . . . . . . 7 (𝐵 · if(𝑥𝐴, 1, 0)) = if(𝑥𝐴, (𝐵 · 1), (𝐵 · 0))
13 simp3 1138 . . . . . . . . . . . 12 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ (0[,)+∞))
14 elrege0 13514 . . . . . . . . . . . 12 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1513, 14sylib 218 . . . . . . . . . . 11 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
1615simpld 494 . . . . . . . . . 10 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ ℝ)
1716recnd 11318 . . . . . . . . 9 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 𝐵 ∈ ℂ)
1817mulridd 11307 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · 1) = 𝐵)
1917mul01d 11489 . . . . . . . 8 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · 0) = 0)
2018, 19ifeq12d 4569 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → if(𝑥𝐴, (𝐵 · 1), (𝐵 · 0)) = if(𝑥𝐴, 𝐵, 0))
2112, 20eqtrid 2792 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · if(𝑥𝐴, 1, 0)) = if(𝑥𝐴, 𝐵, 0))
2221mpteq2dv 5268 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ (𝐵 · if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
2311, 22eqtrd 2780 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
24 eqid 2740 . . . . . . 7 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))
2524i1f1 25744 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) ∈ dom ∫1)
26253adant3 1132 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)) ∈ dom ∫1)
2726, 16i1fmulc 25758 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) ∈ dom ∫1)
2823, 27eqeltrrd 2845 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ dom ∫1)
2915simprd 495 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0 ≤ 𝐵)
30 0le0 12394 . . . . . 6 0 ≤ 0
31 breq2 5170 . . . . . . 7 (𝐵 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 𝐵 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
32 breq2 5170 . . . . . . 7 (0 = if(𝑥𝐴, 𝐵, 0) → (0 ≤ 0 ↔ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
3331, 32ifboth 4587 . . . . . 6 ((0 ≤ 𝐵 ∧ 0 ≤ 0) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
3429, 30, 33sylancl 585 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0 ≤ if(𝑥𝐴, 𝐵, 0))
3534ralrimivw 3156 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0))
36 ax-resscn 11241 . . . . . . 7 ℝ ⊆ ℂ
3736a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ℝ ⊆ ℂ)
3816adantr 480 . . . . . . . . 9 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 𝐵 ∈ ℝ)
39 ifcl 4593 . . . . . . . . 9 ((𝐵 ∈ ℝ ∧ 0 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
4038, 5, 39sylancl 585 . . . . . . . 8 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
4140ralrimiva 3152 . . . . . . 7 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ∀𝑥 ∈ ℝ if(𝑥𝐴, 𝐵, 0) ∈ ℝ)
42 eqid 2740 . . . . . . . 8 (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))
4342fnmpt 6720 . . . . . . 7 (∀𝑥 ∈ ℝ if(𝑥𝐴, 𝐵, 0) ∈ ℝ → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) Fn ℝ)
4441, 43syl 17 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) Fn ℝ)
4537, 440pledm 25727 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ (ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
465a1i 11 . . . . . 6 (((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) ∧ 𝑥 ∈ ℝ) → 0 ∈ ℝ)
47 fconstmpt 5762 . . . . . . 7 (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0)
4847a1i 11 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (ℝ × {0}) = (𝑥 ∈ ℝ ↦ 0))
49 eqidd 2741 . . . . . 6 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
502, 46, 40, 48, 49ofrfval2 7735 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → ((ℝ × {0}) ∘r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
5145, 50bitrd 279 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ↔ ∀𝑥 ∈ ℝ 0 ≤ if(𝑥𝐴, 𝐵, 0)))
5235, 51mpbird 257 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
53 itg2itg1 25791 . . 3 (((𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) ∈ dom ∫1 ∧ 0𝑝r ≤ (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5428, 52, 53syl2anc 583 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5526, 16itg1mulc 25759 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (𝐵 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))))
5623fveq2d 6924 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘((ℝ × {𝐵}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
5724itg11 25745 . . . . 5 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (vol‘𝐴))
58573adant3 1132 . . . 4 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0))) = (vol‘𝐴))
5958oveq2d 7464 . . 3 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (𝐵 · (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 1, 0)))) = (𝐵 · (vol‘𝐴)))
6055, 56, 593eqtr3d 2788 . 2 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫1‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
6154, 60eqtrd 2780 1 ((𝐴 ∈ dom vol ∧ (vol‘𝐴) ∈ ℝ ∧ 𝐵 ∈ (0[,)+∞)) → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝐵 · (vol‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  ifcif 4548  {csn 4648   class class class wbr 5166  cmpt 5249   × cxp 5698  dom cdm 5700   Fn wfn 6568  cfv 6573  (class class class)co 7448  f cof 7712  r cofr 7713  cc 11182  cr 11183  0cc0 11184  1c1 11185   · cmul 11189  +∞cpnf 11321  cle 11325  [,)cico 13409  volcvol 25517  1citg1 25669  2citg2 25670  0𝑝c0p 25723
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-disj 5134  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-of 7714  df-ofr 7715  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-oi 9579  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-q 13014  df-rp 13058  df-xadd 13176  df-ioo 13411  df-ico 13413  df-icc 13414  df-fz 13568  df-fzo 13712  df-fl 13843  df-seq 14053  df-exp 14113  df-hash 14380  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-clim 15534  df-sum 15735  df-xmet 21380  df-met 21381  df-ovol 25518  df-vol 25519  df-mbf 25673  df-itg1 25674  df-itg2 25675  df-0p 25724
This theorem is referenced by:  itg2const2  25796  itg2gt0  25815  itg2cnlem2  25817  iblconst  25873  itgconst  25874  bddiblnc  25897  itg2gt0cn  37635  ftc1anclem7  37659
  Copyright terms: Public domain W3C validator