| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scmatscmide | Structured version Visualization version GIF version | ||
| Description: An entry of a scalar matrix expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) |
| Ref | Expression |
|---|---|
| scmatscmide.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| scmatscmide.b | ⊢ 𝐵 = (Base‘𝑅) |
| scmatscmide.0 | ⊢ 0 = (0g‘𝑅) |
| scmatscmide.1 | ⊢ 1 = (1r‘𝐴) |
| scmatscmide.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
| Ref | Expression |
|---|---|
| scmatscmide | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = if(𝐼 = 𝐽, 𝐶, 0 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl2 1193 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
| 2 | simp3 1138 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) | |
| 3 | scmatscmide.a | . . . . . . . 8 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 4 | 3 | matring 22336 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 5 | eqid 2730 | . . . . . . . 8 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 6 | scmatscmide.1 | . . . . . . . 8 ⊢ 1 = (1r‘𝐴) | |
| 7 | 5, 6 | ringidcl 20180 | . . . . . . 7 ⊢ (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴)) |
| 8 | 4, 7 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴)) |
| 9 | 8 | 3adant3 1132 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → 1 ∈ (Base‘𝐴)) |
| 10 | 2, 9 | jca 511 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶 ∈ 𝐵 ∧ 1 ∈ (Base‘𝐴))) |
| 11 | 10 | adantr 480 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐶 ∈ 𝐵 ∧ 1 ∈ (Base‘𝐴))) |
| 12 | simpr 484 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) | |
| 13 | scmatscmide.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 14 | scmatscmide.m | . . . 4 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
| 15 | eqid 2730 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 16 | 3, 5, 13, 14, 15 | matvscacell 22329 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐵 ∧ 1 ∈ (Base‘𝐴)) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = (𝐶(.r‘𝑅)(𝐼 1 𝐽))) |
| 17 | 1, 11, 12, 16 | syl3anc 1373 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = (𝐶(.r‘𝑅)(𝐼 1 𝐽))) |
| 18 | eqid 2730 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 19 | scmatscmide.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 20 | simpl1 1192 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑁 ∈ Fin) | |
| 21 | simprl 770 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
| 22 | simprr 772 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) | |
| 23 | 3, 18, 19, 20, 1, 21, 22, 6 | mat1ov 22341 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 1 𝐽) = if(𝐼 = 𝐽, (1r‘𝑅), 0 )) |
| 24 | 23 | oveq2d 7405 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐶(.r‘𝑅)(𝐼 1 𝐽)) = (𝐶(.r‘𝑅)if(𝐼 = 𝐽, (1r‘𝑅), 0 ))) |
| 25 | ovif2 7490 | . . . 4 ⊢ (𝐶(.r‘𝑅)if(𝐼 = 𝐽, (1r‘𝑅), 0 )) = if(𝐼 = 𝐽, (𝐶(.r‘𝑅)(1r‘𝑅)), (𝐶(.r‘𝑅) 0 )) | |
| 26 | 13, 15, 18 | ringridm 20185 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅)(1r‘𝑅)) = 𝐶) |
| 27 | 26 | 3adant1 1130 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅)(1r‘𝑅)) = 𝐶) |
| 28 | 13, 15, 19 | ringrz 20209 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅) 0 ) = 0 ) |
| 29 | 28 | 3adant1 1130 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅) 0 ) = 0 ) |
| 30 | 27, 29 | ifeq12d 4512 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → if(𝐼 = 𝐽, (𝐶(.r‘𝑅)(1r‘𝑅)), (𝐶(.r‘𝑅) 0 )) = if(𝐼 = 𝐽, 𝐶, 0 )) |
| 31 | 25, 30 | eqtrid 2777 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅)if(𝐼 = 𝐽, (1r‘𝑅), 0 )) = if(𝐼 = 𝐽, 𝐶, 0 )) |
| 32 | 31 | adantr 480 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐶(.r‘𝑅)if(𝐼 = 𝐽, (1r‘𝑅), 0 )) = if(𝐼 = 𝐽, 𝐶, 0 )) |
| 33 | 17, 24, 32 | 3eqtrd 2769 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = if(𝐼 = 𝐽, 𝐶, 0 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4490 ‘cfv 6513 (class class class)co 7389 Fincfn 8920 Basecbs 17185 .rcmulr 17227 ·𝑠 cvsca 17230 0gc0g 17408 1rcur 20096 Ringcrg 20148 Mat cmat 22300 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5236 ax-sep 5253 ax-nul 5263 ax-pow 5322 ax-pr 5389 ax-un 7713 ax-cnex 11130 ax-resscn 11131 ax-1cn 11132 ax-icn 11133 ax-addcl 11134 ax-addrcl 11135 ax-mulcl 11136 ax-mulrcl 11137 ax-mulcom 11138 ax-addass 11139 ax-mulass 11140 ax-distr 11141 ax-i2m1 11142 ax-1ne0 11143 ax-1rid 11144 ax-rnegex 11145 ax-rrecex 11146 ax-cnre 11147 ax-pre-lttri 11148 ax-pre-lttrn 11149 ax-pre-ltadd 11150 ax-pre-mulgt0 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3756 df-csb 3865 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-pss 3936 df-nul 4299 df-if 4491 df-pw 4567 df-sn 4592 df-pr 4594 df-tp 4596 df-op 4598 df-ot 4600 df-uni 4874 df-int 4913 df-iun 4959 df-iin 4960 df-br 5110 df-opab 5172 df-mpt 5191 df-tr 5217 df-id 5535 df-eprel 5540 df-po 5548 df-so 5549 df-fr 5593 df-se 5594 df-we 5595 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-ima 5653 df-pred 6276 df-ord 6337 df-on 6338 df-lim 6339 df-suc 6340 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-fv 6521 df-isom 6522 df-riota 7346 df-ov 7392 df-oprab 7393 df-mpo 7394 df-of 7655 df-om 7845 df-1st 7970 df-2nd 7971 df-supp 8142 df-frecs 8262 df-wrecs 8293 df-recs 8342 df-rdg 8380 df-1o 8436 df-2o 8437 df-er 8673 df-map 8803 df-ixp 8873 df-en 8921 df-dom 8922 df-sdom 8923 df-fin 8924 df-fsupp 9319 df-sup 9399 df-oi 9469 df-card 9898 df-pnf 11216 df-mnf 11217 df-xr 11218 df-ltxr 11219 df-le 11220 df-sub 11413 df-neg 11414 df-nn 12188 df-2 12250 df-3 12251 df-4 12252 df-5 12253 df-6 12254 df-7 12255 df-8 12256 df-9 12257 df-n0 12449 df-z 12536 df-dec 12656 df-uz 12800 df-fz 13475 df-fzo 13622 df-seq 13973 df-hash 14302 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-hom 17250 df-cco 17251 df-0g 17410 df-gsum 17411 df-prds 17416 df-pws 17418 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-mhm 18716 df-submnd 18717 df-grp 18874 df-minusg 18875 df-sbg 18876 df-mulg 19006 df-subg 19061 df-ghm 19151 df-cntz 19255 df-cmn 19718 df-abl 19719 df-mgp 20056 df-rng 20068 df-ur 20097 df-ring 20150 df-subrg 20485 df-lmod 20774 df-lss 20844 df-sra 21086 df-rgmod 21087 df-dsmm 21647 df-frlm 21662 df-mamu 22284 df-mat 22301 |
| This theorem is referenced by: scmatscmiddistr 22401 scmate 22403 scmatmats 22404 scmatf1 22424 pmatcollpwscmatlem1 22682 pmatcollpwscmatlem2 22683 |
| Copyright terms: Public domain | W3C validator |