Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scmatscmide | Structured version Visualization version GIF version |
Description: An entry of a scalar matrix expressed as a multiplication of a scalar with the identity matrix. (Contributed by AV, 30-Oct-2019.) |
Ref | Expression |
---|---|
scmatscmide.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatscmide.b | ⊢ 𝐵 = (Base‘𝑅) |
scmatscmide.0 | ⊢ 0 = (0g‘𝑅) |
scmatscmide.1 | ⊢ 1 = (1r‘𝐴) |
scmatscmide.m | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
Ref | Expression |
---|---|
scmatscmide | ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = if(𝐼 = 𝐽, 𝐶, 0 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1193 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
2 | simp3 1139 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → 𝐶 ∈ 𝐵) | |
3 | scmatscmide.a | . . . . . . . 8 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
4 | 3 | matring 21194 | . . . . . . 7 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
5 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
6 | scmatscmide.1 | . . . . . . . 8 ⊢ 1 = (1r‘𝐴) | |
7 | 5, 6 | ringidcl 19440 | . . . . . . 7 ⊢ (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴)) |
8 | 4, 7 | syl 17 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴)) |
9 | 8 | 3adant3 1133 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → 1 ∈ (Base‘𝐴)) |
10 | 2, 9 | jca 515 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶 ∈ 𝐵 ∧ 1 ∈ (Base‘𝐴))) |
11 | 10 | adantr 484 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐶 ∈ 𝐵 ∧ 1 ∈ (Base‘𝐴))) |
12 | simpr 488 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) | |
13 | scmatscmide.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
14 | scmatscmide.m | . . . 4 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
15 | eqid 2738 | . . . 4 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
16 | 3, 5, 13, 14, 15 | matvscacell 21187 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝐶 ∈ 𝐵 ∧ 1 ∈ (Base‘𝐴)) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = (𝐶(.r‘𝑅)(𝐼 1 𝐽))) |
17 | 1, 11, 12, 16 | syl3anc 1372 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = (𝐶(.r‘𝑅)(𝐼 1 𝐽))) |
18 | eqid 2738 | . . . 4 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
19 | scmatscmide.0 | . . . 4 ⊢ 0 = (0g‘𝑅) | |
20 | simpl1 1192 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝑁 ∈ Fin) | |
21 | simprl 771 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐼 ∈ 𝑁) | |
22 | simprr 773 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → 𝐽 ∈ 𝑁) | |
23 | 3, 18, 19, 20, 1, 21, 22, 6 | mat1ov 21199 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼 1 𝐽) = if(𝐼 = 𝐽, (1r‘𝑅), 0 )) |
24 | 23 | oveq2d 7186 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐶(.r‘𝑅)(𝐼 1 𝐽)) = (𝐶(.r‘𝑅)if(𝐼 = 𝐽, (1r‘𝑅), 0 ))) |
25 | ovif2 7266 | . . . 4 ⊢ (𝐶(.r‘𝑅)if(𝐼 = 𝐽, (1r‘𝑅), 0 )) = if(𝐼 = 𝐽, (𝐶(.r‘𝑅)(1r‘𝑅)), (𝐶(.r‘𝑅) 0 )) | |
26 | 13, 15, 18 | ringridm 19444 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅)(1r‘𝑅)) = 𝐶) |
27 | 26 | 3adant1 1131 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅)(1r‘𝑅)) = 𝐶) |
28 | 13, 15, 19 | ringrz 19460 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅) 0 ) = 0 ) |
29 | 28 | 3adant1 1131 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅) 0 ) = 0 ) |
30 | 27, 29 | ifeq12d 4435 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → if(𝐼 = 𝐽, (𝐶(.r‘𝑅)(1r‘𝑅)), (𝐶(.r‘𝑅) 0 )) = if(𝐼 = 𝐽, 𝐶, 0 )) |
31 | 25, 30 | syl5eq 2785 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) → (𝐶(.r‘𝑅)if(𝐼 = 𝐽, (1r‘𝑅), 0 )) = if(𝐼 = 𝐽, 𝐶, 0 )) |
32 | 31 | adantr 484 | . 2 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐶(.r‘𝑅)if(𝐼 = 𝐽, (1r‘𝑅), 0 )) = if(𝐼 = 𝐽, 𝐶, 0 )) |
33 | 17, 24, 32 | 3eqtrd 2777 | 1 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝐶 ∈ 𝐵) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐼(𝐶 ∗ 1 )𝐽) = if(𝐼 = 𝐽, 𝐶, 0 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1088 = wceq 1542 ∈ wcel 2114 ifcif 4414 ‘cfv 6339 (class class class)co 7170 Fincfn 8555 Basecbs 16586 .rcmulr 16669 ·𝑠 cvsca 16672 0gc0g 16816 1rcur 19370 Ringcrg 19416 Mat cmat 21158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-rep 5154 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7479 ax-cnex 10671 ax-resscn 10672 ax-1cn 10673 ax-icn 10674 ax-addcl 10675 ax-addrcl 10676 ax-mulcl 10677 ax-mulrcl 10678 ax-mulcom 10679 ax-addass 10680 ax-mulass 10681 ax-distr 10682 ax-i2m1 10683 ax-1ne0 10684 ax-1rid 10685 ax-rnegex 10686 ax-rrecex 10687 ax-cnre 10688 ax-pre-lttri 10689 ax-pre-lttrn 10690 ax-pre-ltadd 10691 ax-pre-mulgt0 10692 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-nel 3039 df-ral 3058 df-rex 3059 df-reu 3060 df-rmo 3061 df-rab 3062 df-v 3400 df-sbc 3681 df-csb 3791 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-pss 3862 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-tp 4521 df-op 4523 df-ot 4525 df-uni 4797 df-int 4837 df-iun 4883 df-iin 4884 df-br 5031 df-opab 5093 df-mpt 5111 df-tr 5137 df-id 5429 df-eprel 5434 df-po 5442 df-so 5443 df-fr 5483 df-se 5484 df-we 5485 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-pred 6129 df-ord 6175 df-on 6176 df-lim 6177 df-suc 6178 df-iota 6297 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7127 df-ov 7173 df-oprab 7174 df-mpo 7175 df-of 7425 df-om 7600 df-1st 7714 df-2nd 7715 df-supp 7857 df-wrecs 7976 df-recs 8037 df-rdg 8075 df-1o 8131 df-er 8320 df-map 8439 df-ixp 8508 df-en 8556 df-dom 8557 df-sdom 8558 df-fin 8559 df-fsupp 8907 df-sup 8979 df-oi 9047 df-card 9441 df-pnf 10755 df-mnf 10756 df-xr 10757 df-ltxr 10758 df-le 10759 df-sub 10950 df-neg 10951 df-nn 11717 df-2 11779 df-3 11780 df-4 11781 df-5 11782 df-6 11783 df-7 11784 df-8 11785 df-9 11786 df-n0 11977 df-z 12063 df-dec 12180 df-uz 12325 df-fz 12982 df-fzo 13125 df-seq 13461 df-hash 13783 df-struct 16588 df-ndx 16589 df-slot 16590 df-base 16592 df-sets 16593 df-ress 16594 df-plusg 16681 df-mulr 16682 df-sca 16684 df-vsca 16685 df-ip 16686 df-tset 16687 df-ple 16688 df-ds 16690 df-hom 16692 df-cco 16693 df-0g 16818 df-gsum 16819 df-prds 16824 df-pws 16826 df-mre 16960 df-mrc 16961 df-acs 16963 df-mgm 17968 df-sgrp 18017 df-mnd 18028 df-mhm 18072 df-submnd 18073 df-grp 18222 df-minusg 18223 df-sbg 18224 df-mulg 18343 df-subg 18394 df-ghm 18474 df-cntz 18565 df-cmn 19026 df-abl 19027 df-mgp 19359 df-ur 19371 df-ring 19418 df-subrg 19652 df-lmod 19755 df-lss 19823 df-sra 20063 df-rgmod 20064 df-dsmm 20548 df-frlm 20563 df-mamu 21137 df-mat 21159 |
This theorem is referenced by: scmatscmiddistr 21259 scmate 21261 scmatmats 21262 scmatf1 21282 pmatcollpwscmatlem1 21540 pmatcollpwscmatlem2 21541 |
Copyright terms: Public domain | W3C validator |