| Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgmulc2nclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for itgmulc2nc 37689; cf. itgmulc2lem1 25740. (Contributed by Brendan Leahy, 17-Nov-2017.) |
| Ref | Expression |
|---|---|
| itgmulc2nc.1 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| itgmulc2nc.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| itgmulc2nc.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
| itgmulc2nc.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) |
| itgmulc2nc.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| itgmulc2nc.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| itgmulc2nc.6 | ⊢ (𝜑 → 0 ≤ 𝐶) |
| itgmulc2nc.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| itgmulc2nclem1 | ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgmulc2nc.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 2 | itgmulc2nc.7 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 3 | elrege0 13422 | . . . . . . . 8 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| 5 | 0e0icopnf 13426 | . . . . . . . 8 ⊢ 0 ∈ (0[,)+∞) | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈ (0[,)+∞)) |
| 7 | 4, 6 | ifclda 4527 | . . . . . 6 ⊢ (𝜑 → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
| 9 | 8 | fmpttd 7090 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞)) |
| 10 | itgmulc2nc.3 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
| 11 | 1, 2 | iblpos 25701 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ))) |
| 12 | 10, 11 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ)) |
| 13 | 12 | simprd 495 | . . . 4 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) |
| 14 | itgmulc2nc.4 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 15 | itgmulc2nc.6 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝐶) | |
| 16 | elrege0 13422 | . . . . 5 ⊢ (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) | |
| 17 | 14, 15, 16 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
| 18 | 9, 13, 17 | itg2mulc 25655 | . . 3 ⊢ (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))))) |
| 19 | reex 11166 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ V) |
| 21 | itgmulc2nc.1 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐶 ∈ ℂ) |
| 23 | fconstmpt 5703 | . . . . . . 7 ⊢ (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶) | |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶)) |
| 25 | eqidd 2731 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) | |
| 26 | 20, 22, 8, 24, 25 | offval2 7676 | . . . . 5 ⊢ (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
| 27 | ovif2 7491 | . . . . . . 7 ⊢ (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0)) = if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), (𝐶 · 0)) | |
| 28 | 21 | mul01d 11380 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶 · 0) = 0) |
| 29 | 28 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐶 · 0) = 0) |
| 30 | 29 | ifeq2d 4512 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), (𝐶 · 0)) = if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)) |
| 31 | 27, 30 | eqtrid 2777 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0)) = if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)) |
| 32 | 31 | mpteq2dva 5203 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0))) |
| 33 | 26, 32 | eqtrd 2765 | . . . 4 ⊢ (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0))) |
| 34 | 33 | fveq2d 6865 | . . 3 ⊢ (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)))) |
| 35 | 18, 34 | eqtr3d 2767 | . 2 ⊢ (𝜑 → (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)))) |
| 36 | 1, 10, 2 | itgposval 25704 | . . 3 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
| 37 | 36 | oveq2d 7406 | . 2 ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))))) |
| 38 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
| 39 | 38, 1 | remulcld 11211 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℝ) |
| 40 | itgmulc2nc.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 41 | itgmulc2nc.m | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) | |
| 42 | 21, 40, 10, 41 | iblmulc2nc 37686 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1) |
| 43 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐶) |
| 44 | 38, 1, 43, 2 | mulge0d 11762 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (𝐶 · 𝐵)) |
| 45 | 39, 42, 44 | itgposval 25704 | . 2 ⊢ (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)))) |
| 46 | 35, 37, 45 | 3eqtr4d 2775 | 1 ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ifcif 4491 {csn 4592 class class class wbr 5110 ↦ cmpt 5191 × cxp 5639 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 ℂcc 11073 ℝcr 11074 0cc0 11075 · cmul 11080 +∞cpnf 11212 ≤ cle 11216 [,)cico 13315 MblFncmbf 25522 ∫2citg2 25524 𝐿1cibl 25525 ∫citg 25526 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-ofr 7657 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 df-rest 17392 df-topgen 17413 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-top 22788 df-topon 22805 df-bases 22840 df-cmp 23281 df-ovol 25372 df-vol 25373 df-mbf 25527 df-itg1 25528 df-itg2 25529 df-ibl 25530 df-itg 25531 df-0p 25578 |
| This theorem is referenced by: itgmulc2nclem2 37688 |
| Copyright terms: Public domain | W3C validator |