| Mathbox for Brendan Leahy |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > itgmulc2nclem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for itgmulc2nc 37712; cf. itgmulc2lem1 25785. (Contributed by Brendan Leahy, 17-Nov-2017.) |
| Ref | Expression |
|---|---|
| itgmulc2nc.1 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| itgmulc2nc.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) |
| itgmulc2nc.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) |
| itgmulc2nc.m | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) |
| itgmulc2nc.4 | ⊢ (𝜑 → 𝐶 ∈ ℝ) |
| itgmulc2nc.5 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) |
| itgmulc2nc.6 | ⊢ (𝜑 → 0 ≤ 𝐶) |
| itgmulc2nc.7 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) |
| Ref | Expression |
|---|---|
| itgmulc2nclem1 | ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | itgmulc2nc.5 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ℝ) | |
| 2 | itgmulc2nc.7 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐵) | |
| 3 | elrege0 13471 | . . . . . . . 8 ⊢ (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ (0[,)+∞)) |
| 5 | 0e0icopnf 13475 | . . . . . . . 8 ⊢ 0 ∈ (0[,)+∞) | |
| 6 | 5 | a1i 11 | . . . . . . 7 ⊢ ((𝜑 ∧ ¬ 𝑥 ∈ 𝐴) → 0 ∈ (0[,)+∞)) |
| 7 | 4, 6 | ifclda 4536 | . . . . . 6 ⊢ (𝜑 → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
| 8 | 7 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, 𝐵, 0) ∈ (0[,)+∞)) |
| 9 | 8 | fmpttd 7105 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞)) |
| 10 | itgmulc2nc.3 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1) | |
| 11 | 1, 2 | iblpos 25746 | . . . . . 6 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ 𝐿1 ↔ ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ))) |
| 12 | 10, 11 | mpbid 232 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ↦ 𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ)) |
| 13 | 12 | simprd 495 | . . . 4 ⊢ (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) ∈ ℝ) |
| 14 | itgmulc2nc.4 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ ℝ) | |
| 15 | itgmulc2nc.6 | . . . . 5 ⊢ (𝜑 → 0 ≤ 𝐶) | |
| 16 | elrege0 13471 | . . . . 5 ⊢ (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶)) | |
| 17 | 14, 15, 16 | sylanbrc 583 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ (0[,)+∞)) |
| 18 | 9, 13, 17 | itg2mulc 25700 | . . 3 ⊢ (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))))) |
| 19 | reex 11220 | . . . . . . 7 ⊢ ℝ ∈ V | |
| 20 | 19 | a1i 11 | . . . . . 6 ⊢ (𝜑 → ℝ ∈ V) |
| 21 | itgmulc2nc.1 | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 22 | 21 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐶 ∈ ℂ) |
| 23 | fconstmpt 5716 | . . . . . . 7 ⊢ (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶) | |
| 24 | 23 | a1i 11 | . . . . . 6 ⊢ (𝜑 → (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶)) |
| 25 | eqidd 2736 | . . . . . 6 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) | |
| 26 | 20, 22, 8, 24, 25 | offval2 7691 | . . . . 5 ⊢ (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
| 27 | ovif2 7506 | . . . . . . 7 ⊢ (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0)) = if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), (𝐶 · 0)) | |
| 28 | 21 | mul01d 11434 | . . . . . . . . 9 ⊢ (𝜑 → (𝐶 · 0) = 0) |
| 29 | 28 | adantr 480 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐶 · 0) = 0) |
| 30 | 29 | ifeq2d 4521 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), (𝐶 · 0)) = if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)) |
| 31 | 27, 30 | eqtrid 2782 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0)) = if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)) |
| 32 | 31 | mpteq2dva 5214 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0))) |
| 33 | 26, 32 | eqtrd 2770 | . . . 4 ⊢ (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0))) |
| 34 | 33 | fveq2d 6880 | . . 3 ⊢ (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)))) |
| 35 | 18, 34 | eqtr3d 2772 | . 2 ⊢ (𝜑 → (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)))) |
| 36 | 1, 10, 2 | itgposval 25749 | . . 3 ⊢ (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0)))) |
| 37 | 36 | oveq2d 7421 | . 2 ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, 𝐵, 0))))) |
| 38 | 14 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐶 ∈ ℝ) |
| 39 | 38, 1 | remulcld 11265 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐶 · 𝐵) ∈ ℝ) |
| 40 | itgmulc2nc.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ 𝑉) | |
| 41 | itgmulc2nc.m | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn) | |
| 42 | 21, 40, 10, 41 | iblmulc2nc 37709 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1) |
| 43 | 15 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ 𝐶) |
| 44 | 38, 1, 43, 2 | mulge0d 11814 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 0 ≤ (𝐶 · 𝐵)) |
| 45 | 39, 42, 44 | itgposval 25749 | . 2 ⊢ (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥 ∈ 𝐴, (𝐶 · 𝐵), 0)))) |
| 46 | 35, 37, 45 | 3eqtr4d 2780 | 1 ⊢ (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 Vcvv 3459 ifcif 4500 {csn 4601 class class class wbr 5119 ↦ cmpt 5201 × cxp 5652 ‘cfv 6531 (class class class)co 7405 ∘f cof 7669 ℂcc 11127 ℝcr 11128 0cc0 11129 · cmul 11134 +∞cpnf 11266 ≤ cle 11270 [,)cico 13364 MblFncmbf 25567 ∫2citg2 25569 𝐿1cibl 25570 ∫citg 25571 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-inf2 9655 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 ax-addf 11208 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-disj 5087 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-se 5607 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-isom 6540 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-of 7671 df-ofr 7672 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-map 8842 df-pm 8843 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-fi 9423 df-sup 9454 df-inf 9455 df-oi 9524 df-dju 9915 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-n0 12502 df-z 12589 df-uz 12853 df-q 12965 df-rp 13009 df-xneg 13128 df-xadd 13129 df-xmul 13130 df-ioo 13366 df-ico 13368 df-icc 13369 df-fz 13525 df-fzo 13672 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-hash 14349 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-clim 15504 df-sum 15703 df-rest 17436 df-topgen 17457 df-psmet 21307 df-xmet 21308 df-met 21309 df-bl 21310 df-mopn 21311 df-top 22832 df-topon 22849 df-bases 22884 df-cmp 23325 df-ovol 25417 df-vol 25418 df-mbf 25572 df-itg1 25573 df-itg2 25574 df-ibl 25575 df-itg 25576 df-0p 25623 |
| This theorem is referenced by: itgmulc2nclem2 37711 |
| Copyright terms: Public domain | W3C validator |