Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  itgmulc2nclem1 Structured version   Visualization version   GIF version

Theorem itgmulc2nclem1 37693
Description: Lemma for itgmulc2nc 37695; cf. itgmulc2lem1 25867. (Contributed by Brendan Leahy, 17-Nov-2017.)
Hypotheses
Ref Expression
itgmulc2nc.1 (𝜑𝐶 ∈ ℂ)
itgmulc2nc.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
itgmulc2nc.3 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
itgmulc2nc.m (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
itgmulc2nc.4 (𝜑𝐶 ∈ ℝ)
itgmulc2nc.5 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
itgmulc2nc.6 (𝜑 → 0 ≤ 𝐶)
itgmulc2nc.7 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
Assertion
Ref Expression
itgmulc2nclem1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝐶   𝜑,𝑥   𝑥,𝑉
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem itgmulc2nclem1
StepHypRef Expression
1 itgmulc2nc.5 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ)
2 itgmulc2nc.7 . . . . . . . 8 ((𝜑𝑥𝐴) → 0 ≤ 𝐵)
3 elrege0 13494 . . . . . . . 8 (𝐵 ∈ (0[,)+∞) ↔ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
41, 2, 3sylanbrc 583 . . . . . . 7 ((𝜑𝑥𝐴) → 𝐵 ∈ (0[,)+∞))
5 0e0icopnf 13498 . . . . . . . 8 0 ∈ (0[,)+∞)
65a1i 11 . . . . . . 7 ((𝜑 ∧ ¬ 𝑥𝐴) → 0 ∈ (0[,)+∞))
74, 6ifclda 4561 . . . . . 6 (𝜑 → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
87adantr 480 . . . . 5 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, 𝐵, 0) ∈ (0[,)+∞))
98fmpttd 7135 . . . 4 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)):ℝ⟶(0[,)+∞))
10 itgmulc2nc.3 . . . . . 6 (𝜑 → (𝑥𝐴𝐵) ∈ 𝐿1)
111, 2iblpos 25828 . . . . . 6 (𝜑 → ((𝑥𝐴𝐵) ∈ 𝐿1 ↔ ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)))
1210, 11mpbid 232 . . . . 5 (𝜑 → ((𝑥𝐴𝐵) ∈ MblFn ∧ (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ))
1312simprd 495 . . . 4 (𝜑 → (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) ∈ ℝ)
14 itgmulc2nc.4 . . . . 5 (𝜑𝐶 ∈ ℝ)
15 itgmulc2nc.6 . . . . 5 (𝜑 → 0 ≤ 𝐶)
16 elrege0 13494 . . . . 5 (𝐶 ∈ (0[,)+∞) ↔ (𝐶 ∈ ℝ ∧ 0 ≤ 𝐶))
1714, 15, 16sylanbrc 583 . . . 4 (𝜑𝐶 ∈ (0[,)+∞))
189, 13, 17itg2mulc 25782 . . 3 (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
19 reex 11246 . . . . . . 7 ℝ ∈ V
2019a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
21 itgmulc2nc.1 . . . . . . 7 (𝜑𝐶 ∈ ℂ)
2221adantr 480 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → 𝐶 ∈ ℂ)
23 fconstmpt 5747 . . . . . . 7 (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶)
2423a1i 11 . . . . . 6 (𝜑 → (ℝ × {𝐶}) = (𝑥 ∈ ℝ ↦ 𝐶))
25 eqidd 2738 . . . . . 6 (𝜑 → (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))
2620, 22, 8, 24, 25offval2 7717 . . . . 5 (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥𝐴, 𝐵, 0))))
27 ovif2 7532 . . . . . . 7 (𝐶 · if(𝑥𝐴, 𝐵, 0)) = if(𝑥𝐴, (𝐶 · 𝐵), (𝐶 · 0))
2821mul01d 11460 . . . . . . . . 9 (𝜑 → (𝐶 · 0) = 0)
2928adantr 480 . . . . . . . 8 ((𝜑𝑥 ∈ ℝ) → (𝐶 · 0) = 0)
3029ifeq2d 4546 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → if(𝑥𝐴, (𝐶 · 𝐵), (𝐶 · 0)) = if(𝑥𝐴, (𝐶 · 𝐵), 0))
3127, 30eqtrid 2789 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝐶 · if(𝑥𝐴, 𝐵, 0)) = if(𝑥𝐴, (𝐶 · 𝐵), 0))
3231mpteq2dva 5242 . . . . 5 (𝜑 → (𝑥 ∈ ℝ ↦ (𝐶 · if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0)))
3326, 32eqtrd 2777 . . . 4 (𝜑 → ((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))) = (𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0)))
3433fveq2d 6910 . . 3 (𝜑 → (∫2‘((ℝ × {𝐶}) ∘f · (𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
3518, 34eqtr3d 2779 . 2 (𝜑 → (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))) = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
361, 10, 2itgposval 25831 . . 3 (𝜑 → ∫𝐴𝐵 d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0))))
3736oveq2d 7447 . 2 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = (𝐶 · (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, 𝐵, 0)))))
3814adantr 480 . . . 4 ((𝜑𝑥𝐴) → 𝐶 ∈ ℝ)
3938, 1remulcld 11291 . . 3 ((𝜑𝑥𝐴) → (𝐶 · 𝐵) ∈ ℝ)
40 itgmulc2nc.2 . . . 4 ((𝜑𝑥𝐴) → 𝐵𝑉)
41 itgmulc2nc.m . . . 4 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ MblFn)
4221, 40, 10, 41iblmulc2nc 37692 . . 3 (𝜑 → (𝑥𝐴 ↦ (𝐶 · 𝐵)) ∈ 𝐿1)
4315adantr 480 . . . 4 ((𝜑𝑥𝐴) → 0 ≤ 𝐶)
4438, 1, 43, 2mulge0d 11840 . . 3 ((𝜑𝑥𝐴) → 0 ≤ (𝐶 · 𝐵))
4539, 42, 44itgposval 25831 . 2 (𝜑 → ∫𝐴(𝐶 · 𝐵) d𝑥 = (∫2‘(𝑥 ∈ ℝ ↦ if(𝑥𝐴, (𝐶 · 𝐵), 0))))
4635, 37, 453eqtr4d 2787 1 (𝜑 → (𝐶 · ∫𝐴𝐵 d𝑥) = ∫𝐴(𝐶 · 𝐵) d𝑥)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3480  ifcif 4525  {csn 4626   class class class wbr 5143  cmpt 5225   × cxp 5683  cfv 6561  (class class class)co 7431  f cof 7695  cc 11153  cr 11154  0cc0 11155   · cmul 11160  +∞cpnf 11292  cle 11296  [,)cico 13389  MblFncmbf 25649  2citg2 25651  𝐿1cibl 25652  citg 25653
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fi 9451  df-sup 9482  df-inf 9483  df-oi 9550  df-dju 9941  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-n0 12527  df-z 12614  df-uz 12879  df-q 12991  df-rp 13035  df-xneg 13154  df-xadd 13155  df-xmul 13156  df-ioo 13391  df-ico 13393  df-icc 13394  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-rest 17467  df-topgen 17488  df-psmet 21356  df-xmet 21357  df-met 21358  df-bl 21359  df-mopn 21360  df-top 22900  df-topon 22917  df-bases 22953  df-cmp 23395  df-ovol 25499  df-vol 25500  df-mbf 25654  df-itg1 25655  df-itg2 25656  df-ibl 25657  df-itg 25658  df-0p 25705
This theorem is referenced by:  itgmulc2nclem2  37694
  Copyright terms: Public domain W3C validator