MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulmarep1el Structured version   Visualization version   GIF version

Theorem mulmarep1el 22074
Description: Element by element multiplication of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
ma1repvcl.1 1 = (1r𝐴)
mulmarep1el.0 0 = (0g𝑅)
mulmarep1el.e 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
Assertion
Ref Expression
mulmarep1el ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))

Proof of Theorem mulmarep1el
StepHypRef Expression
1 simp3 1139 . . . . 5 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐿𝑁)
2 simp2 1138 . . . . 5 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐽𝑁)
31, 2jca 513 . . . 4 ((𝐼𝑁𝐽𝑁𝐿𝑁) → (𝐿𝑁𝐽𝑁))
4 marepvcl.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 marepvcl.b . . . . 5 𝐵 = (Base‘𝐴)
6 marepvcl.v . . . . 5 𝑉 = ((Base‘𝑅) ↑m 𝑁)
7 ma1repvcl.1 . . . . 5 1 = (1r𝐴)
8 mulmarep1el.0 . . . . 5 0 = (0g𝑅)
9 mulmarep1el.e . . . . 5 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
104, 5, 6, 7, 8, 9ma1repveval 22073 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐿𝑁𝐽𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 )))
113, 10syl3an3 1166 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 )))
1211oveq2d 7425 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))))
13 ovif2 7507 . . 3 ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )))
1413a1i 11 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 ))))
15 ovif2 7507 . . . 4 ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )) = if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)), ((𝐼𝑋𝐿)(.r𝑅) 0 ))
16 simp1 1137 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝑅 ∈ Ring)
17 simp1 1137 . . . . . . . 8 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐼𝑁)
18173ad2ant3 1136 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝐼𝑁)
1913ad2ant3 1136 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝐿𝑁)
205eleq2i 2826 . . . . . . . . . 10 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2120biimpi 215 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
22213ad2ant1 1134 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑋 ∈ (Base‘𝐴))
23223ad2ant2 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝑋 ∈ (Base‘𝐴))
24 eqid 2733 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
254, 24matecl 21927 . . . . . . 7 ((𝐼𝑁𝐿𝑁𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅))
2618, 19, 23, 25syl3anc 1372 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅))
27 eqid 2733 . . . . . . 7 (.r𝑅) = (.r𝑅)
28 eqid 2733 . . . . . . 7 (1r𝑅) = (1r𝑅)
2924, 27, 28ringridm 20087 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)) = (𝐼𝑋𝐿))
3016, 26, 29syl2anc 585 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)) = (𝐼𝑋𝐿))
3124, 27, 8ringrz 20108 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r𝑅) 0 ) = 0 )
3216, 26, 31syl2anc 585 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅) 0 ) = 0 )
3330, 32ifeq12d 4550 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)), ((𝐼𝑋𝐿)(.r𝑅) 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))
3415, 33eqtrid 2785 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))
3534ifeq2d 4549 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))
3612, 14, 353eqtrd 2777 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  ifcif 4529  cfv 6544  (class class class)co 7409  m cmap 8820  Basecbs 17144  .rcmulr 17198  0gc0g 17385  1rcur 20004  Ringcrg 20056   Mat cmat 21907   matRepV cmatrepV 22059
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4910  df-int 4952  df-iun 5000  df-iin 5001  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-se 5633  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-isom 6553  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-sup 9437  df-oi 9505  df-card 9934  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-fzo 13628  df-seq 13967  df-hash 14291  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-hom 17221  df-cco 17222  df-0g 17387  df-gsum 17388  df-prds 17393  df-pws 17395  df-mre 17530  df-mrc 17531  df-acs 17533  df-mgm 18561  df-sgrp 18610  df-mnd 18626  df-mhm 18671  df-submnd 18672  df-grp 18822  df-minusg 18823  df-sbg 18824  df-mulg 18951  df-subg 19003  df-ghm 19090  df-cntz 19181  df-cmn 19650  df-abl 19651  df-mgp 19988  df-ur 20005  df-ring 20058  df-subrg 20317  df-lmod 20473  df-lss 20543  df-sra 20785  df-rgmod 20786  df-dsmm 21287  df-frlm 21302  df-mamu 21886  df-mat 21908  df-marepv 22061
This theorem is referenced by:  mulmarep1gsum1  22075  mulmarep1gsum2  22076
  Copyright terms: Public domain W3C validator