| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulmarep1el | Structured version Visualization version GIF version | ||
| Description: Element by element multiplication of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| Ref | Expression |
|---|---|
| marepvcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| marepvcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| marepvcl.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| ma1repvcl.1 | ⊢ 1 = (1r‘𝐴) |
| mulmarep1el.0 | ⊢ 0 = (0g‘𝑅) |
| mulmarep1el.e | ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) |
| Ref | Expression |
|---|---|
| mulmarep1el | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . . 5 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐿 ∈ 𝑁) | |
| 2 | simp2 1137 | . . . . 5 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐽 ∈ 𝑁) | |
| 3 | 1, 2 | jca 511 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐿 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) |
| 4 | marepvcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 5 | marepvcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 6 | marepvcl.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 7 | ma1repvcl.1 | . . . . 5 ⊢ 1 = (1r‘𝐴) | |
| 8 | mulmarep1el.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 9 | mulmarep1el.e | . . . . 5 ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) | |
| 10 | 4, 5, 6, 7, 8, 9 | ma1repveval 22434 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐿 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) |
| 11 | 3, 10 | syl3an3 1165 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) |
| 12 | 11 | oveq2d 7385 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 )))) |
| 13 | ovif2 7468 | . . 3 ⊢ ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) | |
| 14 | 13 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 )))) |
| 15 | ovif2 7468 | . . . 4 ⊢ ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 )) = if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)), ((𝐼𝑋𝐿)(.r‘𝑅) 0 )) | |
| 16 | simp1 1136 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
| 17 | simp1 1136 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
| 18 | 17 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝐼 ∈ 𝑁) |
| 19 | 1 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝐿 ∈ 𝑁) |
| 20 | 5 | eleq2i 2820 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘𝐴)) |
| 21 | 20 | biimpi 216 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝐴)) |
| 22 | 21 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
| 23 | 22 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑋 ∈ (Base‘𝐴)) |
| 24 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 25 | 4, 24 | matecl 22288 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅)) |
| 26 | 18, 19, 23, 25 | syl3anc 1373 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅)) |
| 27 | eqid 2729 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 28 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 29 | 24, 27, 28 | ringridm 20155 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)) = (𝐼𝑋𝐿)) |
| 30 | 16, 26, 29 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)) = (𝐼𝑋𝐿)) |
| 31 | 24, 27, 8 | ringrz 20179 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r‘𝑅) 0 ) = 0 ) |
| 32 | 16, 26, 31 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅) 0 ) = 0 ) |
| 33 | 30, 32 | ifeq12d 4506 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)), ((𝐼𝑋𝐿)(.r‘𝑅) 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )) |
| 34 | 15, 33 | eqtrid 2776 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )) |
| 35 | 34 | ifeq2d 4505 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) |
| 36 | 12, 14, 35 | 3eqtrd 2768 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4484 ‘cfv 6499 (class class class)co 7369 ↑m cmap 8776 Basecbs 17155 .rcmulr 17197 0gc0g 17378 1rcur 20066 Ringcrg 20118 Mat cmat 22270 matRepV cmatrepV 22420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19121 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-subrg 20455 df-lmod 20744 df-lss 20814 df-sra 21056 df-rgmod 21057 df-dsmm 21617 df-frlm 21632 df-mamu 22254 df-mat 22271 df-marepv 22422 |
| This theorem is referenced by: mulmarep1gsum1 22436 mulmarep1gsum2 22437 |
| Copyright terms: Public domain | W3C validator |