| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulmarep1el | Structured version Visualization version GIF version | ||
| Description: Element by element multiplication of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| Ref | Expression |
|---|---|
| marepvcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| marepvcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| marepvcl.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| ma1repvcl.1 | ⊢ 1 = (1r‘𝐴) |
| mulmarep1el.0 | ⊢ 0 = (0g‘𝑅) |
| mulmarep1el.e | ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) |
| Ref | Expression |
|---|---|
| mulmarep1el | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . . 5 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐿 ∈ 𝑁) | |
| 2 | simp2 1137 | . . . . 5 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐽 ∈ 𝑁) | |
| 3 | 1, 2 | jca 511 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐿 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) |
| 4 | marepvcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 5 | marepvcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 6 | marepvcl.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 7 | ma1repvcl.1 | . . . . 5 ⊢ 1 = (1r‘𝐴) | |
| 8 | mulmarep1el.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 9 | mulmarep1el.e | . . . . 5 ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) | |
| 10 | 4, 5, 6, 7, 8, 9 | ma1repveval 22481 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐿 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) |
| 11 | 3, 10 | syl3an3 1165 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) |
| 12 | 11 | oveq2d 7357 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 )))) |
| 13 | ovif2 7440 | . . 3 ⊢ ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) | |
| 14 | 13 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 )))) |
| 15 | ovif2 7440 | . . . 4 ⊢ ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 )) = if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)), ((𝐼𝑋𝐿)(.r‘𝑅) 0 )) | |
| 16 | simp1 1136 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
| 17 | simp1 1136 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
| 18 | 17 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝐼 ∈ 𝑁) |
| 19 | 1 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝐿 ∈ 𝑁) |
| 20 | 5 | eleq2i 2823 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘𝐴)) |
| 21 | 20 | biimpi 216 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝐴)) |
| 22 | 21 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
| 23 | 22 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑋 ∈ (Base‘𝐴)) |
| 24 | eqid 2731 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 25 | 4, 24 | matecl 22335 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅)) |
| 26 | 18, 19, 23, 25 | syl3anc 1373 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅)) |
| 27 | eqid 2731 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 28 | eqid 2731 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 29 | 24, 27, 28 | ringridm 20183 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)) = (𝐼𝑋𝐿)) |
| 30 | 16, 26, 29 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)) = (𝐼𝑋𝐿)) |
| 31 | 24, 27, 8 | ringrz 20207 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r‘𝑅) 0 ) = 0 ) |
| 32 | 16, 26, 31 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅) 0 ) = 0 ) |
| 33 | 30, 32 | ifeq12d 4492 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)), ((𝐼𝑋𝐿)(.r‘𝑅) 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )) |
| 34 | 15, 33 | eqtrid 2778 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )) |
| 35 | 34 | ifeq2d 4491 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) |
| 36 | 12, 14, 35 | 3eqtrd 2770 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ifcif 4470 ‘cfv 6476 (class class class)co 7341 ↑m cmap 8745 Basecbs 17115 .rcmulr 17157 0gc0g 17338 1rcur 20094 Ringcrg 20146 Mat cmat 22317 matRepV cmatrepV 22467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-ot 4580 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-ring 20148 df-subrg 20480 df-lmod 20790 df-lss 20860 df-sra 21102 df-rgmod 21103 df-dsmm 21664 df-frlm 21679 df-mamu 22301 df-mat 22318 df-marepv 22469 |
| This theorem is referenced by: mulmarep1gsum1 22483 mulmarep1gsum2 22484 |
| Copyright terms: Public domain | W3C validator |