MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulmarep1el Structured version   Visualization version   GIF version

Theorem mulmarep1el 21177
Description: Element by element multiplication of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
ma1repvcl.1 1 = (1r𝐴)
mulmarep1el.0 0 = (0g𝑅)
mulmarep1el.e 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
Assertion
Ref Expression
mulmarep1el ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))

Proof of Theorem mulmarep1el
StepHypRef Expression
1 simp3 1135 . . . . 5 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐿𝑁)
2 simp2 1134 . . . . 5 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐽𝑁)
31, 2jca 515 . . . 4 ((𝐼𝑁𝐽𝑁𝐿𝑁) → (𝐿𝑁𝐽𝑁))
4 marepvcl.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 marepvcl.b . . . . 5 𝐵 = (Base‘𝐴)
6 marepvcl.v . . . . 5 𝑉 = ((Base‘𝑅) ↑m 𝑁)
7 ma1repvcl.1 . . . . 5 1 = (1r𝐴)
8 mulmarep1el.0 . . . . 5 0 = (0g𝑅)
9 mulmarep1el.e . . . . 5 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
104, 5, 6, 7, 8, 9ma1repveval 21176 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐿𝑁𝐽𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 )))
113, 10syl3an3 1162 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 )))
1211oveq2d 7151 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))))
13 ovif2 7231 . . 3 ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )))
1413a1i 11 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 ))))
15 ovif2 7231 . . . 4 ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )) = if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)), ((𝐼𝑋𝐿)(.r𝑅) 0 ))
16 simp1 1133 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝑅 ∈ Ring)
17 simp1 1133 . . . . . . . 8 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐼𝑁)
18173ad2ant3 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝐼𝑁)
1913ad2ant3 1132 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝐿𝑁)
205eleq2i 2881 . . . . . . . . . 10 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2120biimpi 219 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
22213ad2ant1 1130 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑋 ∈ (Base‘𝐴))
23223ad2ant2 1131 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝑋 ∈ (Base‘𝐴))
24 eqid 2798 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
254, 24matecl 21030 . . . . . . 7 ((𝐼𝑁𝐿𝑁𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅))
2618, 19, 23, 25syl3anc 1368 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅))
27 eqid 2798 . . . . . . 7 (.r𝑅) = (.r𝑅)
28 eqid 2798 . . . . . . 7 (1r𝑅) = (1r𝑅)
2924, 27, 28ringridm 19318 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)) = (𝐼𝑋𝐿))
3016, 26, 29syl2anc 587 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)) = (𝐼𝑋𝐿))
3124, 27, 8ringrz 19334 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r𝑅) 0 ) = 0 )
3216, 26, 31syl2anc 587 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅) 0 ) = 0 )
3330, 32ifeq12d 4445 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)), ((𝐼𝑋𝐿)(.r𝑅) 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))
3415, 33syl5eq 2845 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))
3534ifeq2d 4444 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))
3612, 14, 353eqtrd 2837 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  ifcif 4425  cfv 6324  (class class class)co 7135  m cmap 8389  Basecbs 16475  .rcmulr 16558  0gc0g 16705  1rcur 19244  Ringcrg 19290   Mat cmat 21012   matRepV cmatrepV 21162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-iin 4884  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-se 5479  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-oi 8958  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-fzo 13029  df-seq 13365  df-hash 13687  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-gsum 16708  df-prds 16713  df-pws 16715  df-mre 16849  df-mrc 16850  df-acs 16852  df-mgm 17844  df-sgrp 17893  df-mnd 17904  df-mhm 17948  df-submnd 17949  df-grp 18098  df-minusg 18099  df-sbg 18100  df-mulg 18217  df-subg 18268  df-ghm 18348  df-cntz 18439  df-cmn 18900  df-abl 18901  df-mgp 19233  df-ur 19245  df-ring 19292  df-subrg 19526  df-lmod 19629  df-lss 19697  df-sra 19937  df-rgmod 19938  df-dsmm 20421  df-frlm 20436  df-mamu 20991  df-mat 21013  df-marepv 21164
This theorem is referenced by:  mulmarep1gsum1  21178  mulmarep1gsum2  21179
  Copyright terms: Public domain W3C validator