MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulmarep1el Structured version   Visualization version   GIF version

Theorem mulmarep1el 22457
Description: Element by element multiplication of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.)
Hypotheses
Ref Expression
marepvcl.a 𝐴 = (𝑁 Mat 𝑅)
marepvcl.b 𝐵 = (Base‘𝐴)
marepvcl.v 𝑉 = ((Base‘𝑅) ↑m 𝑁)
ma1repvcl.1 1 = (1r𝐴)
mulmarep1el.0 0 = (0g𝑅)
mulmarep1el.e 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
Assertion
Ref Expression
mulmarep1el ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))

Proof of Theorem mulmarep1el
StepHypRef Expression
1 simp3 1138 . . . . 5 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐿𝑁)
2 simp2 1137 . . . . 5 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐽𝑁)
31, 2jca 511 . . . 4 ((𝐼𝑁𝐽𝑁𝐿𝑁) → (𝐿𝑁𝐽𝑁))
4 marepvcl.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 marepvcl.b . . . . 5 𝐵 = (Base‘𝐴)
6 marepvcl.v . . . . 5 𝑉 = ((Base‘𝑅) ↑m 𝑁)
7 ma1repvcl.1 . . . . 5 1 = (1r𝐴)
8 mulmarep1el.0 . . . . 5 0 = (0g𝑅)
9 mulmarep1el.e . . . . 5 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾)
104, 5, 6, 7, 8, 9ma1repveval 22456 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐿𝑁𝐽𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 )))
113, 10syl3an3 1165 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 )))
1211oveq2d 7365 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))))
13 ovif2 7448 . . 3 ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )))
1413a1i 11 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐾, (𝐶𝐿), if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 ))))
15 ovif2 7448 . . . 4 ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )) = if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)), ((𝐼𝑋𝐿)(.r𝑅) 0 ))
16 simp1 1136 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝑅 ∈ Ring)
17 simp1 1136 . . . . . . . 8 ((𝐼𝑁𝐽𝑁𝐿𝑁) → 𝐼𝑁)
18173ad2ant3 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝐼𝑁)
1913ad2ant3 1135 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝐿𝑁)
205eleq2i 2820 . . . . . . . . . 10 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
2120biimpi 216 . . . . . . . . 9 (𝑋𝐵𝑋 ∈ (Base‘𝐴))
22213ad2ant1 1133 . . . . . . . 8 ((𝑋𝐵𝐶𝑉𝐾𝑁) → 𝑋 ∈ (Base‘𝐴))
23223ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → 𝑋 ∈ (Base‘𝐴))
24 eqid 2729 . . . . . . . 8 (Base‘𝑅) = (Base‘𝑅)
254, 24matecl 22310 . . . . . . 7 ((𝐼𝑁𝐿𝑁𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅))
2618, 19, 23, 25syl3anc 1373 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅))
27 eqid 2729 . . . . . . 7 (.r𝑅) = (.r𝑅)
28 eqid 2729 . . . . . . 7 (1r𝑅) = (1r𝑅)
2924, 27, 28ringridm 20155 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)) = (𝐼𝑋𝐿))
3016, 26, 29syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)) = (𝐼𝑋𝐿))
3124, 27, 8ringrz 20179 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r𝑅) 0 ) = 0 )
3216, 26, 31syl2anc 584 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅) 0 ) = 0 )
3330, 32ifeq12d 4498 . . . 4 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r𝑅)(1r𝑅)), ((𝐼𝑋𝐿)(.r𝑅) 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))
3415, 33eqtrid 2776 . . 3 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))
3534ifeq2d 4497 . 2 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), ((𝐼𝑋𝐿)(.r𝑅)if(𝐽 = 𝐿, (1r𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))
3612, 14, 353eqtrd 2768 1 ((𝑅 ∈ Ring ∧ (𝑋𝐵𝐶𝑉𝐾𝑁) ∧ (𝐼𝑁𝐽𝑁𝐿𝑁)) → ((𝐼𝑋𝐿)(.r𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r𝑅)(𝐶𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  ifcif 4476  cfv 6482  (class class class)co 7349  m cmap 8753  Basecbs 17120  .rcmulr 17162  0gc0g 17343  1rcur 20066  Ringcrg 20118   Mat cmat 22292   matRepV cmatrepV 22442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-fzo 13558  df-seq 13909  df-hash 14238  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-hom 17185  df-cco 17186  df-0g 17345  df-gsum 17346  df-prds 17351  df-pws 17353  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-mulg 18947  df-subg 19002  df-ghm 19092  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-subrg 20455  df-lmod 20765  df-lss 20835  df-sra 21077  df-rgmod 21078  df-dsmm 21639  df-frlm 21654  df-mamu 22276  df-mat 22293  df-marepv 22444
This theorem is referenced by:  mulmarep1gsum1  22458  mulmarep1gsum2  22459
  Copyright terms: Public domain W3C validator