| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > mulmarep1el | Structured version Visualization version GIF version | ||
| Description: Element by element multiplication of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
| Ref | Expression |
|---|---|
| marepvcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| marepvcl.b | ⊢ 𝐵 = (Base‘𝐴) |
| marepvcl.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
| ma1repvcl.1 | ⊢ 1 = (1r‘𝐴) |
| mulmarep1el.0 | ⊢ 0 = (0g‘𝑅) |
| mulmarep1el.e | ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) |
| Ref | Expression |
|---|---|
| mulmarep1el | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1138 | . . . . 5 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐿 ∈ 𝑁) | |
| 2 | simp2 1137 | . . . . 5 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐽 ∈ 𝑁) | |
| 3 | 1, 2 | jca 511 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐿 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) |
| 4 | marepvcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 5 | marepvcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 6 | marepvcl.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
| 7 | ma1repvcl.1 | . . . . 5 ⊢ 1 = (1r‘𝐴) | |
| 8 | mulmarep1el.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 9 | mulmarep1el.e | . . . . 5 ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) | |
| 10 | 4, 5, 6, 7, 8, 9 | ma1repveval 22458 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐿 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) |
| 11 | 3, 10 | syl3an3 1165 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) |
| 12 | 11 | oveq2d 7403 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 )))) |
| 13 | ovif2 7488 | . . 3 ⊢ ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) | |
| 14 | 13 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 )))) |
| 15 | ovif2 7488 | . . . 4 ⊢ ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 )) = if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)), ((𝐼𝑋𝐿)(.r‘𝑅) 0 )) | |
| 16 | simp1 1136 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
| 17 | simp1 1136 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
| 18 | 17 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝐼 ∈ 𝑁) |
| 19 | 1 | 3ad2ant3 1135 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝐿 ∈ 𝑁) |
| 20 | 5 | eleq2i 2820 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘𝐴)) |
| 21 | 20 | biimpi 216 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝐴)) |
| 22 | 21 | 3ad2ant1 1133 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
| 23 | 22 | 3ad2ant2 1134 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑋 ∈ (Base‘𝐴)) |
| 24 | eqid 2729 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 25 | 4, 24 | matecl 22312 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅)) |
| 26 | 18, 19, 23, 25 | syl3anc 1373 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅)) |
| 27 | eqid 2729 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 28 | eqid 2729 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 29 | 24, 27, 28 | ringridm 20179 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)) = (𝐼𝑋𝐿)) |
| 30 | 16, 26, 29 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)) = (𝐼𝑋𝐿)) |
| 31 | 24, 27, 8 | ringrz 20203 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r‘𝑅) 0 ) = 0 ) |
| 32 | 16, 26, 31 | syl2anc 584 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅) 0 ) = 0 ) |
| 33 | 30, 32 | ifeq12d 4510 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)), ((𝐼𝑋𝐿)(.r‘𝑅) 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )) |
| 34 | 15, 33 | eqtrid 2776 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )) |
| 35 | 34 | ifeq2d 4509 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) |
| 36 | 12, 14, 35 | 3eqtrd 2768 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ifcif 4488 ‘cfv 6511 (class class class)co 7387 ↑m cmap 8799 Basecbs 17179 .rcmulr 17221 0gc0g 17402 1rcur 20090 Ringcrg 20142 Mat cmat 22294 matRepV cmatrepV 22444 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-ixp 8871 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-sup 9393 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-9 12256 df-n0 12443 df-z 12530 df-dec 12650 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-tset 17239 df-ple 17240 df-ds 17242 df-hom 17244 df-cco 17245 df-0g 17404 df-gsum 17405 df-prds 17410 df-pws 17412 df-mre 17547 df-mrc 17548 df-acs 17550 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-mhm 18710 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-mulg 19000 df-subg 19055 df-ghm 19145 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-subrg 20479 df-lmod 20768 df-lss 20838 df-sra 21080 df-rgmod 21081 df-dsmm 21641 df-frlm 21656 df-mamu 22278 df-mat 22295 df-marepv 22446 |
| This theorem is referenced by: mulmarep1gsum1 22460 mulmarep1gsum2 22461 |
| Copyright terms: Public domain | W3C validator |