![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mulmarep1el | Structured version Visualization version GIF version |
Description: Element by element multiplication of a matrix with an identity matrix with a column replaced by a vector. (Contributed by AV, 16-Feb-2019.) (Revised by AV, 26-Feb-2019.) |
Ref | Expression |
---|---|
marepvcl.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
marepvcl.b | ⊢ 𝐵 = (Base‘𝐴) |
marepvcl.v | ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) |
ma1repvcl.1 | ⊢ 1 = (1r‘𝐴) |
mulmarep1el.0 | ⊢ 0 = (0g‘𝑅) |
mulmarep1el.e | ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) |
Ref | Expression |
---|---|
mulmarep1el | ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 1135 | . . . . 5 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐿 ∈ 𝑁) | |
2 | simp2 1134 | . . . . 5 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐽 ∈ 𝑁) | |
3 | 1, 2 | jca 510 | . . . 4 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → (𝐿 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) |
4 | marepvcl.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
5 | marepvcl.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
6 | marepvcl.v | . . . . 5 ⊢ 𝑉 = ((Base‘𝑅) ↑m 𝑁) | |
7 | ma1repvcl.1 | . . . . 5 ⊢ 1 = (1r‘𝐴) | |
8 | mulmarep1el.0 | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
9 | mulmarep1el.e | . . . . 5 ⊢ 𝐸 = (( 1 (𝑁 matRepV 𝑅)𝐶)‘𝐾) | |
10 | 4, 5, 6, 7, 8, 9 | ma1repveval 22489 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐿 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) |
11 | 3, 10 | syl3an3 1162 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐿𝐸𝐽) = if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) |
12 | 11 | oveq2d 7431 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 )))) |
13 | ovif2 7515 | . . 3 ⊢ ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) | |
14 | 13 | a1i 11 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐾, (𝐶‘𝐿), if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 )))) |
15 | ovif2 7515 | . . . 4 ⊢ ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 )) = if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)), ((𝐼𝑋𝐿)(.r‘𝑅) 0 )) | |
16 | simp1 1133 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑅 ∈ Ring) | |
17 | simp1 1133 | . . . . . . . 8 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁) → 𝐼 ∈ 𝑁) | |
18 | 17 | 3ad2ant3 1132 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝐼 ∈ 𝑁) |
19 | 1 | 3ad2ant3 1132 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝐿 ∈ 𝑁) |
20 | 5 | eleq2i 2817 | . . . . . . . . . 10 ⊢ (𝑋 ∈ 𝐵 ↔ 𝑋 ∈ (Base‘𝐴)) |
21 | 20 | biimpi 215 | . . . . . . . . 9 ⊢ (𝑋 ∈ 𝐵 → 𝑋 ∈ (Base‘𝐴)) |
22 | 21 | 3ad2ant1 1130 | . . . . . . . 8 ⊢ ((𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) → 𝑋 ∈ (Base‘𝐴)) |
23 | 22 | 3ad2ant2 1131 | . . . . . . 7 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → 𝑋 ∈ (Base‘𝐴)) |
24 | eqid 2725 | . . . . . . . 8 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
25 | 4, 24 | matecl 22343 | . . . . . . 7 ⊢ ((𝐼 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁 ∧ 𝑋 ∈ (Base‘𝐴)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅)) |
26 | 18, 19, 23, 25 | syl3anc 1368 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → (𝐼𝑋𝐿) ∈ (Base‘𝑅)) |
27 | eqid 2725 | . . . . . . 7 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
28 | eqid 2725 | . . . . . . 7 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
29 | 24, 27, 28 | ringridm 20208 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)) = (𝐼𝑋𝐿)) |
30 | 16, 26, 29 | syl2anc 582 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)) = (𝐼𝑋𝐿)) |
31 | 24, 27, 8 | ringrz 20232 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ (𝐼𝑋𝐿) ∈ (Base‘𝑅)) → ((𝐼𝑋𝐿)(.r‘𝑅) 0 ) = 0 ) |
32 | 16, 26, 31 | syl2anc 582 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅) 0 ) = 0 ) |
33 | 30, 32 | ifeq12d 4545 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → if(𝐽 = 𝐿, ((𝐼𝑋𝐿)(.r‘𝑅)(1r‘𝑅)), ((𝐼𝑋𝐿)(.r‘𝑅) 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )) |
34 | 15, 33 | eqtrid 2777 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 )) = if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 )) |
35 | 34 | ifeq2d 4544 | . 2 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), ((𝐼𝑋𝐿)(.r‘𝑅)if(𝐽 = 𝐿, (1r‘𝑅), 0 ))) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) |
36 | 12, 14, 35 | 3eqtrd 2769 | 1 ⊢ ((𝑅 ∈ Ring ∧ (𝑋 ∈ 𝐵 ∧ 𝐶 ∈ 𝑉 ∧ 𝐾 ∈ 𝑁) ∧ (𝐼 ∈ 𝑁 ∧ 𝐽 ∈ 𝑁 ∧ 𝐿 ∈ 𝑁)) → ((𝐼𝑋𝐿)(.r‘𝑅)(𝐿𝐸𝐽)) = if(𝐽 = 𝐾, ((𝐼𝑋𝐿)(.r‘𝑅)(𝐶‘𝐿)), if(𝐽 = 𝐿, (𝐼𝑋𝐿), 0 ))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ifcif 4524 ‘cfv 6542 (class class class)co 7415 ↑m cmap 8841 Basecbs 17177 .rcmulr 17231 0gc0g 17418 1rcur 20123 Ringcrg 20175 Mat cmat 22323 matRepV cmatrepV 22475 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7737 ax-cnex 11192 ax-resscn 11193 ax-1cn 11194 ax-icn 11195 ax-addcl 11196 ax-addrcl 11197 ax-mulcl 11198 ax-mulrcl 11199 ax-mulcom 11200 ax-addass 11201 ax-mulass 11202 ax-distr 11203 ax-i2m1 11204 ax-1ne0 11205 ax-1rid 11206 ax-rnegex 11207 ax-rrecex 11208 ax-cnre 11209 ax-pre-lttri 11210 ax-pre-lttrn 11211 ax-pre-ltadd 11212 ax-pre-mulgt0 11213 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-pss 3960 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-ot 4633 df-uni 4904 df-int 4945 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-se 5628 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7681 df-om 7868 df-1st 7989 df-2nd 7990 df-supp 8162 df-frecs 8283 df-wrecs 8314 df-recs 8388 df-rdg 8427 df-1o 8483 df-er 8721 df-map 8843 df-ixp 8913 df-en 8961 df-dom 8962 df-sdom 8963 df-fin 8964 df-fsupp 9384 df-sup 9463 df-oi 9531 df-card 9960 df-pnf 11278 df-mnf 11279 df-xr 11280 df-ltxr 11281 df-le 11282 df-sub 11474 df-neg 11475 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12501 df-z 12587 df-dec 12706 df-uz 12851 df-fz 13515 df-fzo 13658 df-seq 13997 df-hash 14320 df-struct 17113 df-sets 17130 df-slot 17148 df-ndx 17160 df-base 17178 df-ress 17207 df-plusg 17243 df-mulr 17244 df-sca 17246 df-vsca 17247 df-ip 17248 df-tset 17249 df-ple 17250 df-ds 17252 df-hom 17254 df-cco 17255 df-0g 17420 df-gsum 17421 df-prds 17426 df-pws 17428 df-mre 17563 df-mrc 17564 df-acs 17566 df-mgm 18597 df-sgrp 18676 df-mnd 18692 df-mhm 18737 df-submnd 18738 df-grp 18895 df-minusg 18896 df-sbg 18897 df-mulg 19026 df-subg 19080 df-ghm 19170 df-cntz 19270 df-cmn 19739 df-abl 19740 df-mgp 20077 df-rng 20095 df-ur 20124 df-ring 20177 df-subrg 20510 df-lmod 20747 df-lss 20818 df-sra 21060 df-rgmod 21061 df-dsmm 21668 df-frlm 21683 df-mamu 22307 df-mat 22324 df-marepv 22477 |
This theorem is referenced by: mulmarep1gsum1 22491 mulmarep1gsum2 22492 |
Copyright terms: Public domain | W3C validator |