| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovmpordx | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpodxf 7565. (Contributed by AV, 30-Mar-2019.) |
| Ref | Expression |
|---|---|
| ovmpordx.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
| ovmpordx.2 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
| ovmpordx.3 | ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿) |
| ovmpordx.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐿) |
| ovmpordx.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| ovmpordx.6 | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ovmpordx | ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpordx.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
| 2 | ovmpordx.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
| 3 | ovmpordx.3 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿) | |
| 4 | ovmpordx.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐿) | |
| 5 | ovmpordx.5 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 6 | ovmpordx.6 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
| 7 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 8 | nfv 1913 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 9 | nfcv 2897 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 10 | nfcv 2897 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 11 | nfcv 2897 | . 2 ⊢ Ⅎ𝑥𝑆 | |
| 12 | nfcv 2897 | . 2 ⊢ Ⅎ𝑦𝑆 | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ovmpordxf 48213 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 (class class class)co 7413 ∈ cmpo 7415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6494 df-fun 6543 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 |
| This theorem is referenced by: ovmpox2 48215 |
| Copyright terms: Public domain | W3C validator |