![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovmpordx | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpodxf 7594. (Contributed by AV, 30-Mar-2019.) |
Ref | Expression |
---|---|
ovmpordx.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
ovmpordx.2 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
ovmpordx.3 | ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿) |
ovmpordx.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐿) |
ovmpordx.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
ovmpordx.6 | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
Ref | Expression |
---|---|
ovmpordx | ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpordx.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
2 | ovmpordx.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
3 | ovmpordx.3 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿) | |
4 | ovmpordx.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐿) | |
5 | ovmpordx.5 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
6 | ovmpordx.6 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
7 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜑 | |
8 | nfv 1913 | . 2 ⊢ Ⅎ𝑦𝜑 | |
9 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝐴 | |
10 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝐵 | |
11 | nfcv 2908 | . 2 ⊢ Ⅎ𝑥𝑆 | |
12 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦𝑆 | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ovmpordxf 48053 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 (class class class)co 7443 ∈ cmpo 7445 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5701 df-rel 5702 df-cnv 5703 df-co 5704 df-dm 5705 df-iota 6520 df-fun 6570 df-fv 6576 df-ov 7446 df-oprab 7447 df-mpo 7448 |
This theorem is referenced by: ovmpox2 48055 |
Copyright terms: Public domain | W3C validator |