| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovmpordx | Structured version Visualization version GIF version | ||
| Description: Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpodxf 7557. (Contributed by AV, 30-Mar-2019.) |
| Ref | Expression |
|---|---|
| ovmpordx.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
| ovmpordx.2 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
| ovmpordx.3 | ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿) |
| ovmpordx.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐿) |
| ovmpordx.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
| ovmpordx.6 | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ovmpordx | ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpordx.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
| 2 | ovmpordx.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
| 3 | ovmpordx.3 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿) | |
| 4 | ovmpordx.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐿) | |
| 5 | ovmpordx.5 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
| 6 | ovmpordx.6 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
| 7 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 8 | nfv 1914 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 9 | nfcv 2898 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 10 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 11 | nfcv 2898 | . 2 ⊢ Ⅎ𝑥𝑆 | |
| 12 | nfcv 2898 | . 2 ⊢ Ⅎ𝑦𝑆 | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ovmpordxf 48314 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 (class class class)co 7405 ∈ cmpo 7407 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 |
| This theorem is referenced by: ovmpox2 48316 |
| Copyright terms: Public domain | W3C validator |