Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovmpordx Structured version   Visualization version   GIF version

Theorem ovmpordx 47005
Description: Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpodxf 7557. (Contributed by AV, 30-Mar-2019.)
Hypotheses
Ref Expression
ovmpordx.1 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
ovmpordx.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
ovmpordx.3 ((𝜑𝑦 = 𝐵) → 𝐶 = 𝐿)
ovmpordx.4 (𝜑𝐴𝐿)
ovmpordx.5 (𝜑𝐵𝐷)
ovmpordx.6 (𝜑𝑆𝑋)
Assertion
Ref Expression
ovmpordx (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑦,𝐴   𝑥,𝐵   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐿(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem ovmpordx
StepHypRef Expression
1 ovmpordx.1 . 2 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
2 ovmpordx.2 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
3 ovmpordx.3 . 2 ((𝜑𝑦 = 𝐵) → 𝐶 = 𝐿)
4 ovmpordx.4 . 2 (𝜑𝐴𝐿)
5 ovmpordx.5 . 2 (𝜑𝐵𝐷)
6 ovmpordx.6 . 2 (𝜑𝑆𝑋)
7 nfv 1917 . 2 𝑥𝜑
8 nfv 1917 . 2 𝑦𝜑
9 nfcv 2903 . 2 𝑦𝐴
10 nfcv 2903 . 2 𝑥𝐵
11 nfcv 2903 . 2 𝑥𝑆
12 nfcv 2903 . 2 𝑦𝑆
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ovmpordxf 47004 1 (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  (class class class)co 7408  cmpo 7410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-iota 6495  df-fun 6545  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413
This theorem is referenced by:  ovmpox2  47006
  Copyright terms: Public domain W3C validator