Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ovmpordx | Structured version Visualization version GIF version |
Description: Value of an operation given by a maps-to rule, deduction form, with substitution of second argument, analogous to ovmpodxf 7401. (Contributed by AV, 30-Mar-2019.) |
Ref | Expression |
---|---|
ovmpordx.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
ovmpordx.2 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
ovmpordx.3 | ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿) |
ovmpordx.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐿) |
ovmpordx.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐷) |
ovmpordx.6 | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
Ref | Expression |
---|---|
ovmpordx | ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpordx.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
2 | ovmpordx.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
3 | ovmpordx.3 | . 2 ⊢ ((𝜑 ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿) | |
4 | ovmpordx.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐿) | |
5 | ovmpordx.5 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐷) | |
6 | ovmpordx.6 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
7 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜑 | |
8 | nfv 1918 | . 2 ⊢ Ⅎ𝑦𝜑 | |
9 | nfcv 2906 | . 2 ⊢ Ⅎ𝑦𝐴 | |
10 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝐵 | |
11 | nfcv 2906 | . 2 ⊢ Ⅎ𝑥𝑆 | |
12 | nfcv 2906 | . 2 ⊢ Ⅎ𝑦𝑆 | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ovmpordxf 45562 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 (class class class)co 7255 ∈ cmpo 7257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 |
This theorem is referenced by: ovmpox2 45564 |
Copyright terms: Public domain | W3C validator |