| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ovmpox2 | Structured version Visualization version GIF version | ||
| Description: The value of an operation class abstraction. Variant of ovmpoga 7568 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.) |
| Ref | Expression |
|---|---|
| ovmpox2.1 | ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) |
| ovmpox2.2 | ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐿) |
| ovmpox2.3 | ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) |
| Ref | Expression |
|---|---|
| ovmpox2 | ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpox2.3 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅) | |
| 2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
| 3 | ovmpox2.1 | . . 3 ⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → 𝑅 = 𝑆) | |
| 4 | 3 | adantl 481 | . 2 ⊢ (((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
| 5 | ovmpox2.2 | . . 3 ⊢ (𝑦 = 𝐵 → 𝐶 = 𝐿) | |
| 6 | 5 | adantl 481 | . 2 ⊢ (((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿) |
| 7 | simp1 1136 | . 2 ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → 𝐴 ∈ 𝐿) | |
| 8 | simp2 1137 | . 2 ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → 𝐵 ∈ 𝐷) | |
| 9 | simp3 1138 | . 2 ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → 𝑆 ∈ 𝐻) | |
| 10 | 2, 4, 6, 7, 8, 9 | ovmpordx 48190 | 1 ⊢ ((𝐴 ∈ 𝐿 ∧ 𝐵 ∈ 𝐷 ∧ 𝑆 ∈ 𝐻) → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 (class class class)co 7412 ∈ cmpo 7414 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-iota 6493 df-fun 6542 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 |
| This theorem is referenced by: lincval 48260 |
| Copyright terms: Public domain | W3C validator |