Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovmpox2 Structured version   Visualization version   GIF version

Theorem ovmpox2 48451
Description: The value of an operation class abstraction. Variant of ovmpoga 7500 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
ovmpox2.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpox2.2 (𝑦 = 𝐵𝐶 = 𝐿)
ovmpox2.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpox2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝑥,𝐿,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem ovmpox2
StepHypRef Expression
1 ovmpox2.3 . . 3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
21a1i 11 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
3 ovmpox2.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
43adantl 481 . 2 (((𝐴𝐿𝐵𝐷𝑆𝐻) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
5 ovmpox2.2 . . 3 (𝑦 = 𝐵𝐶 = 𝐿)
65adantl 481 . 2 (((𝐴𝐿𝐵𝐷𝑆𝐻) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿)
7 simp1 1136 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝐴𝐿)
8 simp2 1137 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝐵𝐷)
9 simp3 1138 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝑆𝐻)
102, 4, 6, 7, 8, 9ovmpordx 48450 1 ((𝐴𝐿𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wcel 2111  (class class class)co 7346  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-iota 6437  df-fun 6483  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351
This theorem is referenced by:  lincval  48520
  Copyright terms: Public domain W3C validator