Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovmpox2 Structured version   Visualization version   GIF version

Theorem ovmpox2 48191
Description: The value of an operation class abstraction. Variant of ovmpoga 7568 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
ovmpox2.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpox2.2 (𝑦 = 𝐵𝐶 = 𝐿)
ovmpox2.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpox2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝑥,𝐿,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem ovmpox2
StepHypRef Expression
1 ovmpox2.3 . . 3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
21a1i 11 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
3 ovmpox2.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
43adantl 481 . 2 (((𝐴𝐿𝐵𝐷𝑆𝐻) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
5 ovmpox2.2 . . 3 (𝑦 = 𝐵𝐶 = 𝐿)
65adantl 481 . 2 (((𝐴𝐿𝐵𝐷𝑆𝐻) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿)
7 simp1 1136 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝐴𝐿)
8 simp2 1137 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝐵𝐷)
9 simp3 1138 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝑆𝐻)
102, 4, 6, 7, 8, 9ovmpordx 48190 1 ((𝐴𝐿𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1539  wcel 2107  (class class class)co 7412  cmpo 7414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-iota 6493  df-fun 6542  df-fv 6548  df-ov 7415  df-oprab 7416  df-mpo 7417
This theorem is referenced by:  lincval  48260
  Copyright terms: Public domain W3C validator