Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ovmpox2 Structured version   Visualization version   GIF version

Theorem ovmpox2 45564
Description: The value of an operation class abstraction. Variant of ovmpoga 7405 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
Hypotheses
Ref Expression
ovmpox2.1 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
ovmpox2.2 (𝑦 = 𝐵𝐶 = 𝐿)
ovmpox2.3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
Assertion
Ref Expression
ovmpox2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐷,𝑦   𝑥,𝐻,𝑦   𝑥,𝐿,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem ovmpox2
StepHypRef Expression
1 ovmpox2.3 . . 3 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)
21a1i 11 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
3 ovmpox2.1 . . 3 ((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)
43adantl 481 . 2 (((𝐴𝐿𝐵𝐷𝑆𝐻) ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
5 ovmpox2.2 . . 3 (𝑦 = 𝐵𝐶 = 𝐿)
65adantl 481 . 2 (((𝐴𝐿𝐵𝐷𝑆𝐻) ∧ 𝑦 = 𝐵) → 𝐶 = 𝐿)
7 simp1 1134 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝐴𝐿)
8 simp2 1135 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝐵𝐷)
9 simp3 1136 . 2 ((𝐴𝐿𝐵𝐷𝑆𝐻) → 𝑆𝐻)
102, 4, 6, 7, 8, 9ovmpordx 45563 1 ((𝐴𝐿𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  (class class class)co 7255  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260
This theorem is referenced by:  lincval  45638
  Copyright terms: Public domain W3C validator