MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fvfundmfvn0 Structured version   Visualization version   GIF version

Theorem fvfundmfvn0 6687
Description: If the "value of a class" at an argument is not the empty set, then the argument is in the domain of the class and the class restricted to the singleton formed on that argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017.) (Proof shortened by BJ, 13-Aug-2022.)
Assertion
Ref Expression
fvfundmfvn0 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))

Proof of Theorem fvfundmfvn0
StepHypRef Expression
1 ndmfv 6679 . . 3 𝐴 ∈ dom 𝐹 → (𝐹𝐴) = ∅)
21necon1ai 3017 . 2 ((𝐹𝐴) ≠ ∅ → 𝐴 ∈ dom 𝐹)
3 nfunsn 6686 . . 3 (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹𝐴) = ∅)
43necon1ai 3017 . 2 ((𝐹𝐴) ≠ ∅ → Fun (𝐹 ↾ {𝐴}))
52, 4jca 515 1 ((𝐹𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wcel 2112  wne 2990  c0 4246  {csn 4528  dom cdm 5523  cres 5525  Fun wfun 6322  cfv 6328
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-rab 3118  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535  df-uni 4804  df-br 5034  df-opab 5096  df-id 5428  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-res 5535  df-iota 6287  df-fun 6330  df-fv 6336
This theorem is referenced by:  fvn0ssdmfun  6823  fvn0fvelrn  6906  umgrnloopv  26903  usgrnloopvALT  26995  afvpcfv0  43695  afvfvn0fveq  43699  afv0nbfvbi  43700  afv2fvn0fveq  43813  ovn0dmfun  44377
  Copyright terms: Public domain W3C validator