| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvfundmfvn0 | Structured version Visualization version GIF version | ||
| Description: If the "value of a class" at an argument is not the empty set, then the argument is in the domain of the class and the class restricted to the singleton formed on that argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017.) (Proof shortened by BJ, 13-Aug-2022.) |
| Ref | Expression |
|---|---|
| fvfundmfvn0 | ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmfv 6875 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 2 | 1 | necon1ai 2952 | . 2 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐴 ∈ dom 𝐹) |
| 3 | nfunsn 6882 | . . 3 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) | |
| 4 | 3 | necon1ai 2952 | . 2 ⊢ ((𝐹‘𝐴) ≠ ∅ → Fun (𝐹 ↾ {𝐴})) |
| 5 | 2, 4 | jca 511 | 1 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 {csn 4585 dom cdm 5631 ↾ cres 5633 Fun wfun 6493 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-res 5643 df-iota 6452 df-fun 6501 df-fv 6507 |
| This theorem is referenced by: fvn0ssdmfun 7028 feldmfvelcdm 7040 fvn0fvelrnOLD 7117 umgrnloopv 29086 usgrnloopvALT 29181 afvpcfv0 47140 afvfvn0fveq 47144 afv0nbfvbi 47145 afv2fvn0fveq 47258 ovn0dmfun 48137 reldmlan2 49599 reldmran2 49600 lanrcl 49603 ranrcl 49604 lmdran 49653 cmdlan 49654 |
| Copyright terms: Public domain | W3C validator |