| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvfundmfvn0 | Structured version Visualization version GIF version | ||
| Description: If the "value of a class" at an argument is not the empty set, then the argument is in the domain of the class and the class restricted to the singleton formed on that argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017.) (Proof shortened by BJ, 13-Aug-2022.) |
| Ref | Expression |
|---|---|
| fvfundmfvn0 | ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmfv 6896 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 2 | 1 | necon1ai 2953 | . 2 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐴 ∈ dom 𝐹) |
| 3 | nfunsn 6903 | . . 3 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) | |
| 4 | 3 | necon1ai 2953 | . 2 ⊢ ((𝐹‘𝐴) ≠ ∅ → Fun (𝐹 ↾ {𝐴})) |
| 5 | 2, 4 | jca 511 | 1 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 ∅c0 4299 {csn 4592 dom cdm 5641 ↾ cres 5643 Fun wfun 6508 ‘cfv 6514 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-res 5653 df-iota 6467 df-fun 6516 df-fv 6522 |
| This theorem is referenced by: fvn0ssdmfun 7049 feldmfvelcdm 7061 fvn0fvelrnOLD 7138 umgrnloopv 29040 usgrnloopvALT 29135 afvpcfv0 47151 afvfvn0fveq 47155 afv0nbfvbi 47156 afv2fvn0fveq 47269 ovn0dmfun 48148 reldmlan2 49610 reldmran2 49611 lanrcl 49614 ranrcl 49615 lmdran 49664 cmdlan 49665 |
| Copyright terms: Public domain | W3C validator |