![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fvfundmfvn0 | Structured version Visualization version GIF version |
Description: If the "value of a class" at an argument is not the empty set, then the argument is in the domain of the class and the class restricted to the singleton formed on that argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017.) (Proof shortened by BJ, 13-Aug-2022.) |
Ref | Expression |
---|---|
fvfundmfvn0 | ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ndmfv 6926 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
2 | 1 | necon1ai 2958 | . 2 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐴 ∈ dom 𝐹) |
3 | nfunsn 6933 | . . 3 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) | |
4 | 3 | necon1ai 2958 | . 2 ⊢ ((𝐹‘𝐴) ≠ ∅ → Fun (𝐹 ↾ {𝐴})) |
5 | 2, 4 | jca 510 | 1 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 ∈ wcel 2098 ≠ wne 2930 ∅c0 4318 {csn 4624 dom cdm 5672 ↾ cres 5674 Fun wfun 6536 ‘cfv 6542 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-iota 6494 df-fun 6544 df-fv 6550 |
This theorem is referenced by: fvn0ssdmfun 7078 feldmfvelcdm 7090 fvn0fvelrnOLD 7167 umgrnloopv 28961 usgrnloopvALT 29056 afvpcfv0 46588 afvfvn0fveq 46592 afv0nbfvbi 46593 afv2fvn0fveq 46706 ovn0dmfun 47329 |
Copyright terms: Public domain | W3C validator |