| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fvfundmfvn0 | Structured version Visualization version GIF version | ||
| Description: If the "value of a class" at an argument is not the empty set, then the argument is in the domain of the class and the class restricted to the singleton formed on that argument is a function. (Contributed by Alexander van der Vekens, 26-May-2017.) (Proof shortened by BJ, 13-Aug-2022.) |
| Ref | Expression |
|---|---|
| fvfundmfvn0 | ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmfv 6893 | . . 3 ⊢ (¬ 𝐴 ∈ dom 𝐹 → (𝐹‘𝐴) = ∅) | |
| 2 | 1 | necon1ai 2952 | . 2 ⊢ ((𝐹‘𝐴) ≠ ∅ → 𝐴 ∈ dom 𝐹) |
| 3 | nfunsn 6900 | . . 3 ⊢ (¬ Fun (𝐹 ↾ {𝐴}) → (𝐹‘𝐴) = ∅) | |
| 4 | 3 | necon1ai 2952 | . 2 ⊢ ((𝐹‘𝐴) ≠ ∅ → Fun (𝐹 ↾ {𝐴})) |
| 5 | 2, 4 | jca 511 | 1 ⊢ ((𝐹‘𝐴) ≠ ∅ → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 ∅c0 4296 {csn 4589 dom cdm 5638 ↾ cres 5640 Fun wfun 6505 ‘cfv 6511 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 |
| This theorem is referenced by: fvn0ssdmfun 7046 feldmfvelcdm 7058 fvn0fvelrnOLD 7135 umgrnloopv 29033 usgrnloopvALT 29128 afvpcfv0 47147 afvfvn0fveq 47151 afv0nbfvbi 47152 afv2fvn0fveq 47265 ovn0dmfun 48144 reldmlan2 49606 reldmran2 49607 lanrcl 49610 ranrcl 49611 lmdran 49660 cmdlan 49661 |
| Copyright terms: Public domain | W3C validator |