Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrbisymrelALT Structured version   Visualization version   GIF version

Theorem uspgrbisymrelALT 47999
Description: Alternate proof of uspgrbisymrel 47998 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
uspgrbisymrel.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrbisymrel.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
Assertion
Ref Expression
uspgrbisymrelALT (𝑉𝑊 → ∃𝑓 𝑓:𝐺1-1-onto𝑅)
Distinct variable groups:   𝑒,𝑉,𝑞,𝑣   𝑉,𝑟,𝑥,𝑦   𝑒,𝑊,𝑞,𝑣   𝑥,𝑊,𝑦   𝑓,𝐺   𝑅,𝑓   𝑓,𝑉,𝑟,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑣,𝑒,𝑟,𝑞)   𝐺(𝑥,𝑦,𝑣,𝑒,𝑟,𝑞)   𝑊(𝑓,𝑟)

Proof of Theorem uspgrbisymrelALT
Dummy variables 𝑔 𝑝 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6920 . . . . 5 (Pairs‘𝑉) ∈ V
21pwex 5386 . . . 4 𝒫 (Pairs‘𝑉) ∈ V
3 mptexg 7241 . . . 4 (𝒫 (Pairs‘𝑉) ∈ V → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
42, 3mp1i 13 . . 3 (𝑉𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
5 eqid 2735 . . . . 5 𝒫 (Pairs‘𝑉) = 𝒫 (Pairs‘𝑉)
6 uspgrbisymrel.g . . . . 5 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
75, 6uspgrex 47994 . . . 4 (𝑉𝑊𝐺 ∈ V)
8 mptexg 7241 . . . 4 (𝐺 ∈ V → (𝑔𝐺 ↦ (2nd𝑔)) ∈ V)
97, 8syl 17 . . 3 (𝑉𝑊 → (𝑔𝐺 ↦ (2nd𝑔)) ∈ V)
10 coexg 7952 . . 3 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V ∧ (𝑔𝐺 ↦ (2nd𝑔)) ∈ V) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V)
114, 9, 10syl2anc 584 . 2 (𝑉𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V)
12 uspgrbisymrel.r . . . 4 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
13 eqid 2735 . . . 4 (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
145, 12, 13sprsymrelf1o 47423 . . 3 (𝑉𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto𝑅)
15 eqid 2735 . . . 4 (𝑔𝐺 ↦ (2nd𝑔)) = (𝑔𝐺 ↦ (2nd𝑔))
165, 6, 15uspgrsprf1o 47993 . . 3 (𝑉𝑊 → (𝑔𝐺 ↦ (2nd𝑔)):𝐺1-1-onto→𝒫 (Pairs‘𝑉))
17 f1oco 6872 . . 3 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto𝑅 ∧ (𝑔𝐺 ↦ (2nd𝑔)):𝐺1-1-onto→𝒫 (Pairs‘𝑉)) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅)
1814, 16, 17syl2anc 584 . 2 (𝑉𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅)
19 f1oeq1 6837 . . 3 (𝑓 = ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) → (𝑓:𝐺1-1-onto𝑅 ↔ ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅))
2019spcegv 3597 . 2 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V → (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅 → ∃𝑓 𝑓:𝐺1-1-onto𝑅))
2111, 18, 20sylc 65 1 (𝑉𝑊 → ∃𝑓 𝑓:𝐺1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  wrex 3068  {crab 3433  Vcvv 3478  𝒫 cpw 4605  {cpr 4633   class class class wbr 5148  {copab 5210  cmpt 5231   × cxp 5687  ccom 5693  1-1-ontowf1o 6562  cfv 6563  2nd c2nd 8012  Vtxcvtx 29028  Edgcedg 29079  USPGraphcuspgr 29180  Pairscspr 47402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-oadd 8509  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-dju 9939  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12598  df-z 12612  df-uz 12877  df-fz 13545  df-hash 14367  df-vtx 29030  df-iedg 29031  df-edg 29080  df-upgr 29114  df-uspgr 29182  df-spr 47403
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator