Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgrbisymrelALT | Structured version Visualization version GIF version |
Description: Alternate proof of uspgrbisymrel 45316 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
uspgrbisymrel.g | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
uspgrbisymrel.r | ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
Ref | Expression |
---|---|
uspgrbisymrelALT | ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6787 | . . . . 5 ⊢ (Pairs‘𝑉) ∈ V | |
2 | 1 | pwex 5303 | . . . 4 ⊢ 𝒫 (Pairs‘𝑉) ∈ V |
3 | mptexg 7097 | . . . 4 ⊢ (𝒫 (Pairs‘𝑉) ∈ V → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V) | |
4 | 2, 3 | mp1i 13 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V) |
5 | eqid 2738 | . . . . 5 ⊢ 𝒫 (Pairs‘𝑉) = 𝒫 (Pairs‘𝑉) | |
6 | uspgrbisymrel.g | . . . . 5 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} | |
7 | 5, 6 | uspgrex 45312 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) |
8 | mptexg 7097 | . . . 4 ⊢ (𝐺 ∈ V → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) |
10 | coexg 7776 | . . 3 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V ∧ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V) | |
11 | 4, 9, 10 | syl2anc 584 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V) |
12 | uspgrbisymrel.r | . . . 4 ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | |
13 | eqid 2738 | . . . 4 ⊢ (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) | |
14 | 5, 12, 13 | sprsymrelf1o 44950 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto→𝑅) |
15 | eqid 2738 | . . . 4 ⊢ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) | |
16 | 5, 6, 15 | uspgrsprf1o 45311 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝒫 (Pairs‘𝑉)) |
17 | f1oco 6739 | . . 3 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto→𝑅 ∧ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝒫 (Pairs‘𝑉)) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅) | |
18 | 14, 16, 17 | syl2anc 584 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅) |
19 | f1oeq1 6704 | . . 3 ⊢ (𝑓 = ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) → (𝑓:𝐺–1-1-onto→𝑅 ↔ ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅)) | |
20 | 19 | spcegv 3536 | . 2 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V → (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅)) |
21 | 11, 18, 20 | sylc 65 | 1 ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 {crab 3068 Vcvv 3432 𝒫 cpw 4533 {cpr 4563 class class class wbr 5074 {copab 5136 ↦ cmpt 5157 × cxp 5587 ∘ ccom 5593 –1-1-onto→wf1o 6432 ‘cfv 6433 2nd c2nd 7830 Vtxcvtx 27366 Edgcedg 27417 USPGraphcuspgr 27518 Pairscspr 44929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-oadd 8301 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-dju 9659 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-n0 12234 df-xnn0 12306 df-z 12320 df-uz 12583 df-fz 13240 df-hash 14045 df-vtx 27368 df-iedg 27369 df-edg 27418 df-upgr 27452 df-uspgr 27520 df-spr 44930 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |