Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrbisymrelALT Structured version   Visualization version   GIF version

Theorem uspgrbisymrelALT 44944
Description: Alternate proof of uspgrbisymrel 44943 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
uspgrbisymrel.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrbisymrel.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
Assertion
Ref Expression
uspgrbisymrelALT (𝑉𝑊 → ∃𝑓 𝑓:𝐺1-1-onto𝑅)
Distinct variable groups:   𝑒,𝑉,𝑞,𝑣   𝑉,𝑟,𝑥,𝑦   𝑒,𝑊,𝑞,𝑣   𝑥,𝑊,𝑦   𝑓,𝐺   𝑅,𝑓   𝑓,𝑉,𝑟,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑣,𝑒,𝑟,𝑞)   𝐺(𝑥,𝑦,𝑣,𝑒,𝑟,𝑞)   𝑊(𝑓,𝑟)

Proof of Theorem uspgrbisymrelALT
Dummy variables 𝑔 𝑝 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6719 . . . . 5 (Pairs‘𝑉) ∈ V
21pwex 5262 . . . 4 𝒫 (Pairs‘𝑉) ∈ V
3 mptexg 7026 . . . 4 (𝒫 (Pairs‘𝑉) ∈ V → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
42, 3mp1i 13 . . 3 (𝑉𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
5 eqid 2734 . . . . 5 𝒫 (Pairs‘𝑉) = 𝒫 (Pairs‘𝑉)
6 uspgrbisymrel.g . . . . 5 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
75, 6uspgrex 44939 . . . 4 (𝑉𝑊𝐺 ∈ V)
8 mptexg 7026 . . . 4 (𝐺 ∈ V → (𝑔𝐺 ↦ (2nd𝑔)) ∈ V)
97, 8syl 17 . . 3 (𝑉𝑊 → (𝑔𝐺 ↦ (2nd𝑔)) ∈ V)
10 coexg 7696 . . 3 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V ∧ (𝑔𝐺 ↦ (2nd𝑔)) ∈ V) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V)
114, 9, 10syl2anc 587 . 2 (𝑉𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V)
12 uspgrbisymrel.r . . . 4 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
13 eqid 2734 . . . 4 (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
145, 12, 13sprsymrelf1o 44577 . . 3 (𝑉𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto𝑅)
15 eqid 2734 . . . 4 (𝑔𝐺 ↦ (2nd𝑔)) = (𝑔𝐺 ↦ (2nd𝑔))
165, 6, 15uspgrsprf1o 44938 . . 3 (𝑉𝑊 → (𝑔𝐺 ↦ (2nd𝑔)):𝐺1-1-onto→𝒫 (Pairs‘𝑉))
17 f1oco 6672 . . 3 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto𝑅 ∧ (𝑔𝐺 ↦ (2nd𝑔)):𝐺1-1-onto→𝒫 (Pairs‘𝑉)) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅)
1814, 16, 17syl2anc 587 . 2 (𝑉𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅)
19 f1oeq1 6638 . . 3 (𝑓 = ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) → (𝑓:𝐺1-1-onto𝑅 ↔ ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅))
2019spcegv 3505 . 2 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V → (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅 → ∃𝑓 𝑓:𝐺1-1-onto𝑅))
2111, 18, 20sylc 65 1 (𝑉𝑊 → ∃𝑓 𝑓:𝐺1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1543  wex 1787  wcel 2110  wral 3054  wrex 3055  {crab 3058  Vcvv 3401  𝒫 cpw 4503  {cpr 4533   class class class wbr 5043  {copab 5105  cmpt 5124   × cxp 5538  ccom 5544  1-1-ontowf1o 6368  cfv 6369  2nd c2nd 7749  Vtxcvtx 27059  Edgcedg 27110  USPGraphcuspgr 27211  Pairscspr 44556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-oadd 8195  df-er 8380  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-dju 9500  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-nn 11814  df-2 11876  df-n0 12074  df-xnn0 12146  df-z 12160  df-uz 12422  df-fz 13079  df-hash 13880  df-vtx 27061  df-iedg 27062  df-edg 27111  df-upgr 27145  df-uspgr 27213  df-spr 44557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator