| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgrbisymrelALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of uspgrbisymrel 48115 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| uspgrbisymrel.g | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
| uspgrbisymrel.r | ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
| Ref | Expression |
|---|---|
| uspgrbisymrelALT | ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6853 | . . . . 5 ⊢ (Pairs‘𝑉) ∈ V | |
| 2 | 1 | pwex 5330 | . . . 4 ⊢ 𝒫 (Pairs‘𝑉) ∈ V |
| 3 | mptexg 7177 | . . . 4 ⊢ (𝒫 (Pairs‘𝑉) ∈ V → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V) | |
| 4 | 2, 3 | mp1i 13 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V) |
| 5 | eqid 2729 | . . . . 5 ⊢ 𝒫 (Pairs‘𝑉) = 𝒫 (Pairs‘𝑉) | |
| 6 | uspgrbisymrel.g | . . . . 5 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} | |
| 7 | 5, 6 | uspgrex 48111 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) |
| 8 | mptexg 7177 | . . . 4 ⊢ (𝐺 ∈ V → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) |
| 10 | coexg 7885 | . . 3 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V ∧ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V) | |
| 11 | 4, 9, 10 | syl2anc 584 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V) |
| 12 | uspgrbisymrel.r | . . . 4 ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | |
| 13 | eqid 2729 | . . . 4 ⊢ (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) | |
| 14 | 5, 12, 13 | sprsymrelf1o 47472 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto→𝑅) |
| 15 | eqid 2729 | . . . 4 ⊢ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) | |
| 16 | 5, 6, 15 | uspgrsprf1o 48110 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝒫 (Pairs‘𝑉)) |
| 17 | f1oco 6805 | . . 3 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto→𝑅 ∧ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝒫 (Pairs‘𝑉)) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅) | |
| 18 | 14, 16, 17 | syl2anc 584 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅) |
| 19 | f1oeq1 6770 | . . 3 ⊢ (𝑓 = ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) → (𝑓:𝐺–1-1-onto→𝑅 ↔ ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅)) | |
| 20 | 19 | spcegv 3560 | . 2 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V → (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅)) |
| 21 | 11, 18, 20 | sylc 65 | 1 ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 {crab 3402 Vcvv 3444 𝒫 cpw 4559 {cpr 4587 class class class wbr 5102 {copab 5164 ↦ cmpt 5183 × cxp 5629 ∘ ccom 5635 –1-1-onto→wf1o 6498 ‘cfv 6499 2nd c2nd 7946 Vtxcvtx 28899 Edgcedg 28950 USPGraphcuspgr 29051 Pairscspr 47451 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-fz 13445 df-hash 14272 df-vtx 28901 df-iedg 28902 df-edg 28951 df-upgr 28985 df-uspgr 29053 df-spr 47452 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |