![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgrbisymrelALT | Structured version Visualization version GIF version |
Description: Alternate proof of uspgrbisymrel 46142 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
uspgrbisymrel.g | ⊢ 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
uspgrbisymrel.r | ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
Ref | Expression |
---|---|
uspgrbisymrelALT | ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6856 | . . . . 5 ⊢ (Pairs‘𝑉) ∈ V | |
2 | 1 | pwex 5336 | . . . 4 ⊢ 𝒫 (Pairs‘𝑉) ∈ V |
3 | mptexg 7172 | . . . 4 ⊢ (𝒫 (Pairs‘𝑉) ∈ V → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V) | |
4 | 2, 3 | mp1i 13 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V) |
5 | eqid 2733 | . . . . 5 ⊢ 𝒫 (Pairs‘𝑉) = 𝒫 (Pairs‘𝑉) | |
6 | uspgrbisymrel.g | . . . . 5 ⊢ 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} | |
7 | 5, 6 | uspgrex 46138 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) |
8 | mptexg 7172 | . . . 4 ⊢ (𝐺 ∈ V → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) |
10 | coexg 7867 | . . 3 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V ∧ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V) | |
11 | 4, 9, 10 | syl2anc 585 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V) |
12 | uspgrbisymrel.r | . . . 4 ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | |
13 | eqid 2733 | . . . 4 ⊢ (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) | |
14 | 5, 12, 13 | sprsymrelf1o 45776 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto→𝑅) |
15 | eqid 2733 | . . . 4 ⊢ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) | |
16 | 5, 6, 15 | uspgrsprf1o 46137 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝒫 (Pairs‘𝑉)) |
17 | f1oco 6808 | . . 3 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto→𝑅 ∧ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝒫 (Pairs‘𝑉)) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅) | |
18 | 14, 16, 17 | syl2anc 585 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅) |
19 | f1oeq1 6773 | . . 3 ⊢ (𝑓 = ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) → (𝑓:𝐺–1-1-onto→𝑅 ↔ ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅)) | |
20 | 19 | spcegv 3555 | . 2 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V → (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅)) |
21 | 11, 18, 20 | sylc 65 | 1 ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 {crab 3406 Vcvv 3444 𝒫 cpw 4561 {cpr 4589 class class class wbr 5106 {copab 5168 ↦ cmpt 5189 × cxp 5632 ∘ ccom 5638 –1-1-onto→wf1o 6496 ‘cfv 6497 2nd c2nd 7921 Vtxcvtx 27989 Edgcedg 28040 USPGraphcuspgr 28141 Pairscspr 45755 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-resscn 11113 ax-1cn 11114 ax-icn 11115 ax-addcl 11116 ax-addrcl 11117 ax-mulcl 11118 ax-mulrcl 11119 ax-mulcom 11120 ax-addass 11121 ax-mulass 11122 ax-distr 11123 ax-i2m1 11124 ax-1ne0 11125 ax-1rid 11126 ax-rnegex 11127 ax-rrecex 11128 ax-cnre 11129 ax-pre-lttri 11130 ax-pre-lttrn 11131 ax-pre-ltadd 11132 ax-pre-mulgt0 11133 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-riota 7314 df-ov 7361 df-oprab 7362 df-mpo 7363 df-om 7804 df-1st 7922 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-1o 8413 df-2o 8414 df-oadd 8417 df-er 8651 df-en 8887 df-dom 8888 df-sdom 8889 df-fin 8890 df-dju 9842 df-card 9880 df-pnf 11196 df-mnf 11197 df-xr 11198 df-ltxr 11199 df-le 11200 df-sub 11392 df-neg 11393 df-nn 12159 df-2 12221 df-n0 12419 df-xnn0 12491 df-z 12505 df-uz 12769 df-fz 13431 df-hash 14237 df-vtx 27991 df-iedg 27992 df-edg 28041 df-upgr 28075 df-uspgr 28143 df-spr 45756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |