![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgrbisymrelALT | Structured version Visualization version GIF version |
Description: Alternate proof of uspgrbisymrel 47998 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
Ref | Expression |
---|---|
uspgrbisymrel.g | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
uspgrbisymrel.r | ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
Ref | Expression |
---|---|
uspgrbisymrelALT | ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fvex 6920 | . . . . 5 ⊢ (Pairs‘𝑉) ∈ V | |
2 | 1 | pwex 5386 | . . . 4 ⊢ 𝒫 (Pairs‘𝑉) ∈ V |
3 | mptexg 7241 | . . . 4 ⊢ (𝒫 (Pairs‘𝑉) ∈ V → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V) | |
4 | 2, 3 | mp1i 13 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V) |
5 | eqid 2735 | . . . . 5 ⊢ 𝒫 (Pairs‘𝑉) = 𝒫 (Pairs‘𝑉) | |
6 | uspgrbisymrel.g | . . . . 5 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} | |
7 | 5, 6 | uspgrex 47994 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) |
8 | mptexg 7241 | . . . 4 ⊢ (𝐺 ∈ V → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) | |
9 | 7, 8 | syl 17 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) |
10 | coexg 7952 | . . 3 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V ∧ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V) | |
11 | 4, 9, 10 | syl2anc 584 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V) |
12 | uspgrbisymrel.r | . . . 4 ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | |
13 | eqid 2735 | . . . 4 ⊢ (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) | |
14 | 5, 12, 13 | sprsymrelf1o 47423 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto→𝑅) |
15 | eqid 2735 | . . . 4 ⊢ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) | |
16 | 5, 6, 15 | uspgrsprf1o 47993 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝒫 (Pairs‘𝑉)) |
17 | f1oco 6872 | . . 3 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto→𝑅 ∧ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝒫 (Pairs‘𝑉)) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅) | |
18 | 14, 16, 17 | syl2anc 584 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅) |
19 | f1oeq1 6837 | . . 3 ⊢ (𝑓 = ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) → (𝑓:𝐺–1-1-onto→𝑅 ↔ ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅)) | |
20 | 19 | spcegv 3597 | . 2 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V → (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅)) |
21 | 11, 18, 20 | sylc 65 | 1 ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1776 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 {crab 3433 Vcvv 3478 𝒫 cpw 4605 {cpr 4633 class class class wbr 5148 {copab 5210 ↦ cmpt 5231 × cxp 5687 ∘ ccom 5693 –1-1-onto→wf1o 6562 ‘cfv 6563 2nd c2nd 8012 Vtxcvtx 29028 Edgcedg 29079 USPGraphcuspgr 29180 Pairscspr 47402 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-om 7888 df-1st 8013 df-2nd 8014 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-oadd 8509 df-er 8744 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-nn 12265 df-2 12327 df-n0 12525 df-xnn0 12598 df-z 12612 df-uz 12877 df-fz 13545 df-hash 14367 df-vtx 29030 df-iedg 29031 df-edg 29080 df-upgr 29114 df-uspgr 29182 df-spr 47403 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |