| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uspgrbisymrelALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of uspgrbisymrel 48193 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| uspgrbisymrel.g | ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} |
| uspgrbisymrel.r | ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} |
| Ref | Expression |
|---|---|
| uspgrbisymrelALT | ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvex 6835 | . . . . 5 ⊢ (Pairs‘𝑉) ∈ V | |
| 2 | 1 | pwex 5316 | . . . 4 ⊢ 𝒫 (Pairs‘𝑉) ∈ V |
| 3 | mptexg 7155 | . . . 4 ⊢ (𝒫 (Pairs‘𝑉) ∈ V → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V) | |
| 4 | 2, 3 | mp1i 13 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V) |
| 5 | eqid 2731 | . . . . 5 ⊢ 𝒫 (Pairs‘𝑉) = 𝒫 (Pairs‘𝑉) | |
| 6 | uspgrbisymrel.g | . . . . 5 ⊢ 𝐺 = {〈𝑣, 𝑒〉 ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))} | |
| 7 | 5, 6 | uspgrex 48189 | . . . 4 ⊢ (𝑉 ∈ 𝑊 → 𝐺 ∈ V) |
| 8 | mptexg 7155 | . . . 4 ⊢ (𝐺 ∈ V → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) | |
| 9 | 7, 8 | syl 17 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) |
| 10 | coexg 7859 | . . 3 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V ∧ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) ∈ V) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V) | |
| 11 | 4, 9, 10 | syl2anc 584 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V) |
| 12 | uspgrbisymrel.r | . . . 4 ⊢ 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥 ∈ 𝑉 ∀𝑦 ∈ 𝑉 (𝑥𝑟𝑦 ↔ 𝑦𝑟𝑥)} | |
| 13 | eqid 2731 | . . . 4 ⊢ (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) | |
| 14 | 5, 12, 13 | sprsymrelf1o 47537 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto→𝑅) |
| 15 | eqid 2731 | . . . 4 ⊢ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) = (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)) | |
| 16 | 5, 6, 15 | uspgrsprf1o 48188 | . . 3 ⊢ (𝑉 ∈ 𝑊 → (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝒫 (Pairs‘𝑉)) |
| 17 | f1oco 6786 | . . 3 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto→𝑅 ∧ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔)):𝐺–1-1-onto→𝒫 (Pairs‘𝑉)) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅) | |
| 18 | 14, 16, 17 | syl2anc 584 | . 2 ⊢ (𝑉 ∈ 𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅) |
| 19 | f1oeq1 6751 | . . 3 ⊢ (𝑓 = ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) → (𝑓:𝐺–1-1-onto→𝑅 ↔ ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅)) | |
| 20 | 19 | spcegv 3547 | . 2 ⊢ (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))) ∈ V → (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {〈𝑥, 𝑦〉 ∣ ∃𝑐 ∈ 𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔 ∈ 𝐺 ↦ (2nd ‘𝑔))):𝐺–1-1-onto→𝑅 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅)) |
| 21 | 11, 18, 20 | sylc 65 | 1 ⊢ (𝑉 ∈ 𝑊 → ∃𝑓 𝑓:𝐺–1-1-onto→𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 {crab 3395 Vcvv 3436 𝒫 cpw 4547 {cpr 4575 class class class wbr 5089 {copab 5151 ↦ cmpt 5170 × cxp 5612 ∘ ccom 5618 –1-1-onto→wf1o 6480 ‘cfv 6481 2nd c2nd 7920 Vtxcvtx 28974 Edgcedg 29025 USPGraphcuspgr 29126 Pairscspr 47516 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-oadd 8389 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-dju 9794 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-hash 14238 df-vtx 28976 df-iedg 28977 df-edg 29026 df-upgr 29060 df-uspgr 29128 df-spr 47517 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |