Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrbisymrelALT Structured version   Visualization version   GIF version

Theorem uspgrbisymrelALT 47532
Description: Alternate proof of uspgrbisymrel 47531 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
uspgrbisymrel.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrbisymrel.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
Assertion
Ref Expression
uspgrbisymrelALT (𝑉𝑊 → ∃𝑓 𝑓:𝐺1-1-onto𝑅)
Distinct variable groups:   𝑒,𝑉,𝑞,𝑣   𝑉,𝑟,𝑥,𝑦   𝑒,𝑊,𝑞,𝑣   𝑥,𝑊,𝑦   𝑓,𝐺   𝑅,𝑓   𝑓,𝑉,𝑟,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑣,𝑒,𝑟,𝑞)   𝐺(𝑥,𝑦,𝑣,𝑒,𝑟,𝑞)   𝑊(𝑓,𝑟)

Proof of Theorem uspgrbisymrelALT
Dummy variables 𝑔 𝑝 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6914 . . . . 5 (Pairs‘𝑉) ∈ V
21pwex 5384 . . . 4 𝒫 (Pairs‘𝑉) ∈ V
3 mptexg 7238 . . . 4 (𝒫 (Pairs‘𝑉) ∈ V → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
42, 3mp1i 13 . . 3 (𝑉𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
5 eqid 2726 . . . . 5 𝒫 (Pairs‘𝑉) = 𝒫 (Pairs‘𝑉)
6 uspgrbisymrel.g . . . . 5 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
75, 6uspgrex 47527 . . . 4 (𝑉𝑊𝐺 ∈ V)
8 mptexg 7238 . . . 4 (𝐺 ∈ V → (𝑔𝐺 ↦ (2nd𝑔)) ∈ V)
97, 8syl 17 . . 3 (𝑉𝑊 → (𝑔𝐺 ↦ (2nd𝑔)) ∈ V)
10 coexg 7942 . . 3 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V ∧ (𝑔𝐺 ↦ (2nd𝑔)) ∈ V) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V)
114, 9, 10syl2anc 582 . 2 (𝑉𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V)
12 uspgrbisymrel.r . . . 4 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
13 eqid 2726 . . . 4 (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
145, 12, 13sprsymrelf1o 47070 . . 3 (𝑉𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto𝑅)
15 eqid 2726 . . . 4 (𝑔𝐺 ↦ (2nd𝑔)) = (𝑔𝐺 ↦ (2nd𝑔))
165, 6, 15uspgrsprf1o 47526 . . 3 (𝑉𝑊 → (𝑔𝐺 ↦ (2nd𝑔)):𝐺1-1-onto→𝒫 (Pairs‘𝑉))
17 f1oco 6866 . . 3 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto𝑅 ∧ (𝑔𝐺 ↦ (2nd𝑔)):𝐺1-1-onto→𝒫 (Pairs‘𝑉)) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅)
1814, 16, 17syl2anc 582 . 2 (𝑉𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅)
19 f1oeq1 6831 . . 3 (𝑓 = ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) → (𝑓:𝐺1-1-onto𝑅 ↔ ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅))
2019spcegv 3583 . 2 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V → (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅 → ∃𝑓 𝑓:𝐺1-1-onto𝑅))
2111, 18, 20sylc 65 1 (𝑉𝑊 → ∃𝑓 𝑓:𝐺1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wex 1774  wcel 2099  wral 3051  wrex 3060  {crab 3419  Vcvv 3462  𝒫 cpw 4607  {cpr 4635   class class class wbr 5153  {copab 5215  cmpt 5236   × cxp 5680  ccom 5686  1-1-ontowf1o 6553  cfv 6554  2nd c2nd 8002  Vtxcvtx 28932  Edgcedg 28983  USPGraphcuspgr 29084  Pairscspr 47049
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5290  ax-sep 5304  ax-nul 5311  ax-pow 5369  ax-pr 5433  ax-un 7746  ax-cnex 11214  ax-resscn 11215  ax-1cn 11216  ax-icn 11217  ax-addcl 11218  ax-addrcl 11219  ax-mulcl 11220  ax-mulrcl 11221  ax-mulcom 11222  ax-addass 11223  ax-mulass 11224  ax-distr 11225  ax-i2m1 11226  ax-1ne0 11227  ax-1rid 11228  ax-rnegex 11229  ax-rrecex 11230  ax-cnre 11231  ax-pre-lttri 11232  ax-pre-lttrn 11233  ax-pre-ltadd 11234  ax-pre-mulgt0 11235
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4326  df-if 4534  df-pw 4609  df-sn 4634  df-pr 4636  df-op 4640  df-uni 4914  df-int 4955  df-iun 5003  df-br 5154  df-opab 5216  df-mpt 5237  df-tr 5271  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-pred 6312  df-ord 6379  df-on 6380  df-lim 6381  df-suc 6382  df-iota 6506  df-fun 6556  df-fn 6557  df-f 6558  df-f1 6559  df-fo 6560  df-f1o 6561  df-fv 6562  df-riota 7380  df-ov 7427  df-oprab 7428  df-mpo 7429  df-om 7877  df-1st 8003  df-2nd 8004  df-frecs 8296  df-wrecs 8327  df-recs 8401  df-rdg 8440  df-1o 8496  df-2o 8497  df-oadd 8500  df-er 8734  df-en 8975  df-dom 8976  df-sdom 8977  df-fin 8978  df-dju 9944  df-card 9982  df-pnf 11300  df-mnf 11301  df-xr 11302  df-ltxr 11303  df-le 11304  df-sub 11496  df-neg 11497  df-nn 12265  df-2 12327  df-n0 12525  df-xnn0 12597  df-z 12611  df-uz 12875  df-fz 13539  df-hash 14348  df-vtx 28934  df-iedg 28935  df-edg 28984  df-upgr 29018  df-uspgr 29086  df-spr 47050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator