Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  uspgrbisymrelALT Structured version   Visualization version   GIF version

Theorem uspgrbisymrelALT 44378
Description: Alternate proof of uspgrbisymrel 44377 not using the definition of equinumerosity. (Contributed by AV, 26-Nov-2021.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
uspgrbisymrel.g 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
uspgrbisymrel.r 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
Assertion
Ref Expression
uspgrbisymrelALT (𝑉𝑊 → ∃𝑓 𝑓:𝐺1-1-onto𝑅)
Distinct variable groups:   𝑒,𝑉,𝑞,𝑣   𝑉,𝑟,𝑥,𝑦   𝑒,𝑊,𝑞,𝑣   𝑥,𝑊,𝑦   𝑓,𝐺   𝑅,𝑓   𝑓,𝑉,𝑟,𝑥,𝑦
Allowed substitution hints:   𝑅(𝑥,𝑦,𝑣,𝑒,𝑟,𝑞)   𝐺(𝑥,𝑦,𝑣,𝑒,𝑟,𝑞)   𝑊(𝑓,𝑟)

Proof of Theorem uspgrbisymrelALT
Dummy variables 𝑔 𝑝 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6658 . . . . 5 (Pairs‘𝑉) ∈ V
21pwex 5246 . . . 4 𝒫 (Pairs‘𝑉) ∈ V
3 mptexg 6961 . . . 4 (𝒫 (Pairs‘𝑉) ∈ V → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
42, 3mp1i 13 . . 3 (𝑉𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V)
5 eqid 2798 . . . . 5 𝒫 (Pairs‘𝑉) = 𝒫 (Pairs‘𝑉)
6 uspgrbisymrel.g . . . . 5 𝐺 = {⟨𝑣, 𝑒⟩ ∣ (𝑣 = 𝑉 ∧ ∃𝑞 ∈ USPGraph ((Vtx‘𝑞) = 𝑣 ∧ (Edg‘𝑞) = 𝑒))}
75, 6uspgrex 44373 . . . 4 (𝑉𝑊𝐺 ∈ V)
8 mptexg 6961 . . . 4 (𝐺 ∈ V → (𝑔𝐺 ↦ (2nd𝑔)) ∈ V)
97, 8syl 17 . . 3 (𝑉𝑊 → (𝑔𝐺 ↦ (2nd𝑔)) ∈ V)
10 coexg 7616 . . 3 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∈ V ∧ (𝑔𝐺 ↦ (2nd𝑔)) ∈ V) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V)
114, 9, 10syl2anc 587 . 2 (𝑉𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V)
12 uspgrbisymrel.r . . . 4 𝑅 = {𝑟 ∈ 𝒫 (𝑉 × 𝑉) ∣ ∀𝑥𝑉𝑦𝑉 (𝑥𝑟𝑦𝑦𝑟𝑥)}
13 eqid 2798 . . . 4 (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) = (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}})
145, 12, 13sprsymrelf1o 44010 . . 3 (𝑉𝑊 → (𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto𝑅)
15 eqid 2798 . . . 4 (𝑔𝐺 ↦ (2nd𝑔)) = (𝑔𝐺 ↦ (2nd𝑔))
165, 6, 15uspgrsprf1o 44372 . . 3 (𝑉𝑊 → (𝑔𝐺 ↦ (2nd𝑔)):𝐺1-1-onto→𝒫 (Pairs‘𝑉))
17 f1oco 6612 . . 3 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}):𝒫 (Pairs‘𝑉)–1-1-onto𝑅 ∧ (𝑔𝐺 ↦ (2nd𝑔)):𝐺1-1-onto→𝒫 (Pairs‘𝑉)) → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅)
1814, 16, 17syl2anc 587 . 2 (𝑉𝑊 → ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅)
19 f1oeq1 6579 . . 3 (𝑓 = ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) → (𝑓:𝐺1-1-onto𝑅 ↔ ((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅))
2019spcegv 3545 . 2 (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))) ∈ V → (((𝑝 ∈ 𝒫 (Pairs‘𝑉) ↦ {⟨𝑥, 𝑦⟩ ∣ ∃𝑐𝑝 𝑐 = {𝑥, 𝑦}}) ∘ (𝑔𝐺 ↦ (2nd𝑔))):𝐺1-1-onto𝑅 → ∃𝑓 𝑓:𝐺1-1-onto𝑅))
2111, 18, 20sylc 65 1 (𝑉𝑊 → ∃𝑓 𝑓:𝐺1-1-onto𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wex 1781  wcel 2111  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  𝒫 cpw 4497  {cpr 4527   class class class wbr 5030  {copab 5092  cmpt 5110   × cxp 5517  ccom 5523  1-1-ontowf1o 6323  cfv 6324  2nd c2nd 7670  Vtxcvtx 26789  Edgcedg 26840  USPGraphcuspgr 26941  Pairscspr 43989
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12886  df-hash 13687  df-vtx 26791  df-iedg 26792  df-edg 26841  df-upgr 26875  df-uspgr 26943  df-spr 43990
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator