MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  off Structured version   Visualization version   GIF version

Theorem off 7687
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
off (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Distinct variable groups:   𝑦,𝐺   𝑥,𝑦,𝜑   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem off
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 off.2 . . . 4 (𝜑𝐹:𝐴𝑆)
21ffnd 6718 . . 3 (𝜑𝐹 Fn 𝐴)
3 off.3 . . . 4 (𝜑𝐺:𝐵𝑇)
43ffnd 6718 . . 3 (𝜑𝐺 Fn 𝐵)
5 off.4 . . 3 (𝜑𝐴𝑉)
6 off.5 . . 3 (𝜑𝐵𝑊)
7 off.6 . . 3 (𝐴𝐵) = 𝐶
8 eqidd 2733 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
9 eqidd 2733 . . 3 ((𝜑𝑧𝐵) → (𝐺𝑧) = (𝐺𝑧))
102, 4, 5, 6, 7, 8, 9offval 7678 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
11 inss1 4228 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
127, 11eqsstrri 4017 . . . . 5 𝐶𝐴
1312sseli 3978 . . . 4 (𝑧𝐶𝑧𝐴)
14 ffvelcdm 7083 . . . 4 ((𝐹:𝐴𝑆𝑧𝐴) → (𝐹𝑧) ∈ 𝑆)
151, 13, 14syl2an 596 . . 3 ((𝜑𝑧𝐶) → (𝐹𝑧) ∈ 𝑆)
16 inss2 4229 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
177, 16eqsstrri 4017 . . . . 5 𝐶𝐵
1817sseli 3978 . . . 4 (𝑧𝐶𝑧𝐵)
19 ffvelcdm 7083 . . . 4 ((𝐺:𝐵𝑇𝑧𝐵) → (𝐺𝑧) ∈ 𝑇)
203, 18, 19syl2an 596 . . 3 ((𝜑𝑧𝐶) → (𝐺𝑧) ∈ 𝑇)
21 off.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
2221ralrimivva 3200 . . . 4 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
2322adantr 481 . . 3 ((𝜑𝑧𝐶) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
24 ovrspc2v 7434 . . 3 ((((𝐹𝑧) ∈ 𝑆 ∧ (𝐺𝑧) ∈ 𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2515, 20, 23, 24syl21anc 836 . 2 ((𝜑𝑧𝐶) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2610, 25fmpt3d 7115 1 (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1541  wcel 2106  wral 3061  cin 3947  wf 6539  cfv 6543  (class class class)co 7408  f cof 7667
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669
This theorem is referenced by:  suppofssd  8187  o1of2  15556  ghmplusg  19713  gsumzaddlem  19788  gsumzadd  19789  lcomf  20510  frlmup1  21352  psrbagaddcl  21480  psrbagaddclOLD  21481  psraddcl  21501  psrvscacl  21511  psrbagev1  21637  psrbagev1OLD  21638  evlslem3  21642  mndvcl  21892  tsmsadd  23650  mbfmulc2lem  25163  mbfaddlem  25176  i1fadd  25211  i1fmul  25212  itg1addlem4  25215  itg1addlem4OLD  25216  i1fmulclem  25219  i1fmulc  25220  mbfi1flimlem  25239  itg2mulclem  25263  itg2mulc  25264  itg2monolem1  25267  itg2addlem  25275  dvaddbr  25454  dvmulbr  25455  dvaddf  25458  dvmulf  25459  dv11cn  25517  plyaddlem  25728  coeeulem  25737  coeaddlem  25762  plydivlem4  25808  jensenlem2  26489  jensen  26490  basellem7  26588  basellem9  26590  dchrmulcl  26749  ofrn  31859  offinsupp1  31947  ply1degltdimlem  32702  fedgmullem1  32709  sibfof  33334  signshf  33594  circlemethhgt  33650  gg-dvmulbr  35170  poimirlem23  36506  poimirlem24  36507  poimirlem25  36508  poimirlem29  36512  poimirlem30  36513  poimirlem31  36514  poimirlem32  36515  itg2addnc  36537  ftc1anclem3  36558  ftc1anclem6  36561  ftc1anclem8  36563  lfladdcl  37936  lflvscl  37942  fsuppssind  41167  mhphf  41171  mzpclall  41455  mzpindd  41474  expgrowth  43084  binomcxplemnotnn0  43105  dvdivcncf  44633  ofaddmndmap  47009  amgmwlem  47839
  Copyright terms: Public domain W3C validator