MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  off Structured version   Visualization version   GIF version

Theorem off 7637
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
off (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Distinct variable groups:   𝑦,𝐺   𝑥,𝑦,𝜑   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem off
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 off.2 . . . 4 (𝜑𝐹:𝐴𝑆)
21ffnd 6660 . . 3 (𝜑𝐹 Fn 𝐴)
3 off.3 . . . 4 (𝜑𝐺:𝐵𝑇)
43ffnd 6660 . . 3 (𝜑𝐺 Fn 𝐵)
5 off.4 . . 3 (𝜑𝐴𝑉)
6 off.5 . . 3 (𝜑𝐵𝑊)
7 off.6 . . 3 (𝐴𝐵) = 𝐶
8 eqidd 2734 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
9 eqidd 2734 . . 3 ((𝜑𝑧𝐵) → (𝐺𝑧) = (𝐺𝑧))
102, 4, 5, 6, 7, 8, 9offval 7628 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
11 inss1 4186 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
127, 11eqsstrri 3978 . . . . 5 𝐶𝐴
1312sseli 3926 . . . 4 (𝑧𝐶𝑧𝐴)
14 ffvelcdm 7023 . . . 4 ((𝐹:𝐴𝑆𝑧𝐴) → (𝐹𝑧) ∈ 𝑆)
151, 13, 14syl2an 596 . . 3 ((𝜑𝑧𝐶) → (𝐹𝑧) ∈ 𝑆)
16 inss2 4187 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
177, 16eqsstrri 3978 . . . . 5 𝐶𝐵
1817sseli 3926 . . . 4 (𝑧𝐶𝑧𝐵)
19 ffvelcdm 7023 . . . 4 ((𝐺:𝐵𝑇𝑧𝐵) → (𝐺𝑧) ∈ 𝑇)
203, 18, 19syl2an 596 . . 3 ((𝜑𝑧𝐶) → (𝐺𝑧) ∈ 𝑇)
21 off.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
2221ralrimivva 3176 . . . 4 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
2322adantr 480 . . 3 ((𝜑𝑧𝐶) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
24 ovrspc2v 7381 . . 3 ((((𝐹𝑧) ∈ 𝑆 ∧ (𝐺𝑧) ∈ 𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2515, 20, 23, 24syl21anc 837 . 2 ((𝜑𝑧𝐶) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2610, 25fmpt3d 7058 1 (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  wral 3048  cin 3897  wf 6485  cfv 6489  (class class class)co 7355  f cof 7617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-of 7619
This theorem is referenced by:  suppofssd  8142  o1of2  15527  mndvcl  18713  ghmplusg  19766  gsumzaddlem  19841  gsumzadd  19842  lcomf  20843  frlmup1  21744  psrbagaddcl  21871  psraddcl  21885  psraddclOLD  21886  psrvscacl  21898  psrbagev1  22023  evlslem3  22026  tsmsadd  24082  mbfmulc2lem  25595  mbfaddlem  25608  i1fadd  25643  i1fmul  25644  itg1addlem4  25647  i1fmulclem  25650  i1fmulc  25651  mbfi1flimlem  25670  itg2mulclem  25694  itg2mulc  25695  itg2monolem1  25698  itg2addlem  25706  dvaddbr  25887  dvmulbr  25888  dvmulbrOLD  25889  dvaddf  25892  dvmulf  25893  dv11cn  25953  plyaddlem  26167  coeeulem  26176  coeaddlem  26201  plydivlem4  26251  jensenlem2  26945  jensen  26946  basellem7  27044  basellem9  27046  dchrmulcl  27207  ofrn  32643  offinsupp1  32733  elrgspnlem1  33252  1arithidomlem2  33545  1arithidom  33546  ply1degltdimlem  33707  fedgmullem1  33714  sibfof  34425  signshf  34673  circlemethhgt  34728  poimirlem23  37756  poimirlem24  37757  poimirlem25  37758  poimirlem29  37762  poimirlem30  37763  poimirlem31  37764  poimirlem32  37765  itg2addnc  37787  ftc1anclem3  37808  ftc1anclem6  37811  ftc1anclem8  37813  lfladdcl  39243  lflvscl  39249  fsuppssind  42751  mhphf  42755  mzpclall  42884  mzpindd  42903  expgrowth  44492  binomcxplemnotnn0  44513  dvdivcncf  46087  ofaddmndmap  48505  amgmwlem  49963
  Copyright terms: Public domain W3C validator