MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  off Structured version   Visualization version   GIF version

Theorem off 7189
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
off (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
Distinct variable groups:   𝑦,𝐺   𝑥,𝑦,𝜑   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem off
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 off.2 . . . 4 (𝜑𝐹:𝐴𝑆)
21ffnd 6292 . . 3 (𝜑𝐹 Fn 𝐴)
3 off.3 . . . 4 (𝜑𝐺:𝐵𝑇)
43ffnd 6292 . . 3 (𝜑𝐺 Fn 𝐵)
5 off.4 . . 3 (𝜑𝐴𝑉)
6 off.5 . . 3 (𝜑𝐵𝑊)
7 off.6 . . 3 (𝐴𝐵) = 𝐶
8 eqidd 2779 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
9 eqidd 2779 . . 3 ((𝜑𝑧𝐵) → (𝐺𝑧) = (𝐺𝑧))
102, 4, 5, 6, 7, 8, 9offval 7181 . 2 (𝜑 → (𝐹𝑓 𝑅𝐺) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
11 inss1 4053 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
127, 11eqsstr3i 3855 . . . . 5 𝐶𝐴
1312sseli 3817 . . . 4 (𝑧𝐶𝑧𝐴)
14 ffvelrn 6621 . . . 4 ((𝐹:𝐴𝑆𝑧𝐴) → (𝐹𝑧) ∈ 𝑆)
151, 13, 14syl2an 589 . . 3 ((𝜑𝑧𝐶) → (𝐹𝑧) ∈ 𝑆)
16 inss2 4054 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
177, 16eqsstr3i 3855 . . . . 5 𝐶𝐵
1817sseli 3817 . . . 4 (𝑧𝐶𝑧𝐵)
19 ffvelrn 6621 . . . 4 ((𝐺:𝐵𝑇𝑧𝐵) → (𝐺𝑧) ∈ 𝑇)
203, 18, 19syl2an 589 . . 3 ((𝜑𝑧𝐶) → (𝐺𝑧) ∈ 𝑇)
21 off.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
2221ralrimivva 3153 . . . 4 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
2322adantr 474 . . 3 ((𝜑𝑧𝐶) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
24 ovrspc2v 6948 . . 3 ((((𝐹𝑧) ∈ 𝑆 ∧ (𝐺𝑧) ∈ 𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2515, 20, 23, 24syl21anc 828 . 2 ((𝜑𝑧𝐶) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2610, 25fmpt3d 6650 1 (𝜑 → (𝐹𝑓 𝑅𝐺):𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wral 3090  cin 3791  wf 6131  cfv 6135  (class class class)co 6922  𝑓 cof 7172
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5006  ax-sep 5017  ax-nul 5025  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-iun 4755  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-f 6139  df-f1 6140  df-fo 6141  df-f1o 6142  df-fv 6143  df-ov 6925  df-oprab 6926  df-mpt2 6927  df-of 7174
This theorem is referenced by:  o1of2  14751  ghmplusg  18635  gsumzaddlem  18707  gsumzadd  18708  lcomf  19294  psrbagaddcl  19767  psraddcl  19780  psrvscacl  19790  psrbagev1  19906  evlslem3  19910  frlmup1  20541  mndvcl  20601  tsmsadd  22358  mbfmulc2lem  23851  mbfaddlem  23864  i1fadd  23899  i1fmul  23900  itg1addlem4  23903  i1fmulclem  23906  i1fmulc  23907  mbfi1flimlem  23926  itg2mulclem  23950  itg2mulc  23951  itg2monolem1  23954  itg2addlem  23962  dvaddbr  24138  dvmulbr  24139  dvaddf  24142  dvmulf  24143  dv11cn  24201  plyaddlem  24408  coeeulem  24417  coeaddlem  24442  plydivlem4  24488  jensenlem2  25166  jensen  25167  basellem7  25265  basellem9  25267  dchrmulcl  25426  ofrn  30006  sibfof  31000  signshf  31267  circlemethhgt  31323  poimirlem23  34060  poimirlem24  34061  poimirlem25  34062  poimirlem29  34066  poimirlem30  34067  poimirlem31  34068  poimirlem32  34069  itg2addnc  34091  ftc1anclem3  34114  ftc1anclem6  34117  ftc1anclem8  34119  lfladdcl  35227  lflvscl  35233  mzpclall  38254  mzpindd  38273  expgrowth  39494  binomcxplemnotnn0  39515  dvdivcncf  41074  ofaddmndmap  43141  amgmwlem  43658
  Copyright terms: Public domain W3C validator