| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > off | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
| off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
| off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| off | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | off.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | 1 | ffnd 6692 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | off.3 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
| 4 | 3 | ffnd 6692 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 5 | off.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | off.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | off.6 | . . 3 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
| 8 | eqidd 2731 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
| 9 | eqidd 2731 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 10 | 2, 4, 5, 6, 7, 8, 9 | offval 7665 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
| 11 | inss1 4203 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 12 | 7, 11 | eqsstrri 3997 | . . . . 5 ⊢ 𝐶 ⊆ 𝐴 |
| 13 | 12 | sseli 3945 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐴) |
| 14 | ffvelcdm 7056 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑆 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) | |
| 15 | 1, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
| 16 | inss2 4204 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 17 | 7, 16 | eqsstrri 3997 | . . . . 5 ⊢ 𝐶 ⊆ 𝐵 |
| 18 | 17 | sseli 3945 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵) |
| 19 | ffvelcdm 7056 | . . . 4 ⊢ ((𝐺:𝐵⟶𝑇 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) ∈ 𝑇) | |
| 20 | 3, 18, 19 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
| 21 | off.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
| 22 | 21 | ralrimivva 3181 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 24 | ovrspc2v 7416 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | |
| 25 | 15, 20, 23, 24 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
| 26 | 10, 25 | fmpt3d 7091 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∩ cin 3916 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ∘f cof 7654 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 |
| This theorem is referenced by: suppofssd 8185 o1of2 15586 mndvcl 18731 ghmplusg 19783 gsumzaddlem 19858 gsumzadd 19859 lcomf 20814 frlmup1 21714 psrbagaddcl 21840 psraddcl 21854 psraddclOLD 21855 psrvscacl 21867 psrbagev1 21991 evlslem3 21994 tsmsadd 24041 mbfmulc2lem 25555 mbfaddlem 25568 i1fadd 25603 i1fmul 25604 itg1addlem4 25607 i1fmulclem 25610 i1fmulc 25611 mbfi1flimlem 25630 itg2mulclem 25654 itg2mulc 25655 itg2monolem1 25658 itg2addlem 25666 dvaddbr 25847 dvmulbr 25848 dvmulbrOLD 25849 dvaddf 25852 dvmulf 25853 dv11cn 25913 plyaddlem 26127 coeeulem 26136 coeaddlem 26161 plydivlem4 26211 jensenlem2 26905 jensen 26906 basellem7 27004 basellem9 27006 dchrmulcl 27167 ofrn 32570 offinsupp1 32657 elrgspnlem1 33200 1arithidomlem2 33514 1arithidom 33515 ply1degltdimlem 33625 fedgmullem1 33632 sibfof 34338 signshf 34586 circlemethhgt 34641 poimirlem23 37644 poimirlem24 37645 poimirlem25 37646 poimirlem29 37650 poimirlem30 37651 poimirlem31 37652 poimirlem32 37653 itg2addnc 37675 ftc1anclem3 37696 ftc1anclem6 37699 ftc1anclem8 37701 lfladdcl 39071 lflvscl 39077 fsuppssind 42588 mhphf 42592 mzpclall 42722 mzpindd 42741 expgrowth 44331 binomcxplemnotnn0 44352 dvdivcncf 45932 ofaddmndmap 48335 amgmwlem 49795 |
| Copyright terms: Public domain | W3C validator |