| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > off | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
| off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
| off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| off | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | off.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | 1 | ffnd 6652 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | off.3 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
| 4 | 3 | ffnd 6652 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 5 | off.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | off.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | off.6 | . . 3 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
| 8 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
| 9 | eqidd 2732 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 10 | 2, 4, 5, 6, 7, 8, 9 | offval 7619 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
| 11 | inss1 4187 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 12 | 7, 11 | eqsstrri 3982 | . . . . 5 ⊢ 𝐶 ⊆ 𝐴 |
| 13 | 12 | sseli 3930 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐴) |
| 14 | ffvelcdm 7014 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑆 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) | |
| 15 | 1, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
| 16 | inss2 4188 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 17 | 7, 16 | eqsstrri 3982 | . . . . 5 ⊢ 𝐶 ⊆ 𝐵 |
| 18 | 17 | sseli 3930 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵) |
| 19 | ffvelcdm 7014 | . . . 4 ⊢ ((𝐺:𝐵⟶𝑇 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) ∈ 𝑇) | |
| 20 | 3, 18, 19 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
| 21 | off.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
| 22 | 21 | ralrimivva 3175 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 24 | ovrspc2v 7372 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | |
| 25 | 15, 20, 23, 24 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
| 26 | 10, 25 | fmpt3d 7049 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3901 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 ∘f cof 7608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 |
| This theorem is referenced by: suppofssd 8133 o1of2 15520 mndvcl 18705 ghmplusg 19759 gsumzaddlem 19834 gsumzadd 19835 lcomf 20835 frlmup1 21736 psrbagaddcl 21862 psraddcl 21876 psraddclOLD 21877 psrvscacl 21889 psrbagev1 22013 evlslem3 22016 tsmsadd 24063 mbfmulc2lem 25576 mbfaddlem 25589 i1fadd 25624 i1fmul 25625 itg1addlem4 25628 i1fmulclem 25631 i1fmulc 25632 mbfi1flimlem 25651 itg2mulclem 25675 itg2mulc 25676 itg2monolem1 25679 itg2addlem 25687 dvaddbr 25868 dvmulbr 25869 dvmulbrOLD 25870 dvaddf 25873 dvmulf 25874 dv11cn 25934 plyaddlem 26148 coeeulem 26157 coeaddlem 26182 plydivlem4 26232 jensenlem2 26926 jensen 26927 basellem7 27025 basellem9 27027 dchrmulcl 27188 ofrn 32619 offinsupp1 32707 elrgspnlem1 33207 1arithidomlem2 33499 1arithidom 33500 ply1degltdimlem 33633 fedgmullem1 33640 sibfof 34351 signshf 34599 circlemethhgt 34654 poimirlem23 37689 poimirlem24 37690 poimirlem25 37691 poimirlem29 37695 poimirlem30 37696 poimirlem31 37697 poimirlem32 37698 itg2addnc 37720 ftc1anclem3 37741 ftc1anclem6 37744 ftc1anclem8 37746 lfladdcl 39116 lflvscl 39122 fsuppssind 42632 mhphf 42636 mzpclall 42766 mzpindd 42785 expgrowth 44374 binomcxplemnotnn0 44395 dvdivcncf 45971 ofaddmndmap 48380 amgmwlem 49840 |
| Copyright terms: Public domain | W3C validator |