![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > off | Structured version Visualization version GIF version |
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) |
Ref | Expression |
---|---|
off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
Ref | Expression |
---|---|
off | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | 1 | ffnd 6718 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | off.3 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
4 | 3 | ffnd 6718 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
5 | off.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | off.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
7 | off.6 | . . 3 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
8 | eqidd 2733 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
9 | eqidd 2733 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
10 | 2, 4, 5, 6, 7, 8, 9 | offval 7678 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
11 | inss1 4228 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
12 | 7, 11 | eqsstrri 4017 | . . . . 5 ⊢ 𝐶 ⊆ 𝐴 |
13 | 12 | sseli 3978 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐴) |
14 | ffvelcdm 7083 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑆 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) | |
15 | 1, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
16 | inss2 4229 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
17 | 7, 16 | eqsstrri 4017 | . . . . 5 ⊢ 𝐶 ⊆ 𝐵 |
18 | 17 | sseli 3978 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵) |
19 | ffvelcdm 7083 | . . . 4 ⊢ ((𝐺:𝐵⟶𝑇 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) ∈ 𝑇) | |
20 | 3, 18, 19 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
21 | off.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
22 | 21 | ralrimivva 3200 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
23 | 22 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
24 | ovrspc2v 7434 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | |
25 | 15, 20, 23, 24 | syl21anc 836 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
26 | 10, 25 | fmpt3d 7115 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ∀wral 3061 ∩ cin 3947 ⟶wf 6539 ‘cfv 6543 (class class class)co 7408 ∘f cof 7667 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-of 7669 |
This theorem is referenced by: suppofssd 8187 o1of2 15556 ghmplusg 19713 gsumzaddlem 19788 gsumzadd 19789 lcomf 20510 frlmup1 21352 psrbagaddcl 21480 psrbagaddclOLD 21481 psraddcl 21501 psrvscacl 21511 psrbagev1 21637 psrbagev1OLD 21638 evlslem3 21642 mndvcl 21892 tsmsadd 23650 mbfmulc2lem 25163 mbfaddlem 25176 i1fadd 25211 i1fmul 25212 itg1addlem4 25215 itg1addlem4OLD 25216 i1fmulclem 25219 i1fmulc 25220 mbfi1flimlem 25239 itg2mulclem 25263 itg2mulc 25264 itg2monolem1 25267 itg2addlem 25275 dvaddbr 25454 dvmulbr 25455 dvaddf 25458 dvmulf 25459 dv11cn 25517 plyaddlem 25728 coeeulem 25737 coeaddlem 25762 plydivlem4 25808 jensenlem2 26489 jensen 26490 basellem7 26588 basellem9 26590 dchrmulcl 26749 ofrn 31859 offinsupp1 31947 ply1degltdimlem 32702 fedgmullem1 32709 sibfof 33334 signshf 33594 circlemethhgt 33650 gg-dvmulbr 35170 poimirlem23 36506 poimirlem24 36507 poimirlem25 36508 poimirlem29 36512 poimirlem30 36513 poimirlem31 36514 poimirlem32 36515 itg2addnc 36537 ftc1anclem3 36558 ftc1anclem6 36561 ftc1anclem8 36563 lfladdcl 37936 lflvscl 37942 fsuppssind 41167 mhphf 41171 mzpclall 41455 mzpindd 41474 expgrowth 43084 binomcxplemnotnn0 43105 dvdivcncf 44633 ofaddmndmap 47009 amgmwlem 47839 |
Copyright terms: Public domain | W3C validator |