MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  off Structured version   Visualization version   GIF version

Theorem off 7674
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
off (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Distinct variable groups:   𝑦,𝐺   𝑥,𝑦,𝜑   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem off
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 off.2 . . . 4 (𝜑𝐹:𝐴𝑆)
21ffnd 6692 . . 3 (𝜑𝐹 Fn 𝐴)
3 off.3 . . . 4 (𝜑𝐺:𝐵𝑇)
43ffnd 6692 . . 3 (𝜑𝐺 Fn 𝐵)
5 off.4 . . 3 (𝜑𝐴𝑉)
6 off.5 . . 3 (𝜑𝐵𝑊)
7 off.6 . . 3 (𝐴𝐵) = 𝐶
8 eqidd 2731 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
9 eqidd 2731 . . 3 ((𝜑𝑧𝐵) → (𝐺𝑧) = (𝐺𝑧))
102, 4, 5, 6, 7, 8, 9offval 7665 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
11 inss1 4203 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
127, 11eqsstrri 3997 . . . . 5 𝐶𝐴
1312sseli 3945 . . . 4 (𝑧𝐶𝑧𝐴)
14 ffvelcdm 7056 . . . 4 ((𝐹:𝐴𝑆𝑧𝐴) → (𝐹𝑧) ∈ 𝑆)
151, 13, 14syl2an 596 . . 3 ((𝜑𝑧𝐶) → (𝐹𝑧) ∈ 𝑆)
16 inss2 4204 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
177, 16eqsstrri 3997 . . . . 5 𝐶𝐵
1817sseli 3945 . . . 4 (𝑧𝐶𝑧𝐵)
19 ffvelcdm 7056 . . . 4 ((𝐺:𝐵𝑇𝑧𝐵) → (𝐺𝑧) ∈ 𝑇)
203, 18, 19syl2an 596 . . 3 ((𝜑𝑧𝐶) → (𝐺𝑧) ∈ 𝑇)
21 off.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
2221ralrimivva 3181 . . . 4 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
2322adantr 480 . . 3 ((𝜑𝑧𝐶) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
24 ovrspc2v 7416 . . 3 ((((𝐹𝑧) ∈ 𝑆 ∧ (𝐺𝑧) ∈ 𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2515, 20, 23, 24syl21anc 837 . 2 ((𝜑𝑧𝐶) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2610, 25fmpt3d 7091 1 (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  cin 3916  wf 6510  cfv 6514  (class class class)co 7390  f cof 7654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656
This theorem is referenced by:  suppofssd  8185  o1of2  15586  mndvcl  18731  ghmplusg  19783  gsumzaddlem  19858  gsumzadd  19859  lcomf  20814  frlmup1  21714  psrbagaddcl  21840  psraddcl  21854  psraddclOLD  21855  psrvscacl  21867  psrbagev1  21991  evlslem3  21994  tsmsadd  24041  mbfmulc2lem  25555  mbfaddlem  25568  i1fadd  25603  i1fmul  25604  itg1addlem4  25607  i1fmulclem  25610  i1fmulc  25611  mbfi1flimlem  25630  itg2mulclem  25654  itg2mulc  25655  itg2monolem1  25658  itg2addlem  25666  dvaddbr  25847  dvmulbr  25848  dvmulbrOLD  25849  dvaddf  25852  dvmulf  25853  dv11cn  25913  plyaddlem  26127  coeeulem  26136  coeaddlem  26161  plydivlem4  26211  jensenlem2  26905  jensen  26906  basellem7  27004  basellem9  27006  dchrmulcl  27167  ofrn  32570  offinsupp1  32657  elrgspnlem1  33200  1arithidomlem2  33514  1arithidom  33515  ply1degltdimlem  33625  fedgmullem1  33632  sibfof  34338  signshf  34586  circlemethhgt  34641  poimirlem23  37644  poimirlem24  37645  poimirlem25  37646  poimirlem29  37650  poimirlem30  37651  poimirlem31  37652  poimirlem32  37653  itg2addnc  37675  ftc1anclem3  37696  ftc1anclem6  37699  ftc1anclem8  37701  lfladdcl  39071  lflvscl  39077  fsuppssind  42588  mhphf  42592  mzpclall  42722  mzpindd  42741  expgrowth  44331  binomcxplemnotnn0  44352  dvdivcncf  45932  ofaddmndmap  48335  amgmwlem  49795
  Copyright terms: Public domain W3C validator