| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > off | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
| off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
| off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| off | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | off.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | 1 | ffnd 6689 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | off.3 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
| 4 | 3 | ffnd 6689 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 5 | off.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | off.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | off.6 | . . 3 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
| 8 | eqidd 2730 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
| 9 | eqidd 2730 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 10 | 2, 4, 5, 6, 7, 8, 9 | offval 7662 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
| 11 | inss1 4200 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 12 | 7, 11 | eqsstrri 3994 | . . . . 5 ⊢ 𝐶 ⊆ 𝐴 |
| 13 | 12 | sseli 3942 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐴) |
| 14 | ffvelcdm 7053 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑆 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) | |
| 15 | 1, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
| 16 | inss2 4201 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 17 | 7, 16 | eqsstrri 3994 | . . . . 5 ⊢ 𝐶 ⊆ 𝐵 |
| 18 | 17 | sseli 3942 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵) |
| 19 | ffvelcdm 7053 | . . . 4 ⊢ ((𝐺:𝐵⟶𝑇 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) ∈ 𝑇) | |
| 20 | 3, 18, 19 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
| 21 | off.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
| 22 | 21 | ralrimivva 3180 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 24 | ovrspc2v 7413 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | |
| 25 | 15, 20, 23, 24 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
| 26 | 10, 25 | fmpt3d 7088 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3913 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ∘f cof 7651 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 |
| This theorem is referenced by: suppofssd 8182 o1of2 15579 mndvcl 18724 ghmplusg 19776 gsumzaddlem 19851 gsumzadd 19852 lcomf 20807 frlmup1 21707 psrbagaddcl 21833 psraddcl 21847 psraddclOLD 21848 psrvscacl 21860 psrbagev1 21984 evlslem3 21987 tsmsadd 24034 mbfmulc2lem 25548 mbfaddlem 25561 i1fadd 25596 i1fmul 25597 itg1addlem4 25600 i1fmulclem 25603 i1fmulc 25604 mbfi1flimlem 25623 itg2mulclem 25647 itg2mulc 25648 itg2monolem1 25651 itg2addlem 25659 dvaddbr 25840 dvmulbr 25841 dvmulbrOLD 25842 dvaddf 25845 dvmulf 25846 dv11cn 25906 plyaddlem 26120 coeeulem 26129 coeaddlem 26154 plydivlem4 26204 jensenlem2 26898 jensen 26899 basellem7 26997 basellem9 26999 dchrmulcl 27160 ofrn 32563 offinsupp1 32650 elrgspnlem1 33193 1arithidomlem2 33507 1arithidom 33508 ply1degltdimlem 33618 fedgmullem1 33625 sibfof 34331 signshf 34579 circlemethhgt 34634 poimirlem23 37637 poimirlem24 37638 poimirlem25 37639 poimirlem29 37643 poimirlem30 37644 poimirlem31 37645 poimirlem32 37646 itg2addnc 37668 ftc1anclem3 37689 ftc1anclem6 37692 ftc1anclem8 37694 lfladdcl 39064 lflvscl 39070 fsuppssind 42581 mhphf 42585 mzpclall 42715 mzpindd 42734 expgrowth 44324 binomcxplemnotnn0 44345 dvdivcncf 45925 ofaddmndmap 48331 amgmwlem 49791 |
| Copyright terms: Public domain | W3C validator |