MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  off Structured version   Visualization version   GIF version

Theorem off 7688
Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.)
Hypotheses
Ref Expression
off.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off.2 (𝜑𝐹:𝐴𝑆)
off.3 (𝜑𝐺:𝐵𝑇)
off.4 (𝜑𝐴𝑉)
off.5 (𝜑𝐵𝑊)
off.6 (𝐴𝐵) = 𝐶
Assertion
Ref Expression
off (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Distinct variable groups:   𝑦,𝐺   𝑥,𝑦,𝜑   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem off
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 off.2 . . . 4 (𝜑𝐹:𝐴𝑆)
21ffnd 6719 . . 3 (𝜑𝐹 Fn 𝐴)
3 off.3 . . . 4 (𝜑𝐺:𝐵𝑇)
43ffnd 6719 . . 3 (𝜑𝐺 Fn 𝐵)
5 off.4 . . 3 (𝜑𝐴𝑉)
6 off.5 . . 3 (𝜑𝐵𝑊)
7 off.6 . . 3 (𝐴𝐵) = 𝐶
8 eqidd 2734 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
9 eqidd 2734 . . 3 ((𝜑𝑧𝐵) → (𝐺𝑧) = (𝐺𝑧))
102, 4, 5, 6, 7, 8, 9offval 7679 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
11 inss1 4229 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
127, 11eqsstrri 4018 . . . . 5 𝐶𝐴
1312sseli 3979 . . . 4 (𝑧𝐶𝑧𝐴)
14 ffvelcdm 7084 . . . 4 ((𝐹:𝐴𝑆𝑧𝐴) → (𝐹𝑧) ∈ 𝑆)
151, 13, 14syl2an 597 . . 3 ((𝜑𝑧𝐶) → (𝐹𝑧) ∈ 𝑆)
16 inss2 4230 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
177, 16eqsstrri 4018 . . . . 5 𝐶𝐵
1817sseli 3979 . . . 4 (𝑧𝐶𝑧𝐵)
19 ffvelcdm 7084 . . . 4 ((𝐺:𝐵𝑇𝑧𝐵) → (𝐺𝑧) ∈ 𝑇)
203, 18, 19syl2an 597 . . 3 ((𝜑𝑧𝐶) → (𝐺𝑧) ∈ 𝑇)
21 off.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
2221ralrimivva 3201 . . . 4 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
2322adantr 482 . . 3 ((𝜑𝑧𝐶) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
24 ovrspc2v 7435 . . 3 ((((𝐹𝑧) ∈ 𝑆 ∧ (𝐺𝑧) ∈ 𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2515, 20, 23, 24syl21anc 837 . 2 ((𝜑𝑧𝐶) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2610, 25fmpt3d 7116 1 (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397   = wceq 1542  wcel 2107  wral 3062  cin 3948  wf 6540  cfv 6544  (class class class)co 7409  f cof 7668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670
This theorem is referenced by:  suppofssd  8188  o1of2  15557  ghmplusg  19714  gsumzaddlem  19789  gsumzadd  19790  lcomf  20511  frlmup1  21353  psrbagaddcl  21481  psrbagaddclOLD  21482  psraddcl  21502  psrvscacl  21512  psrbagev1  21638  psrbagev1OLD  21639  evlslem3  21643  mndvcl  21893  tsmsadd  23651  mbfmulc2lem  25164  mbfaddlem  25177  i1fadd  25212  i1fmul  25213  itg1addlem4  25216  itg1addlem4OLD  25217  i1fmulclem  25220  i1fmulc  25221  mbfi1flimlem  25240  itg2mulclem  25264  itg2mulc  25265  itg2monolem1  25268  itg2addlem  25276  dvaddbr  25455  dvmulbr  25456  dvaddf  25459  dvmulf  25460  dv11cn  25518  plyaddlem  25729  coeeulem  25738  coeaddlem  25763  plydivlem4  25809  jensenlem2  26492  jensen  26493  basellem7  26591  basellem9  26593  dchrmulcl  26752  ofrn  31864  offinsupp1  31952  ply1degltdimlem  32707  fedgmullem1  32714  sibfof  33339  signshf  33599  circlemethhgt  33655  gg-dvmulbr  35175  poimirlem23  36511  poimirlem24  36512  poimirlem25  36513  poimirlem29  36517  poimirlem30  36518  poimirlem31  36519  poimirlem32  36520  itg2addnc  36542  ftc1anclem3  36563  ftc1anclem6  36566  ftc1anclem8  36568  lfladdcl  37941  lflvscl  37947  fsuppssind  41165  mhphf  41169  mzpclall  41465  mzpindd  41484  expgrowth  43094  binomcxplemnotnn0  43115  dvdivcncf  44643  ofaddmndmap  47019  amgmwlem  47849
  Copyright terms: Public domain W3C validator