| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > off | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
| off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
| off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| off | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | off.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | 1 | ffnd 6660 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | off.3 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
| 4 | 3 | ffnd 6660 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 5 | off.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | off.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | off.6 | . . 3 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
| 8 | eqidd 2734 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
| 9 | eqidd 2734 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 10 | 2, 4, 5, 6, 7, 8, 9 | offval 7628 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
| 11 | inss1 4186 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 12 | 7, 11 | eqsstrri 3978 | . . . . 5 ⊢ 𝐶 ⊆ 𝐴 |
| 13 | 12 | sseli 3926 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐴) |
| 14 | ffvelcdm 7023 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑆 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) | |
| 15 | 1, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
| 16 | inss2 4187 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 17 | 7, 16 | eqsstrri 3978 | . . . . 5 ⊢ 𝐶 ⊆ 𝐵 |
| 18 | 17 | sseli 3926 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵) |
| 19 | ffvelcdm 7023 | . . . 4 ⊢ ((𝐺:𝐵⟶𝑇 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) ∈ 𝑇) | |
| 20 | 3, 18, 19 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
| 21 | off.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
| 22 | 21 | ralrimivva 3176 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 24 | ovrspc2v 7381 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | |
| 25 | 15, 20, 23, 24 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
| 26 | 10, 25 | fmpt3d 7058 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 ∩ cin 3897 ⟶wf 6485 ‘cfv 6489 (class class class)co 7355 ∘f cof 7617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 |
| This theorem is referenced by: suppofssd 8142 o1of2 15527 mndvcl 18713 ghmplusg 19766 gsumzaddlem 19841 gsumzadd 19842 lcomf 20843 frlmup1 21744 psrbagaddcl 21871 psraddcl 21885 psraddclOLD 21886 psrvscacl 21898 psrbagev1 22023 evlslem3 22026 tsmsadd 24082 mbfmulc2lem 25595 mbfaddlem 25608 i1fadd 25643 i1fmul 25644 itg1addlem4 25647 i1fmulclem 25650 i1fmulc 25651 mbfi1flimlem 25670 itg2mulclem 25694 itg2mulc 25695 itg2monolem1 25698 itg2addlem 25706 dvaddbr 25887 dvmulbr 25888 dvmulbrOLD 25889 dvaddf 25892 dvmulf 25893 dv11cn 25953 plyaddlem 26167 coeeulem 26176 coeaddlem 26201 plydivlem4 26251 jensenlem2 26945 jensen 26946 basellem7 27044 basellem9 27046 dchrmulcl 27207 ofrn 32643 offinsupp1 32733 elrgspnlem1 33252 1arithidomlem2 33545 1arithidom 33546 ply1degltdimlem 33707 fedgmullem1 33714 sibfof 34425 signshf 34673 circlemethhgt 34728 poimirlem23 37756 poimirlem24 37757 poimirlem25 37758 poimirlem29 37762 poimirlem30 37763 poimirlem31 37764 poimirlem32 37765 itg2addnc 37787 ftc1anclem3 37808 ftc1anclem6 37811 ftc1anclem8 37813 lfladdcl 39243 lflvscl 39249 fsuppssind 42751 mhphf 42755 mzpclall 42884 mzpindd 42903 expgrowth 44492 binomcxplemnotnn0 44513 dvdivcncf 46087 ofaddmndmap 48505 amgmwlem 49963 |
| Copyright terms: Public domain | W3C validator |