| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > off | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function. (Contributed by Mario Carneiro, 20-Jul-2014.) |
| Ref | Expression |
|---|---|
| off.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
| off.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| off.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
| off.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| off.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| off.6 | ⊢ (𝐴 ∩ 𝐵) = 𝐶 |
| Ref | Expression |
|---|---|
| off | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | off.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | 1 | ffnd 6717 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | off.3 | . . . 4 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
| 4 | 3 | ffnd 6717 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 5 | off.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | off.5 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | off.6 | . . 3 ⊢ (𝐴 ∩ 𝐵) = 𝐶 | |
| 8 | eqidd 2735 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
| 9 | eqidd 2735 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 10 | 2, 4, 5, 6, 7, 8, 9 | offval 7688 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
| 11 | inss1 4217 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 12 | 7, 11 | eqsstrri 4011 | . . . . 5 ⊢ 𝐶 ⊆ 𝐴 |
| 13 | 12 | sseli 3959 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐴) |
| 14 | ffvelcdm 7081 | . . . 4 ⊢ ((𝐹:𝐴⟶𝑆 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) | |
| 15 | 1, 13, 14 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
| 16 | inss2 4218 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 17 | 7, 16 | eqsstrri 4011 | . . . . 5 ⊢ 𝐶 ⊆ 𝐵 |
| 18 | 17 | sseli 3959 | . . . 4 ⊢ (𝑧 ∈ 𝐶 → 𝑧 ∈ 𝐵) |
| 19 | ffvelcdm 7081 | . . . 4 ⊢ ((𝐺:𝐵⟶𝑇 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) ∈ 𝑇) | |
| 20 | 3, 18, 19 | syl2an 596 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
| 21 | off.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
| 22 | 21 | ralrimivva 3189 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 23 | 22 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 24 | ovrspc2v 7439 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | |
| 25 | 15, 20, 23, 24 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
| 26 | 10, 25 | fmpt3d 7116 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∩ cin 3930 ⟶wf 6537 ‘cfv 6541 (class class class)co 7413 ∘f cof 7677 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pr 5412 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7679 |
| This theorem is referenced by: suppofssd 8210 o1of2 15632 mndvcl 18780 ghmplusg 19833 gsumzaddlem 19908 gsumzadd 19909 lcomf 20868 frlmup1 21773 psrbagaddcl 21899 psraddcl 21913 psraddclOLD 21914 psrvscacl 21926 psrbagev1 22050 evlslem3 22053 tsmsadd 24102 mbfmulc2lem 25619 mbfaddlem 25632 i1fadd 25667 i1fmul 25668 itg1addlem4 25671 i1fmulclem 25674 i1fmulc 25675 mbfi1flimlem 25694 itg2mulclem 25718 itg2mulc 25719 itg2monolem1 25722 itg2addlem 25730 dvaddbr 25911 dvmulbr 25912 dvmulbrOLD 25913 dvaddf 25916 dvmulf 25917 dv11cn 25977 plyaddlem 26191 coeeulem 26200 coeaddlem 26225 plydivlem4 26275 jensenlem2 26968 jensen 26969 basellem7 27067 basellem9 27069 dchrmulcl 27230 ofrn 32585 offinsupp1 32674 elrgspnlem1 33190 1arithidomlem2 33504 1arithidom 33505 ply1degltdimlem 33613 fedgmullem1 33620 sibfof 34317 signshf 34578 circlemethhgt 34633 poimirlem23 37625 poimirlem24 37626 poimirlem25 37627 poimirlem29 37631 poimirlem30 37632 poimirlem31 37633 poimirlem32 37634 itg2addnc 37656 ftc1anclem3 37677 ftc1anclem6 37680 ftc1anclem8 37682 lfladdcl 39047 lflvscl 39053 fsuppssind 42582 mhphf 42586 mzpclall 42716 mzpindd 42735 expgrowth 44326 binomcxplemnotnn0 44347 dvdivcncf 45914 ofaddmndmap 48232 amgmwlem 49416 |
| Copyright terms: Public domain | W3C validator |