MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gass Structured version   Visualization version   GIF version

Theorem gass 19180
Description: A subset of a group action is a group action iff it is closed under the group action operation. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypothesis
Ref Expression
gass.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gass (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦   𝑥, ,𝑦

Proof of Theorem gass
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 7515 . . . . 5 ((𝑥𝑋𝑦𝑍) → (𝑥( ↾ (𝑋 × 𝑍))𝑦) = (𝑥 𝑦))
21adantl 481 . . . 4 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥𝑋𝑦𝑍)) → (𝑥( ↾ (𝑋 × 𝑍))𝑦) = (𝑥 𝑦))
3 gass.1 . . . . . . 7 𝑋 = (Base‘𝐺)
43gaf 19174 . . . . . 6 (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) → ( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍)
54adantl 481 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) → ( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍)
65fovcdmda 7520 . . . 4 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥𝑋𝑦𝑍)) → (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍)
72, 6eqeltrrd 2829 . . 3 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥𝑋𝑦𝑍)) → (𝑥 𝑦) ∈ 𝑍)
87ralrimivva 3172 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) → ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍)
9 gagrp 19171 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
109ad2antrr 726 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → 𝐺 ∈ Grp)
11 gaset 19172 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
1211adantr 480 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → 𝑌 ∈ V)
13 simpr 484 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → 𝑍𝑌)
1412, 13ssexd 5263 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → 𝑍 ∈ V)
1514adantr 480 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → 𝑍 ∈ V)
1610, 15jca 511 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (𝐺 ∈ Grp ∧ 𝑍 ∈ V))
173gaf 19174 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
1817ad2antrr 726 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → :(𝑋 × 𝑌)⟶𝑌)
1918ffnd 6653 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → Fn (𝑋 × 𝑌))
20 simplr 768 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → 𝑍𝑌)
21 xpss2 5639 . . . . . . 7 (𝑍𝑌 → (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌))
2220, 21syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌))
23 fnssres 6605 . . . . . 6 (( Fn (𝑋 × 𝑌) ∧ (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌)) → ( ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍))
2419, 22, 23syl2anc 584 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ( ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍))
25 simpr 484 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍)
261eleq1d 2813 . . . . . . . 8 ((𝑥𝑋𝑦𝑍) → ((𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ (𝑥 𝑦) ∈ 𝑍))
2726ralbidva 3150 . . . . . . 7 (𝑥𝑋 → (∀𝑦𝑍 (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ ∀𝑦𝑍 (𝑥 𝑦) ∈ 𝑍))
2827ralbiia 3073 . . . . . 6 (∀𝑥𝑋𝑦𝑍 (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍)
2925, 28sylibr 234 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ∀𝑥𝑋𝑦𝑍 (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍)
30 ffnov 7475 . . . . 5 (( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ↔ (( ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍))
3124, 29, 30sylanbrc 583 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍)
32 eqid 2729 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
333, 32grpidcl 18844 . . . . . . . . 9 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
3410, 33syl 17 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (0g𝐺) ∈ 𝑋)
35 ovres 7515 . . . . . . . 8 (((0g𝐺) ∈ 𝑋𝑧𝑍) → ((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = ((0g𝐺) 𝑧))
3634, 35sylan 580 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → ((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = ((0g𝐺) 𝑧))
37 simpll 766 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ∈ (𝐺 GrpAct 𝑌))
3820sselda 3935 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → 𝑧𝑌)
3932gagrpid 19173 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑧𝑌) → ((0g𝐺) 𝑧) = 𝑧)
4037, 38, 39syl2an2r 685 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → ((0g𝐺) 𝑧) = 𝑧)
4136, 40eqtrd 2764 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → ((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧)
4237ad2antrr 726 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ∈ (𝐺 GrpAct 𝑌))
43 simprl 770 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝑢𝑋)
44 simprr 772 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝑣𝑋)
4538adantr 480 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝑧𝑌)
46 eqid 2729 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
473, 46gaass 19176 . . . . . . . . . 10 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢𝑋𝑣𝑋𝑧𝑌)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
4842, 43, 44, 45, 47syl13anc 1374 . . . . . . . . 9 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
49 simplr 768 . . . . . . . . . . 11 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝑧𝑍)
50 simpllr 775 . . . . . . . . . . 11 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍)
51 ovrspc2v 7375 . . . . . . . . . . 11 (((𝑣𝑋𝑧𝑍) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (𝑣 𝑧) ∈ 𝑍)
5244, 49, 50, 51syl21anc 837 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣 𝑧) ∈ 𝑍)
53 ovres 7515 . . . . . . . . . 10 ((𝑢𝑋 ∧ (𝑣 𝑧) ∈ 𝑍) → (𝑢( ↾ (𝑋 × 𝑍))(𝑣 𝑧)) = (𝑢 (𝑣 𝑧)))
5443, 52, 53syl2anc 584 . . . . . . . . 9 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢( ↾ (𝑋 × 𝑍))(𝑣 𝑧)) = (𝑢 (𝑣 𝑧)))
5548, 54eqtr4d 2767 . . . . . . . 8 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣 𝑧)))
5610ad2antrr 726 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝐺 ∈ Grp)
573, 46grpcl 18820 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑣𝑋) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
5856, 43, 44, 57syl3anc 1373 . . . . . . . . 9 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
59 ovres 7515 . . . . . . . . 9 (((𝑢(+g𝐺)𝑣) ∈ 𝑋𝑧𝑍) → ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = ((𝑢(+g𝐺)𝑣) 𝑧))
6058, 49, 59syl2anc 584 . . . . . . . 8 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = ((𝑢(+g𝐺)𝑣) 𝑧))
61 ovres 7515 . . . . . . . . . 10 ((𝑣𝑋𝑧𝑍) → (𝑣( ↾ (𝑋 × 𝑍))𝑧) = (𝑣 𝑧))
6244, 49, 61syl2anc 584 . . . . . . . . 9 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣( ↾ (𝑋 × 𝑍))𝑧) = (𝑣 𝑧))
6362oveq2d 7365 . . . . . . . 8 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧)) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣 𝑧)))
6455, 60, 633eqtr4d 2774 . . . . . . 7 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧)))
6564ralrimivva 3172 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧)))
6641, 65jca 511 . . . . 5 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → (((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧))))
6766ralrimiva 3121 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ∀𝑧𝑍 (((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧))))
6831, 67jca 511 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ∧ ∀𝑧𝑍 (((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧)))))
693, 46, 32isga 19170 . . 3 (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ((𝐺 ∈ Grp ∧ 𝑍 ∈ V) ∧ (( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ∧ ∀𝑧𝑍 (((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧))))))
7016, 68, 69sylanbrc 583 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍))
718, 70impbida 800 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  Vcvv 3436  wss 3903   × cxp 5617  cres 5621   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  Basecbs 17120  +gcplusg 17161  0gc0g 17343  Grpcgrp 18812   GrpAct cga 19168
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-map 8755  df-0g 17345  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-grp 18815  df-ga 19169
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator