MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gass Structured version   Visualization version   GIF version

Theorem gass 18410
Description: A subset of a group action is a group action iff it is closed under the group action operation. (Contributed by Mario Carneiro, 17-Jan-2015.)
Hypothesis
Ref Expression
gass.1 𝑋 = (Base‘𝐺)
Assertion
Ref Expression
gass (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍))
Distinct variable groups:   𝑥,𝑦,𝐺   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦   𝑥, ,𝑦

Proof of Theorem gass
Dummy variables 𝑣 𝑢 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ovres 7292 . . . . 5 ((𝑥𝑋𝑦𝑍) → (𝑥( ↾ (𝑋 × 𝑍))𝑦) = (𝑥 𝑦))
21adantl 484 . . . 4 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥𝑋𝑦𝑍)) → (𝑥( ↾ (𝑋 × 𝑍))𝑦) = (𝑥 𝑦))
3 gass.1 . . . . . . 7 𝑋 = (Base‘𝐺)
43gaf 18404 . . . . . 6 (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) → ( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍)
54adantl 484 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) → ( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍)
65fovrnda 7297 . . . 4 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥𝑋𝑦𝑍)) → (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍)
72, 6eqeltrrd 2912 . . 3 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥𝑋𝑦𝑍)) → (𝑥 𝑦) ∈ 𝑍)
87ralrimivva 3178 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) → ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍)
9 gagrp 18401 . . . . 5 ( ∈ (𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp)
109ad2antrr 724 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → 𝐺 ∈ Grp)
11 gaset 18402 . . . . . . 7 ( ∈ (𝐺 GrpAct 𝑌) → 𝑌 ∈ V)
1211adantr 483 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → 𝑌 ∈ V)
13 simpr 487 . . . . . 6 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → 𝑍𝑌)
1412, 13ssexd 5204 . . . . 5 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → 𝑍 ∈ V)
1514adantr 483 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → 𝑍 ∈ V)
1610, 15jca 514 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (𝐺 ∈ Grp ∧ 𝑍 ∈ V))
173gaf 18404 . . . . . . . 8 ( ∈ (𝐺 GrpAct 𝑌) → :(𝑋 × 𝑌)⟶𝑌)
1817ad2antrr 724 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → :(𝑋 × 𝑌)⟶𝑌)
1918ffnd 6491 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → Fn (𝑋 × 𝑌))
20 simplr 767 . . . . . . 7 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → 𝑍𝑌)
21 xpss2 5551 . . . . . . 7 (𝑍𝑌 → (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌))
2220, 21syl 17 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌))
23 fnssres 6446 . . . . . 6 (( Fn (𝑋 × 𝑌) ∧ (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌)) → ( ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍))
2419, 22, 23syl2anc 586 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ( ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍))
25 simpr 487 . . . . . 6 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍)
261eleq1d 2895 . . . . . . . 8 ((𝑥𝑋𝑦𝑍) → ((𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ (𝑥 𝑦) ∈ 𝑍))
2726ralbidva 3183 . . . . . . 7 (𝑥𝑋 → (∀𝑦𝑍 (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ ∀𝑦𝑍 (𝑥 𝑦) ∈ 𝑍))
2827ralbiia 3151 . . . . . 6 (∀𝑥𝑋𝑦𝑍 (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍)
2925, 28sylibr 236 . . . . 5 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ∀𝑥𝑋𝑦𝑍 (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍)
30 ffnov 7255 . . . . 5 (( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ↔ (( ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥( ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍))
3124, 29, 30sylanbrc 585 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍)
32 eqid 2820 . . . . . . . . . 10 (0g𝐺) = (0g𝐺)
333, 32grpidcl 18110 . . . . . . . . 9 (𝐺 ∈ Grp → (0g𝐺) ∈ 𝑋)
3410, 33syl 17 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (0g𝐺) ∈ 𝑋)
35 ovres 7292 . . . . . . . 8 (((0g𝐺) ∈ 𝑋𝑧𝑍) → ((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = ((0g𝐺) 𝑧))
3634, 35sylan 582 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → ((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = ((0g𝐺) 𝑧))
37 simpll 765 . . . . . . . 8 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ∈ (𝐺 GrpAct 𝑌))
3820sselda 3946 . . . . . . . 8 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → 𝑧𝑌)
3932gagrpid 18403 . . . . . . . 8 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑧𝑌) → ((0g𝐺) 𝑧) = 𝑧)
4037, 38, 39syl2an2r 683 . . . . . . 7 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → ((0g𝐺) 𝑧) = 𝑧)
4136, 40eqtrd 2855 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → ((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧)
4237ad2antrr 724 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ∈ (𝐺 GrpAct 𝑌))
43 simprl 769 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝑢𝑋)
44 simprr 771 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝑣𝑋)
4538adantr 483 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝑧𝑌)
46 eqid 2820 . . . . . . . . . . 11 (+g𝐺) = (+g𝐺)
473, 46gaass 18406 . . . . . . . . . 10 (( ∈ (𝐺 GrpAct 𝑌) ∧ (𝑢𝑋𝑣𝑋𝑧𝑌)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
4842, 43, 44, 45, 47syl13anc 1368 . . . . . . . . 9 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢 (𝑣 𝑧)))
49 simplr 767 . . . . . . . . . . 11 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝑧𝑍)
50 simpllr 774 . . . . . . . . . . 11 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍)
51 ovrspc2v 7159 . . . . . . . . . . 11 (((𝑣𝑋𝑧𝑍) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (𝑣 𝑧) ∈ 𝑍)
5244, 49, 50, 51syl21anc 835 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣 𝑧) ∈ 𝑍)
53 ovres 7292 . . . . . . . . . 10 ((𝑢𝑋 ∧ (𝑣 𝑧) ∈ 𝑍) → (𝑢( ↾ (𝑋 × 𝑍))(𝑣 𝑧)) = (𝑢 (𝑣 𝑧)))
5443, 52, 53syl2anc 586 . . . . . . . . 9 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢( ↾ (𝑋 × 𝑍))(𝑣 𝑧)) = (𝑢 (𝑣 𝑧)))
5548, 54eqtr4d 2858 . . . . . . . 8 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣) 𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣 𝑧)))
5610ad2antrr 724 . . . . . . . . . 10 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → 𝐺 ∈ Grp)
573, 46grpcl 18090 . . . . . . . . . 10 ((𝐺 ∈ Grp ∧ 𝑢𝑋𝑣𝑋) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
5856, 43, 44, 57syl3anc 1367 . . . . . . . . 9 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢(+g𝐺)𝑣) ∈ 𝑋)
59 ovres 7292 . . . . . . . . 9 (((𝑢(+g𝐺)𝑣) ∈ 𝑋𝑧𝑍) → ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = ((𝑢(+g𝐺)𝑣) 𝑧))
6058, 49, 59syl2anc 586 . . . . . . . 8 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = ((𝑢(+g𝐺)𝑣) 𝑧))
61 ovres 7292 . . . . . . . . . 10 ((𝑣𝑋𝑧𝑍) → (𝑣( ↾ (𝑋 × 𝑍))𝑧) = (𝑣 𝑧))
6244, 49, 61syl2anc 586 . . . . . . . . 9 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑣( ↾ (𝑋 × 𝑍))𝑧) = (𝑣 𝑧))
6362oveq2d 7149 . . . . . . . 8 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧)) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣 𝑧)))
6455, 60, 633eqtr4d 2865 . . . . . . 7 ((((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) ∧ (𝑢𝑋𝑣𝑋)) → ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧)))
6564ralrimivva 3178 . . . . . 6 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧)))
6641, 65jca 514 . . . . 5 (((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) ∧ 𝑧𝑍) → (((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧))))
6766ralrimiva 3169 . . . 4 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ∀𝑧𝑍 (((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧))))
6831, 67jca 514 . . 3 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → (( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ∧ ∀𝑧𝑍 (((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧)))))
693, 46, 32isga 18400 . . 3 (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ((𝐺 ∈ Grp ∧ 𝑍 ∈ V) ∧ (( ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ∧ ∀𝑧𝑍 (((0g𝐺)( ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢𝑋𝑣𝑋 ((𝑢(+g𝐺)𝑣)( ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ↾ (𝑋 × 𝑍))(𝑣( ↾ (𝑋 × 𝑍))𝑧))))))
7016, 68, 69sylanbrc 585 . 2 ((( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) ∧ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍) → ( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍))
718, 70impbida 799 1 (( ∈ (𝐺 GrpAct 𝑌) ∧ 𝑍𝑌) → (( ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ∀𝑥𝑋𝑦𝑍 (𝑥 𝑦) ∈ 𝑍))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wral 3125  Vcvv 3473  wss 3913   × cxp 5529  cres 5533   Fn wfn 6326  wf 6327  cfv 6331  (class class class)co 7133  Basecbs 16462  +gcplusg 16544  0gc0g 16692  Grpcgrp 18082   GrpAct cga 18398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-sep 5179  ax-nul 5186  ax-pow 5242  ax-pr 5306  ax-un 7439
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3753  df-csb 3861  df-dif 3916  df-un 3918  df-in 3920  df-ss 3930  df-nul 4270  df-if 4444  df-pw 4517  df-sn 4544  df-pr 4546  df-op 4550  df-uni 4815  df-iun 4897  df-br 5043  df-opab 5105  df-mpt 5123  df-id 5436  df-xp 5537  df-rel 5538  df-cnv 5539  df-co 5540  df-dm 5541  df-rn 5542  df-res 5543  df-iota 6290  df-fun 6333  df-fn 6334  df-f 6335  df-fv 6339  df-riota 7091  df-ov 7136  df-oprab 7137  df-mpo 7138  df-map 8386  df-0g 16694  df-mgm 17831  df-sgrp 17880  df-mnd 17891  df-grp 18085  df-ga 18399
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator