Step | Hyp | Ref
| Expression |
1 | | ovres 7416 |
. . . . 5
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍) → (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) = (𝑥 ⊕ 𝑦)) |
2 | 1 | adantl 481 |
. . . 4
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍)) → (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) = (𝑥 ⊕ 𝑦)) |
3 | | gass.1 |
. . . . . . 7
⊢ 𝑋 = (Base‘𝐺) |
4 | 3 | gaf 18816 |
. . . . . 6
⊢ (( ⊕
↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) → ( ⊕ ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍) |
5 | 4 | adantl 481 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) → ( ⊕ ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍) |
6 | 5 | fovrnda 7421 |
. . . 4
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍)) → (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍) |
7 | 2, 6 | eqeltrrd 2840 |
. . 3
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) ∧ (𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍)) → (𝑥 ⊕ 𝑦) ∈ 𝑍) |
8 | 7 | ralrimivva 3114 |
. 2
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) |
9 | | gagrp 18813 |
. . . . 5
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝐺 ∈ Grp) |
10 | 9 | ad2antrr 722 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → 𝐺 ∈ Grp) |
11 | | gaset 18814 |
. . . . . . 7
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → 𝑌 ∈ V) |
12 | 11 | adantr 480 |
. . . . . 6
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) → 𝑌 ∈ V) |
13 | | simpr 484 |
. . . . . 6
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) → 𝑍 ⊆ 𝑌) |
14 | 12, 13 | ssexd 5243 |
. . . . 5
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) → 𝑍 ∈ V) |
15 | 14 | adantr 480 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → 𝑍 ∈ V) |
16 | 10, 15 | jca 511 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → (𝐺 ∈ Grp ∧ 𝑍 ∈ V)) |
17 | 3 | gaf 18816 |
. . . . . . . 8
⊢ ( ⊕ ∈
(𝐺 GrpAct 𝑌) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
18 | 17 | ad2antrr 722 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ⊕ :(𝑋 × 𝑌)⟶𝑌) |
19 | 18 | ffnd 6585 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ⊕ Fn (𝑋 × 𝑌)) |
20 | | simplr 765 |
. . . . . . 7
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → 𝑍 ⊆ 𝑌) |
21 | | xpss2 5600 |
. . . . . . 7
⊢ (𝑍 ⊆ 𝑌 → (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌)) |
22 | 20, 21 | syl 17 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌)) |
23 | | fnssres 6539 |
. . . . . 6
⊢ (( ⊕ Fn
(𝑋 × 𝑌) ∧ (𝑋 × 𝑍) ⊆ (𝑋 × 𝑌)) → ( ⊕ ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍)) |
24 | 19, 22, 23 | syl2anc 583 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ( ⊕ ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍)) |
25 | | simpr 484 |
. . . . . 6
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) |
26 | 1 | eleq1d 2823 |
. . . . . . . 8
⊢ ((𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑍) → ((𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ (𝑥 ⊕ 𝑦) ∈ 𝑍)) |
27 | 26 | ralbidva 3119 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 → (∀𝑦 ∈ 𝑍 (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍)) |
28 | 27 | ralbiia 3089 |
. . . . . 6
⊢
(∀𝑥 ∈
𝑋 ∀𝑦 ∈ 𝑍 (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍 ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) |
29 | 25, 28 | sylibr 233 |
. . . . 5
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍) |
30 | | ffnov 7379 |
. . . . 5
⊢ (( ⊕
↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ↔ (( ⊕ ↾ (𝑋 × 𝑍)) Fn (𝑋 × 𝑍) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥( ⊕ ↾ (𝑋 × 𝑍))𝑦) ∈ 𝑍)) |
31 | 24, 29, 30 | sylanbrc 582 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ( ⊕ ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍) |
32 | | eqid 2738 |
. . . . . . . . . 10
⊢
(0g‘𝐺) = (0g‘𝐺) |
33 | 3, 32 | grpidcl 18522 |
. . . . . . . . 9
⊢ (𝐺 ∈ Grp →
(0g‘𝐺)
∈ 𝑋) |
34 | 10, 33 | syl 17 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → (0g‘𝐺) ∈ 𝑋) |
35 | | ovres 7416 |
. . . . . . . 8
⊢
(((0g‘𝐺) ∈ 𝑋 ∧ 𝑧 ∈ 𝑍) → ((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = ((0g‘𝐺) ⊕ 𝑧)) |
36 | 34, 35 | sylan 579 |
. . . . . . 7
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) → ((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = ((0g‘𝐺) ⊕ 𝑧)) |
37 | | simpll 763 |
. . . . . . . 8
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
38 | 20 | sselda 3917 |
. . . . . . . 8
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) → 𝑧 ∈ 𝑌) |
39 | 32 | gagrpid 18815 |
. . . . . . . 8
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑧 ∈ 𝑌) → ((0g‘𝐺) ⊕ 𝑧) = 𝑧) |
40 | 37, 38, 39 | syl2an2r 681 |
. . . . . . 7
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) → ((0g‘𝐺) ⊕ 𝑧) = 𝑧) |
41 | 36, 40 | eqtrd 2778 |
. . . . . 6
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) → ((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = 𝑧) |
42 | 37 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ⊕ ∈ (𝐺 GrpAct 𝑌)) |
43 | | simprl 767 |
. . . . . . . . . 10
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → 𝑢 ∈ 𝑋) |
44 | | simprr 769 |
. . . . . . . . . 10
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → 𝑣 ∈ 𝑋) |
45 | 38 | adantr 480 |
. . . . . . . . . 10
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → 𝑧 ∈ 𝑌) |
46 | | eqid 2738 |
. . . . . . . . . . 11
⊢
(+g‘𝐺) = (+g‘𝐺) |
47 | 3, 46 | gaass 18818 |
. . . . . . . . . 10
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋 ∧ 𝑧 ∈ 𝑌)) → ((𝑢(+g‘𝐺)𝑣) ⊕ 𝑧) = (𝑢 ⊕ (𝑣 ⊕ 𝑧))) |
48 | 42, 43, 44, 45, 47 | syl13anc 1370 |
. . . . . . . . 9
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ((𝑢(+g‘𝐺)𝑣) ⊕ 𝑧) = (𝑢 ⊕ (𝑣 ⊕ 𝑧))) |
49 | | simplr 765 |
. . . . . . . . . . 11
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → 𝑧 ∈ 𝑍) |
50 | | simpllr 772 |
. . . . . . . . . . 11
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) |
51 | | ovrspc2v 7281 |
. . . . . . . . . . 11
⊢ (((𝑣 ∈ 𝑋 ∧ 𝑧 ∈ 𝑍) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → (𝑣 ⊕ 𝑧) ∈ 𝑍) |
52 | 44, 49, 50, 51 | syl21anc 834 |
. . . . . . . . . 10
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑣 ⊕ 𝑧) ∈ 𝑍) |
53 | | ovres 7416 |
. . . . . . . . . 10
⊢ ((𝑢 ∈ 𝑋 ∧ (𝑣 ⊕ 𝑧) ∈ 𝑍) → (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣 ⊕ 𝑧)) = (𝑢 ⊕ (𝑣 ⊕ 𝑧))) |
54 | 43, 52, 53 | syl2anc 583 |
. . . . . . . . 9
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣 ⊕ 𝑧)) = (𝑢 ⊕ (𝑣 ⊕ 𝑧))) |
55 | 48, 54 | eqtr4d 2781 |
. . . . . . . 8
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ((𝑢(+g‘𝐺)𝑣) ⊕ 𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣 ⊕ 𝑧))) |
56 | 10 | ad2antrr 722 |
. . . . . . . . . 10
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → 𝐺 ∈ Grp) |
57 | 3, 46 | grpcl 18500 |
. . . . . . . . . 10
⊢ ((𝐺 ∈ Grp ∧ 𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋) → (𝑢(+g‘𝐺)𝑣) ∈ 𝑋) |
58 | 56, 43, 44, 57 | syl3anc 1369 |
. . . . . . . . 9
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑢(+g‘𝐺)𝑣) ∈ 𝑋) |
59 | | ovres 7416 |
. . . . . . . . 9
⊢ (((𝑢(+g‘𝐺)𝑣) ∈ 𝑋 ∧ 𝑧 ∈ 𝑍) → ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = ((𝑢(+g‘𝐺)𝑣) ⊕ 𝑧)) |
60 | 58, 49, 59 | syl2anc 583 |
. . . . . . . 8
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = ((𝑢(+g‘𝐺)𝑣) ⊕ 𝑧)) |
61 | | ovres 7416 |
. . . . . . . . . 10
⊢ ((𝑣 ∈ 𝑋 ∧ 𝑧 ∈ 𝑍) → (𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑣 ⊕ 𝑧)) |
62 | 44, 49, 61 | syl2anc 583 |
. . . . . . . . 9
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑣 ⊕ 𝑧)) |
63 | 62 | oveq2d 7271 |
. . . . . . . 8
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧)) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣 ⊕ 𝑧))) |
64 | 55, 60, 63 | 3eqtr4d 2788 |
. . . . . . 7
⊢ (((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) ∧ (𝑢 ∈ 𝑋 ∧ 𝑣 ∈ 𝑋)) → ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧))) |
65 | 64 | ralrimivva 3114 |
. . . . . 6
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) → ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧))) |
66 | 41, 65 | jca 511 |
. . . . 5
⊢ ((((
⊕
∈ (𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) ∧ 𝑧 ∈ 𝑍) → (((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧)))) |
67 | 66 | ralrimiva 3107 |
. . . 4
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ∀𝑧 ∈ 𝑍 (((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧)))) |
68 | 31, 67 | jca 511 |
. . 3
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → (( ⊕ ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ∧ ∀𝑧 ∈ 𝑍 (((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧))))) |
69 | 3, 46, 32 | isga 18812 |
. . 3
⊢ (( ⊕
↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ((𝐺 ∈ Grp ∧ 𝑍 ∈ V) ∧ (( ⊕ ↾ (𝑋 × 𝑍)):(𝑋 × 𝑍)⟶𝑍 ∧ ∀𝑧 ∈ 𝑍 (((0g‘𝐺)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = 𝑧 ∧ ∀𝑢 ∈ 𝑋 ∀𝑣 ∈ 𝑋 ((𝑢(+g‘𝐺)𝑣)( ⊕ ↾ (𝑋 × 𝑍))𝑧) = (𝑢( ⊕ ↾ (𝑋 × 𝑍))(𝑣( ⊕ ↾ (𝑋 × 𝑍))𝑧)))))) |
70 | 16, 68, 69 | sylanbrc 582 |
. 2
⊢ ((( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) ∧ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍) → ( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍)) |
71 | 8, 70 | impbida 797 |
1
⊢ (( ⊕ ∈
(𝐺 GrpAct 𝑌) ∧ 𝑍 ⊆ 𝑌) → (( ⊕ ↾ (𝑋 × 𝑍)) ∈ (𝐺 GrpAct 𝑍) ↔ ∀𝑥 ∈ 𝑋 ∀𝑦 ∈ 𝑍 (𝑥 ⊕ 𝑦) ∈ 𝑍)) |