| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcf | Structured version Visualization version GIF version | ||
| Description: The function/constant operation produces a function. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
| Ref | Expression |
|---|---|
| ofcf.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
| ofcf.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| ofcf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| ofcf.5 | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
| Ref | Expression |
|---|---|
| ofcf | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶):𝐴⟶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ofcf.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | 1 | ffnd 6712 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | ofcf.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 4 | ofcf.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
| 5 | eqidd 2737 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
| 6 | 2, 3, 4, 5 | ofcfval 34134 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧)𝑅𝐶))) |
| 7 | 1 | ffvelcdmda 7079 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) |
| 8 | 4 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑇) |
| 9 | ofcf.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
| 10 | 9 | ralrimivva 3188 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 11 | 10 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 12 | ovrspc2v 7436 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅𝐶) ∈ 𝑈) | |
| 13 | 7, 8, 11, 12 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑧)𝑅𝐶) ∈ 𝑈) |
| 14 | 6, 13 | fmpt3d 7111 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶):𝐴⟶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f/c cofc 34131 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-ofc 34132 |
| This theorem is referenced by: signshf 34625 |
| Copyright terms: Public domain | W3C validator |