Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcf Structured version   Visualization version   GIF version

Theorem ofcf 34116
Description: The function/constant operation produces a function. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
ofcf.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
ofcf.2 (𝜑𝐹:𝐴𝑆)
ofcf.4 (𝜑𝐴𝑉)
ofcf.5 (𝜑𝐶𝑇)
Assertion
Ref Expression
ofcf (𝜑 → (𝐹f/c 𝑅𝐶):𝐴𝑈)
Distinct variable groups:   𝑦,𝐶   𝑥,𝑦,𝐹   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem ofcf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ofcf.2 . . . 4 (𝜑𝐹:𝐴𝑆)
21ffnd 6652 . . 3 (𝜑𝐹 Fn 𝐴)
3 ofcf.4 . . 3 (𝜑𝐴𝑉)
4 ofcf.5 . . 3 (𝜑𝐶𝑇)
5 eqidd 2732 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
62, 3, 4, 5ofcfval 34111 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑧𝐴 ↦ ((𝐹𝑧)𝑅𝐶)))
71ffvelcdmda 7017 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ 𝑆)
84adantr 480 . . 3 ((𝜑𝑧𝐴) → 𝐶𝑇)
9 ofcf.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
109ralrimivva 3175 . . . 4 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
1110adantr 480 . . 3 ((𝜑𝑧𝐴) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
12 ovrspc2v 7372 . . 3 ((((𝐹𝑧) ∈ 𝑆𝐶𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅𝐶) ∈ 𝑈)
137, 8, 11, 12syl21anc 837 . 2 ((𝜑𝑧𝐴) → ((𝐹𝑧)𝑅𝐶) ∈ 𝑈)
146, 13fmpt3d 7049 1 (𝜑 → (𝐹f/c 𝑅𝐶):𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2111  wral 3047  wf 6477  cfv 6481  (class class class)co 7346  f/c cofc 34108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-ofc 34109
This theorem is referenced by:  signshf  34601
  Copyright terms: Public domain W3C validator