Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcf Structured version   Visualization version   GIF version

Theorem ofcf 32177
Description: The function/constant operation produces a function. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
ofcf.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
ofcf.2 (𝜑𝐹:𝐴𝑆)
ofcf.4 (𝜑𝐴𝑉)
ofcf.5 (𝜑𝐶𝑇)
Assertion
Ref Expression
ofcf (𝜑 → (𝐹f/c 𝑅𝐶):𝐴𝑈)
Distinct variable groups:   𝑦,𝐶   𝑥,𝑦,𝐹   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem ofcf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ofcf.2 . . . 4 (𝜑𝐹:𝐴𝑆)
21ffnd 6638 . . 3 (𝜑𝐹 Fn 𝐴)
3 ofcf.4 . . 3 (𝜑𝐴𝑉)
4 ofcf.5 . . 3 (𝜑𝐶𝑇)
5 eqidd 2738 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
62, 3, 4, 5ofcfval 32172 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑧𝐴 ↦ ((𝐹𝑧)𝑅𝐶)))
71ffvelcdmda 7000 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ 𝑆)
84adantr 481 . . 3 ((𝜑𝑧𝐴) → 𝐶𝑇)
9 ofcf.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
109ralrimivva 3194 . . . 4 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
1110adantr 481 . . 3 ((𝜑𝑧𝐴) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
12 ovrspc2v 7341 . . 3 ((((𝐹𝑧) ∈ 𝑆𝐶𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅𝐶) ∈ 𝑈)
137, 8, 11, 12syl21anc 835 . 2 ((𝜑𝑧𝐴) → ((𝐹𝑧)𝑅𝐶) ∈ 𝑈)
146, 13fmpt3d 7029 1 (𝜑 → (𝐹f/c 𝑅𝐶):𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2105  wral 3062  wf 6461  cfv 6465  (class class class)co 7315  f/c cofc 32169
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2708  ax-rep 5224  ax-sep 5238  ax-nul 5245  ax-pr 5367
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3351  df-rab 3405  df-v 3443  df-sbc 3727  df-csb 3843  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4268  df-if 4472  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4851  df-iun 4939  df-br 5088  df-opab 5150  df-mpt 5171  df-id 5507  df-xp 5613  df-rel 5614  df-cnv 5615  df-co 5616  df-dm 5617  df-rn 5618  df-res 5619  df-ima 5620  df-iota 6417  df-fun 6467  df-fn 6468  df-f 6469  df-f1 6470  df-fo 6471  df-f1o 6472  df-fv 6473  df-ov 7318  df-oprab 7319  df-mpo 7320  df-ofc 32170
This theorem is referenced by:  signshf  32673
  Copyright terms: Public domain W3C validator