![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcf | Structured version Visualization version GIF version |
Description: The function/constant operation produces a function. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
ofcf.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
ofcf.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
ofcf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcf.5 | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
Ref | Expression |
---|---|
ofcf | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶):𝐴⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcf.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | 1 | ffnd 6674 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | ofcf.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | ofcf.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
5 | eqidd 2738 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
6 | 2, 3, 4, 5 | ofcfval 32737 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧)𝑅𝐶))) |
7 | 1 | ffvelcdmda 7040 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) |
8 | 4 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑇) |
9 | ofcf.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
10 | 9 | ralrimivva 3198 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
11 | 10 | adantr 482 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
12 | ovrspc2v 7388 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅𝐶) ∈ 𝑈) | |
13 | 7, 8, 11, 12 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑧)𝑅𝐶) ∈ 𝑈) |
14 | 6, 13 | fmpt3d 7069 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶):𝐴⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∈ wcel 2107 ∀wral 3065 ⟶wf 6497 ‘cfv 6501 (class class class)co 7362 ∘f/c cofc 32734 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pr 5389 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-nul 4288 df-if 4492 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-iun 4961 df-br 5111 df-opab 5173 df-mpt 5194 df-id 5536 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-ov 7365 df-oprab 7366 df-mpo 7367 df-ofc 32735 |
This theorem is referenced by: signshf 33240 |
Copyright terms: Public domain | W3C validator |