Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ofcf | Structured version Visualization version GIF version |
Description: The function/constant operation produces a function. (Contributed by Thierry Arnoux, 30-Jan-2017.) |
Ref | Expression |
---|---|
ofcf.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
ofcf.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
ofcf.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofcf.5 | ⊢ (𝜑 → 𝐶 ∈ 𝑇) |
Ref | Expression |
---|---|
ofcf | ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶):𝐴⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofcf.2 | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | 1 | ffnd 6638 | . . 3 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | ofcf.4 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
4 | ofcf.5 | . . 3 ⊢ (𝜑 → 𝐶 ∈ 𝑇) | |
5 | eqidd 2738 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
6 | 2, 3, 4, 5 | ofcfval 32172 | . 2 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶) = (𝑧 ∈ 𝐴 ↦ ((𝐹‘𝑧)𝑅𝐶))) |
7 | 1 | ffvelcdmda 7000 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) ∈ 𝑆) |
8 | 4 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → 𝐶 ∈ 𝑇) |
9 | ofcf.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
10 | 9 | ralrimivva 3194 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
11 | 10 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
12 | ovrspc2v 7341 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ 𝐶 ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅𝐶) ∈ 𝑈) | |
13 | 7, 8, 11, 12 | syl21anc 835 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → ((𝐹‘𝑧)𝑅𝐶) ∈ 𝑈) |
14 | 6, 13 | fmpt3d 7029 | 1 ⊢ (𝜑 → (𝐹 ∘f/c 𝑅𝐶):𝐴⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2105 ∀wral 3062 ⟶wf 6461 ‘cfv 6465 (class class class)co 7315 ∘f/c cofc 32169 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5224 ax-sep 5238 ax-nul 5245 ax-pr 5367 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4268 df-if 4472 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4851 df-iun 4939 df-br 5088 df-opab 5150 df-mpt 5171 df-id 5507 df-xp 5613 df-rel 5614 df-cnv 5615 df-co 5616 df-dm 5617 df-rn 5618 df-res 5619 df-ima 5620 df-iota 6417 df-fun 6467 df-fn 6468 df-f 6469 df-f1 6470 df-fo 6471 df-f1o 6472 df-fv 6473 df-ov 7318 df-oprab 7319 df-mpo 7320 df-ofc 32170 |
This theorem is referenced by: signshf 32673 |
Copyright terms: Public domain | W3C validator |