Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcf Structured version   Visualization version   GIF version

Theorem ofcf 34086
Description: The function/constant operation produces a function. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
ofcf.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
ofcf.2 (𝜑𝐹:𝐴𝑆)
ofcf.4 (𝜑𝐴𝑉)
ofcf.5 (𝜑𝐶𝑇)
Assertion
Ref Expression
ofcf (𝜑 → (𝐹f/c 𝑅𝐶):𝐴𝑈)
Distinct variable groups:   𝑦,𝐶   𝑥,𝑦,𝐹   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝑈,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐶(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem ofcf
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 ofcf.2 . . . 4 (𝜑𝐹:𝐴𝑆)
21ffnd 6671 . . 3 (𝜑𝐹 Fn 𝐴)
3 ofcf.4 . . 3 (𝜑𝐴𝑉)
4 ofcf.5 . . 3 (𝜑𝐶𝑇)
5 eqidd 2730 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
62, 3, 4, 5ofcfval 34081 . 2 (𝜑 → (𝐹f/c 𝑅𝐶) = (𝑧𝐴 ↦ ((𝐹𝑧)𝑅𝐶)))
71ffvelcdmda 7038 . . 3 ((𝜑𝑧𝐴) → (𝐹𝑧) ∈ 𝑆)
84adantr 480 . . 3 ((𝜑𝑧𝐴) → 𝐶𝑇)
9 ofcf.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
109ralrimivva 3178 . . . 4 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
1110adantr 480 . . 3 ((𝜑𝑧𝐴) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
12 ovrspc2v 7395 . . 3 ((((𝐹𝑧) ∈ 𝑆𝐶𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅𝐶) ∈ 𝑈)
137, 8, 11, 12syl21anc 837 . 2 ((𝜑𝑧𝐴) → ((𝐹𝑧)𝑅𝐶) ∈ 𝑈)
146, 13fmpt3d 7070 1 (𝜑 → (𝐹f/c 𝑅𝐶):𝐴𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  wral 3044  wf 6495  cfv 6499  (class class class)co 7369  f/c cofc 34078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-oprab 7373  df-mpo 7374  df-ofc 34079
This theorem is referenced by:  signshf  34572
  Copyright terms: Public domain W3C validator