MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submcl Structured version   Visualization version   GIF version

Theorem submcl 18838
Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
submcl.p + = (+g𝑀)
Assertion
Ref Expression
submcl ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)

Proof of Theorem submcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 18828 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
2 eqid 2735 . . . . . . . 8 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2735 . . . . . . . 8 (0g𝑀) = (0g𝑀)
4 submcl.p . . . . . . . 8 + = (+g𝑀)
52, 3, 4issubm 18829 . . . . . . 7 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
61, 5syl 17 . . . . . 6 (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
76ibi 267 . . . . 5 (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
87simp3d 1143 . . . 4 (𝑆 ∈ (SubMnd‘𝑀) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
9 ovrspc2v 7457 . . . 4 (((𝑋𝑆𝑌𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
108, 9sylan2 593 . . 3 (((𝑋𝑆𝑌𝑆) ∧ 𝑆 ∈ (SubMnd‘𝑀)) → (𝑋 + 𝑌) ∈ 𝑆)
1110ancoms 458 . 2 ((𝑆 ∈ (SubMnd‘𝑀) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋 + 𝑌) ∈ 𝑆)
12113impb 1114 1 ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  wss 3963  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  0gc0g 17486  Mndcmnd 18760  SubMndcsubmnd 18808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fv 6571  df-ov 7434  df-submnd 18810
This theorem is referenced by:  resmhm  18846  mhmima  18851  gsumwsubmcl  18863  submmulgcl  19148  symggen  19503  lsmsubm  19686  smndlsmidm  19689  gsumzadd  19955  gsumzoppg  19977  submcld  33023  erler  33252  rlocaddval  33255  rlocmulval  33256
  Copyright terms: Public domain W3C validator