![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > submcl | Structured version Visualization version GIF version |
Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
submcl.p | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
submcl | ⊢ ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submrcl 18828 | . . . . . . 7 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd) | |
2 | eqid 2735 | . . . . . . . 8 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
3 | eqid 2735 | . . . . . . . 8 ⊢ (0g‘𝑀) = (0g‘𝑀) | |
4 | submcl.p | . . . . . . . 8 ⊢ + = (+g‘𝑀) | |
5 | 2, 3, 4 | issubm 18829 | . . . . . . 7 ⊢ (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |
6 | 1, 5 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |
7 | 6 | ibi 267 | . . . . 5 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ⊆ (Base‘𝑀) ∧ (0g‘𝑀) ∈ 𝑆 ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) |
8 | 7 | simp3d 1143 | . . . 4 ⊢ (𝑆 ∈ (SubMnd‘𝑀) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) |
9 | ovrspc2v 7457 | . . . 4 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | |
10 | 8, 9 | sylan2 593 | . . 3 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ 𝑆 ∈ (SubMnd‘𝑀)) → (𝑋 + 𝑌) ∈ 𝑆) |
11 | 10 | ancoms 458 | . 2 ⊢ ((𝑆 ∈ (SubMnd‘𝑀) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋 + 𝑌) ∈ 𝑆) |
12 | 11 | 3impb 1114 | 1 ⊢ ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ⊆ wss 3963 ‘cfv 6563 (class class class)co 7431 Basecbs 17245 +gcplusg 17298 0gc0g 17486 Mndcmnd 18760 SubMndcsubmnd 18808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-submnd 18810 |
This theorem is referenced by: resmhm 18846 mhmima 18851 gsumwsubmcl 18863 submmulgcl 19148 symggen 19503 lsmsubm 19686 smndlsmidm 19689 gsumzadd 19955 gsumzoppg 19977 submcld 33023 erler 33252 rlocaddval 33255 rlocmulval 33256 |
Copyright terms: Public domain | W3C validator |