MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  submcl Structured version   Visualization version   GIF version

Theorem submcl 18366
Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
submcl.p + = (+g𝑀)
Assertion
Ref Expression
submcl ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)

Proof of Theorem submcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 18356 . . . . . . 7 (𝑆 ∈ (SubMnd‘𝑀) → 𝑀 ∈ Mnd)
2 eqid 2738 . . . . . . . 8 (Base‘𝑀) = (Base‘𝑀)
3 eqid 2738 . . . . . . . 8 (0g𝑀) = (0g𝑀)
4 submcl.p . . . . . . . 8 + = (+g𝑀)
52, 3, 4issubm 18357 . . . . . . 7 (𝑀 ∈ Mnd → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
61, 5syl 17 . . . . . 6 (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ∈ (SubMnd‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)))
76ibi 266 . . . . 5 (𝑆 ∈ (SubMnd‘𝑀) → (𝑆 ⊆ (Base‘𝑀) ∧ (0g𝑀) ∈ 𝑆 ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆))
87simp3d 1142 . . . 4 (𝑆 ∈ (SubMnd‘𝑀) → ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆)
9 ovrspc2v 7281 . . . 4 (((𝑋𝑆𝑌𝑆) ∧ ∀𝑥𝑆𝑦𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
108, 9sylan2 592 . . 3 (((𝑋𝑆𝑌𝑆) ∧ 𝑆 ∈ (SubMnd‘𝑀)) → (𝑋 + 𝑌) ∈ 𝑆)
1110ancoms 458 . 2 ((𝑆 ∈ (SubMnd‘𝑀) ∧ (𝑋𝑆𝑌𝑆)) → (𝑋 + 𝑌) ∈ 𝑆)
12113impb 1113 1 ((𝑆 ∈ (SubMnd‘𝑀) ∧ 𝑋𝑆𝑌𝑆) → (𝑋 + 𝑌) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wss 3883  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  0gc0g 17067  Mndcmnd 18300  SubMndcsubmnd 18344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-submnd 18346
This theorem is referenced by:  resmhm  18374  mhmima  18378  gsumwsubmcl  18390  submmulgcl  18661  symggen  18993  lsmsubm  19173  smndlsmidm  19176  gsumzadd  19438  gsumzoppg  19460
  Copyright terms: Public domain W3C validator