![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > submcl | Structured version Visualization version GIF version |
Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.) |
Ref | Expression |
---|---|
submcl.p | β’ + = (+gβπ) |
Ref | Expression |
---|---|
submcl | β’ ((π β (SubMndβπ) β§ π β π β§ π β π) β (π + π) β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submrcl 18683 | . . . . . . 7 β’ (π β (SubMndβπ) β π β Mnd) | |
2 | eqid 2733 | . . . . . . . 8 β’ (Baseβπ) = (Baseβπ) | |
3 | eqid 2733 | . . . . . . . 8 β’ (0gβπ) = (0gβπ) | |
4 | submcl.p | . . . . . . . 8 β’ + = (+gβπ) | |
5 | 2, 3, 4 | issubm 18684 | . . . . . . 7 β’ (π β Mnd β (π β (SubMndβπ) β (π β (Baseβπ) β§ (0gβπ) β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π))) |
6 | 1, 5 | syl 17 | . . . . . 6 β’ (π β (SubMndβπ) β (π β (SubMndβπ) β (π β (Baseβπ) β§ (0gβπ) β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π))) |
7 | 6 | ibi 267 | . . . . 5 β’ (π β (SubMndβπ) β (π β (Baseβπ) β§ (0gβπ) β π β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π)) |
8 | 7 | simp3d 1145 | . . . 4 β’ (π β (SubMndβπ) β βπ₯ β π βπ¦ β π (π₯ + π¦) β π) |
9 | ovrspc2v 7435 | . . . 4 β’ (((π β π β§ π β π) β§ βπ₯ β π βπ¦ β π (π₯ + π¦) β π) β (π + π) β π) | |
10 | 8, 9 | sylan2 594 | . . 3 β’ (((π β π β§ π β π) β§ π β (SubMndβπ)) β (π + π) β π) |
11 | 10 | ancoms 460 | . 2 β’ ((π β (SubMndβπ) β§ (π β π β§ π β π)) β (π + π) β π) |
12 | 11 | 3impb 1116 | 1 β’ ((π β (SubMndβπ) β§ π β π β§ π β π) β (π + π) β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 β§ w3a 1088 = wceq 1542 β wcel 2107 βwral 3062 β wss 3949 βcfv 6544 (class class class)co 7409 Basecbs 17144 +gcplusg 17197 0gc0g 17385 Mndcmnd 18625 SubMndcsubmnd 18670 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fv 6552 df-ov 7412 df-submnd 18672 |
This theorem is referenced by: resmhm 18701 mhmima 18706 gsumwsubmcl 18718 submmulgcl 18997 symggen 19338 lsmsubm 19521 smndlsmidm 19524 gsumzadd 19790 gsumzoppg 19812 |
Copyright terms: Public domain | W3C validator |