Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  off2 Structured version   Visualization version   GIF version

Theorem off2 31265
Description: The function operation produces a function - alternative form with all antecedents as deduction. (Contributed by Thierry Arnoux, 17-Feb-2017.)
Hypotheses
Ref Expression
off2.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off2.2 (𝜑𝐹:𝐴𝑆)
off2.3 (𝜑𝐺:𝐵𝑇)
off2.4 (𝜑𝐴𝑉)
off2.5 (𝜑𝐵𝑊)
off2.6 (𝜑 → (𝐴𝐵) = 𝐶)
Assertion
Ref Expression
off2 (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Distinct variable groups:   𝑦,𝐺   𝑥,𝑦,𝜑   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem off2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 off2.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
21ffnd 6652 . . . 4 (𝜑𝐹 Fn 𝐴)
3 off2.3 . . . . 5 (𝜑𝐺:𝐵𝑇)
43ffnd 6652 . . . 4 (𝜑𝐺 Fn 𝐵)
5 off2.4 . . . 4 (𝜑𝐴𝑉)
6 off2.5 . . . 4 (𝜑𝐵𝑊)
7 eqid 2736 . . . 4 (𝐴𝐵) = (𝐴𝐵)
8 eqidd 2737 . . . 4 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
9 eqidd 2737 . . . 4 ((𝜑𝑧𝐵) → (𝐺𝑧) = (𝐺𝑧))
102, 4, 5, 6, 7, 8, 9offval 7604 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑧 ∈ (𝐴𝐵) ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
11 off2.6 . . . 4 (𝜑 → (𝐴𝐵) = 𝐶)
1211mpteq1d 5187 . . 3 (𝜑 → (𝑧 ∈ (𝐴𝐵) ↦ ((𝐹𝑧)𝑅(𝐺𝑧))) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
1310, 12eqtrd 2776 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
141adantr 481 . . . 4 ((𝜑𝑧𝐶) → 𝐹:𝐴𝑆)
15 inss1 4175 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
1611, 15eqsstrrdi 3987 . . . . 5 (𝜑𝐶𝐴)
1716sselda 3932 . . . 4 ((𝜑𝑧𝐶) → 𝑧𝐴)
1814, 17ffvelcdmd 7018 . . 3 ((𝜑𝑧𝐶) → (𝐹𝑧) ∈ 𝑆)
193adantr 481 . . . 4 ((𝜑𝑧𝐶) → 𝐺:𝐵𝑇)
20 inss2 4176 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
2111, 20eqsstrrdi 3987 . . . . 5 (𝜑𝐶𝐵)
2221sselda 3932 . . . 4 ((𝜑𝑧𝐶) → 𝑧𝐵)
2319, 22ffvelcdmd 7018 . . 3 ((𝜑𝑧𝐶) → (𝐺𝑧) ∈ 𝑇)
24 off2.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
2524ralrimivva 3193 . . . 4 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
2625adantr 481 . . 3 ((𝜑𝑧𝐶) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
27 ovrspc2v 7363 . . 3 ((((𝐹𝑧) ∈ 𝑆 ∧ (𝐺𝑧) ∈ 𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2818, 23, 26, 27syl21anc 835 . 2 ((𝜑𝑧𝐶) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2913, 28fmpt3d 7046 1 (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1540  wcel 2105  wral 3061  cin 3897  cmpt 5175  wf 6475  cfv 6479  (class class class)co 7337  f cof 7593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pr 5372
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4270  df-if 4474  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-id 5518  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-ov 7340  df-oprab 7341  df-mpo 7342  df-of 7595
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator