Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  off2 Structured version   Visualization version   GIF version

Theorem off2 32565
Description: The function operation produces a function - alternative form with all antecedents as deduction. (Contributed by Thierry Arnoux, 17-Feb-2017.)
Hypotheses
Ref Expression
off2.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off2.2 (𝜑𝐹:𝐴𝑆)
off2.3 (𝜑𝐺:𝐵𝑇)
off2.4 (𝜑𝐴𝑉)
off2.5 (𝜑𝐵𝑊)
off2.6 (𝜑 → (𝐴𝐵) = 𝐶)
Assertion
Ref Expression
off2 (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Distinct variable groups:   𝑦,𝐺   𝑥,𝑦,𝜑   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem off2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 off2.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
21ffnd 6689 . . . 4 (𝜑𝐹 Fn 𝐴)
3 off2.3 . . . . 5 (𝜑𝐺:𝐵𝑇)
43ffnd 6689 . . . 4 (𝜑𝐺 Fn 𝐵)
5 off2.4 . . . 4 (𝜑𝐴𝑉)
6 off2.5 . . . 4 (𝜑𝐵𝑊)
7 eqid 2729 . . . 4 (𝐴𝐵) = (𝐴𝐵)
8 eqidd 2730 . . . 4 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
9 eqidd 2730 . . . 4 ((𝜑𝑧𝐵) → (𝐺𝑧) = (𝐺𝑧))
102, 4, 5, 6, 7, 8, 9offval 7662 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑧 ∈ (𝐴𝐵) ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
11 off2.6 . . . 4 (𝜑 → (𝐴𝐵) = 𝐶)
1211mpteq1d 5197 . . 3 (𝜑 → (𝑧 ∈ (𝐴𝐵) ↦ ((𝐹𝑧)𝑅(𝐺𝑧))) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
1310, 12eqtrd 2764 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
141adantr 480 . . . 4 ((𝜑𝑧𝐶) → 𝐹:𝐴𝑆)
15 inss1 4200 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
1611, 15eqsstrrdi 3992 . . . . 5 (𝜑𝐶𝐴)
1716sselda 3946 . . . 4 ((𝜑𝑧𝐶) → 𝑧𝐴)
1814, 17ffvelcdmd 7057 . . 3 ((𝜑𝑧𝐶) → (𝐹𝑧) ∈ 𝑆)
193adantr 480 . . . 4 ((𝜑𝑧𝐶) → 𝐺:𝐵𝑇)
20 inss2 4201 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
2111, 20eqsstrrdi 3992 . . . . 5 (𝜑𝐶𝐵)
2221sselda 3946 . . . 4 ((𝜑𝑧𝐶) → 𝑧𝐵)
2319, 22ffvelcdmd 7057 . . 3 ((𝜑𝑧𝐶) → (𝐺𝑧) ∈ 𝑇)
24 off2.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
2524ralrimivva 3180 . . . 4 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
2625adantr 480 . . 3 ((𝜑𝑧𝐶) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
27 ovrspc2v 7413 . . 3 ((((𝐹𝑧) ∈ 𝑆 ∧ (𝐺𝑧) ∈ 𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2818, 23, 26, 27syl21anc 837 . 2 ((𝜑𝑧𝐶) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2913, 28fmpt3d 7088 1 (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  cin 3913  cmpt 5188  wf 6507  cfv 6511  (class class class)co 7387  f cof 7651
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator