| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > off2 | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function - alternative form with all antecedents as deduction. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
| Ref | Expression |
|---|---|
| off2.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
| off2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| off2.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
| off2.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| off2.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| off2.6 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐶) |
| Ref | Expression |
|---|---|
| off2 | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | off2.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | 1 | ffnd 6647 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | off2.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
| 4 | 3 | ffnd 6647 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 5 | off2.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | off2.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | eqid 2731 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐵) | |
| 8 | eqidd 2732 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
| 9 | eqidd 2732 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 10 | 2, 4, 5, 6, 7, 8, 9 | offval 7614 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ (𝐴 ∩ 𝐵) ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
| 11 | off2.6 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐶) | |
| 12 | 11 | mpteq1d 5176 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝐴 ∩ 𝐵) ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
| 13 | 10, 12 | eqtrd 2766 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
| 14 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝐹:𝐴⟶𝑆) |
| 15 | inss1 4182 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 16 | 11, 15 | eqsstrrdi 3975 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 17 | 16 | sselda 3929 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐴) |
| 18 | 14, 17 | ffvelcdmd 7013 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
| 19 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝐺:𝐵⟶𝑇) |
| 20 | inss2 4183 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 21 | 11, 20 | eqsstrrdi 3975 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 22 | 21 | sselda 3929 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐵) |
| 23 | 19, 22 | ffvelcdmd 7013 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
| 24 | off2.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
| 25 | 24 | ralrimivva 3175 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 27 | ovrspc2v 7367 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | |
| 28 | 18, 23, 26, 27 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
| 29 | 13, 28 | fmpt3d 7044 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ∀wral 3047 ∩ cin 3896 ↦ cmpt 5167 ⟶wf 6472 ‘cfv 6476 (class class class)co 7341 ∘f cof 7603 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |