![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > off2 | Structured version Visualization version GIF version |
Description: The function operation produces a function - alternative form with all antecedents as deduction. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
Ref | Expression |
---|---|
off2.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
off2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
off2.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
off2.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
off2.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
off2.6 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐶) |
Ref | Expression |
---|---|
off2 | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off2.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | 1 | ffnd 6748 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | off2.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
4 | 3 | ffnd 6748 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
5 | off2.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | off2.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
7 | eqid 2740 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐵) | |
8 | eqidd 2741 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
9 | eqidd 2741 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
10 | 2, 4, 5, 6, 7, 8, 9 | offval 7723 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ (𝐴 ∩ 𝐵) ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
11 | off2.6 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐶) | |
12 | 11 | mpteq1d 5261 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝐴 ∩ 𝐵) ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
13 | 10, 12 | eqtrd 2780 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
14 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝐹:𝐴⟶𝑆) |
15 | inss1 4258 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
16 | 11, 15 | eqsstrrdi 4064 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
17 | 16 | sselda 4008 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐴) |
18 | 14, 17 | ffvelcdmd 7119 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
19 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝐺:𝐵⟶𝑇) |
20 | inss2 4259 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
21 | 11, 20 | eqsstrrdi 4064 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
22 | 21 | sselda 4008 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐵) |
23 | 19, 22 | ffvelcdmd 7119 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
24 | off2.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
25 | 24 | ralrimivva 3208 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
27 | ovrspc2v 7474 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | |
28 | 18, 23, 26, 27 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
29 | 13, 28 | fmpt3d 7150 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∀wral 3067 ∩ cin 3975 ↦ cmpt 5249 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ∘f cof 7712 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |