Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > off2 | Structured version Visualization version GIF version |
Description: The function operation produces a function - alternative form with all antecedents as deduction. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
Ref | Expression |
---|---|
off2.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
off2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
off2.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
off2.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
off2.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
off2.6 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐶) |
Ref | Expression |
---|---|
off2 | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off2.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | 1 | ffnd 6601 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | off2.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
4 | 3 | ffnd 6601 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
5 | off2.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | off2.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
7 | eqid 2738 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐵) | |
8 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
9 | eqidd 2739 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
10 | 2, 4, 5, 6, 7, 8, 9 | offval 7542 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ (𝐴 ∩ 𝐵) ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
11 | off2.6 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐶) | |
12 | 11 | mpteq1d 5169 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝐴 ∩ 𝐵) ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
13 | 10, 12 | eqtrd 2778 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
14 | 1 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝐹:𝐴⟶𝑆) |
15 | inss1 4162 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
16 | 11, 15 | eqsstrrdi 3976 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
17 | 16 | sselda 3921 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐴) |
18 | 14, 17 | ffvelrnd 6962 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
19 | 3 | adantr 481 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝐺:𝐵⟶𝑇) |
20 | inss2 4163 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
21 | 11, 20 | eqsstrrdi 3976 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
22 | 21 | sselda 3921 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐵) |
23 | 19, 22 | ffvelrnd 6962 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
24 | off2.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
25 | 24 | ralrimivva 3123 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
26 | 25 | adantr 481 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
27 | ovrspc2v 7301 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | |
28 | 18, 23, 26, 27 | syl21anc 835 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
29 | 13, 28 | fmpt3d 6990 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∩ cin 3886 ↦ cmpt 5157 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ∘f cof 7531 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |