![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > off2 | Structured version Visualization version GIF version |
Description: The function operation produces a function - alternative form with all antecedents as deduction. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
Ref | Expression |
---|---|
off2.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
off2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
off2.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
off2.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
off2.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
off2.6 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐶) |
Ref | Expression |
---|---|
off2 | ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off2.2 | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | 1 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝐹:𝐴⟶𝑆) |
3 | off2.6 | . . . . . . 7 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐶) | |
4 | inss1 4026 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
5 | 3, 4 | syl6eqssr 3850 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
6 | 5 | sselda 3796 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐴) |
7 | 2, 6 | ffvelrnd 6584 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
8 | off2.3 | . . . . . 6 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
9 | 8 | adantr 473 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝐺:𝐵⟶𝑇) |
10 | inss2 4027 | . . . . . . 7 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
11 | 3, 10 | syl6eqssr 3850 | . . . . . 6 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
12 | 11 | sselda 3796 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐵) |
13 | 9, 12 | ffvelrnd 6584 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
14 | off2.1 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
15 | 14 | ralrimivva 3150 | . . . . 5 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
16 | 15 | adantr 473 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
17 | ovrspc2v 6902 | . . . 4 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | |
18 | 7, 13, 16, 17 | syl21anc 867 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
19 | 18 | fmpttd 6609 | . 2 ⊢ (𝜑 → (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))):𝐶⟶𝑈) |
20 | 1 | ffnd 6255 | . . . . 5 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
21 | 8 | ffnd 6255 | . . . . 5 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
22 | off2.4 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
23 | off2.5 | . . . . 5 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
24 | eqid 2797 | . . . . 5 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐵) | |
25 | eqidd 2798 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
26 | eqidd 2798 | . . . . 5 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
27 | 20, 21, 22, 23, 24, 25, 26 | offval 7136 | . . . 4 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑧 ∈ (𝐴 ∩ 𝐵) ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
28 | 3 | mpteq1d 4929 | . . . 4 ⊢ (𝜑 → (𝑧 ∈ (𝐴 ∩ 𝐵) ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
29 | 27, 28 | eqtrd 2831 | . . 3 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
30 | 29 | feq1d 6239 | . 2 ⊢ (𝜑 → ((𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈 ↔ (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))):𝐶⟶𝑈)) |
31 | 19, 30 | mpbird 249 | 1 ⊢ (𝜑 → (𝐹 ∘𝑓 𝑅𝐺):𝐶⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ∀wral 3087 ∩ cin 3766 ↦ cmpt 4920 ⟶wf 6095 ‘cfv 6099 (class class class)co 6876 ∘𝑓 cof 7127 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-rep 4962 ax-sep 4973 ax-nul 4981 ax-pr 5095 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-reu 3094 df-rab 3096 df-v 3385 df-sbc 3632 df-csb 3727 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-iun 4710 df-br 4842 df-opab 4904 df-mpt 4921 df-id 5218 df-xp 5316 df-rel 5317 df-cnv 5318 df-co 5319 df-dm 5320 df-rn 5321 df-res 5322 df-ima 5323 df-iota 6062 df-fun 6101 df-fn 6102 df-f 6103 df-f1 6104 df-fo 6105 df-f1o 6106 df-fv 6107 df-ov 6879 df-oprab 6880 df-mpt2 6881 df-of 7129 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |