Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  off2 Structured version   Visualization version   GIF version

Theorem off2 30879
Description: The function operation produces a function - alternative form with all antecedents as deduction. (Contributed by Thierry Arnoux, 17-Feb-2017.)
Hypotheses
Ref Expression
off2.1 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
off2.2 (𝜑𝐹:𝐴𝑆)
off2.3 (𝜑𝐺:𝐵𝑇)
off2.4 (𝜑𝐴𝑉)
off2.5 (𝜑𝐵𝑊)
off2.6 (𝜑 → (𝐴𝐵) = 𝐶)
Assertion
Ref Expression
off2 (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Distinct variable groups:   𝑦,𝐺   𝑥,𝑦,𝜑   𝑥,𝑆,𝑦   𝑥,𝑇,𝑦   𝑥,𝐹,𝑦   𝑥,𝑅,𝑦   𝑥,𝑈,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐺(𝑥)   𝑉(𝑥,𝑦)   𝑊(𝑥,𝑦)

Proof of Theorem off2
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 off2.2 . . . . 5 (𝜑𝐹:𝐴𝑆)
21ffnd 6585 . . . 4 (𝜑𝐹 Fn 𝐴)
3 off2.3 . . . . 5 (𝜑𝐺:𝐵𝑇)
43ffnd 6585 . . . 4 (𝜑𝐺 Fn 𝐵)
5 off2.4 . . . 4 (𝜑𝐴𝑉)
6 off2.5 . . . 4 (𝜑𝐵𝑊)
7 eqid 2738 . . . 4 (𝐴𝐵) = (𝐴𝐵)
8 eqidd 2739 . . . 4 ((𝜑𝑧𝐴) → (𝐹𝑧) = (𝐹𝑧))
9 eqidd 2739 . . . 4 ((𝜑𝑧𝐵) → (𝐺𝑧) = (𝐺𝑧))
102, 4, 5, 6, 7, 8, 9offval 7520 . . 3 (𝜑 → (𝐹f 𝑅𝐺) = (𝑧 ∈ (𝐴𝐵) ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
11 off2.6 . . . 4 (𝜑 → (𝐴𝐵) = 𝐶)
1211mpteq1d 5165 . . 3 (𝜑 → (𝑧 ∈ (𝐴𝐵) ↦ ((𝐹𝑧)𝑅(𝐺𝑧))) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
1310, 12eqtrd 2778 . 2 (𝜑 → (𝐹f 𝑅𝐺) = (𝑧𝐶 ↦ ((𝐹𝑧)𝑅(𝐺𝑧))))
141adantr 480 . . . 4 ((𝜑𝑧𝐶) → 𝐹:𝐴𝑆)
15 inss1 4159 . . . . . 6 (𝐴𝐵) ⊆ 𝐴
1611, 15eqsstrrdi 3972 . . . . 5 (𝜑𝐶𝐴)
1716sselda 3917 . . . 4 ((𝜑𝑧𝐶) → 𝑧𝐴)
1814, 17ffvelrnd 6944 . . 3 ((𝜑𝑧𝐶) → (𝐹𝑧) ∈ 𝑆)
193adantr 480 . . . 4 ((𝜑𝑧𝐶) → 𝐺:𝐵𝑇)
20 inss2 4160 . . . . . 6 (𝐴𝐵) ⊆ 𝐵
2111, 20eqsstrrdi 3972 . . . . 5 (𝜑𝐶𝐵)
2221sselda 3917 . . . 4 ((𝜑𝑧𝐶) → 𝑧𝐵)
2319, 22ffvelrnd 6944 . . 3 ((𝜑𝑧𝐶) → (𝐺𝑧) ∈ 𝑇)
24 off2.1 . . . . 5 ((𝜑 ∧ (𝑥𝑆𝑦𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈)
2524ralrimivva 3114 . . . 4 (𝜑 → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
2625adantr 480 . . 3 ((𝜑𝑧𝐶) → ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈)
27 ovrspc2v 7281 . . 3 ((((𝐹𝑧) ∈ 𝑆 ∧ (𝐺𝑧) ∈ 𝑇) ∧ ∀𝑥𝑆𝑦𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2818, 23, 26, 27syl21anc 834 . 2 ((𝜑𝑧𝐶) → ((𝐹𝑧)𝑅(𝐺𝑧)) ∈ 𝑈)
2913, 28fmpt3d 6972 1 (𝜑 → (𝐹f 𝑅𝐺):𝐶𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wral 3063  cin 3882  cmpt 5153  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator