![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > off2 | Structured version Visualization version GIF version |
Description: The function operation produces a function - alternative form with all antecedents as deduction. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
Ref | Expression |
---|---|
off2.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
off2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
off2.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
off2.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
off2.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
off2.6 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐶) |
Ref | Expression |
---|---|
off2 | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | off2.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
2 | 1 | ffnd 6719 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
3 | off2.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
4 | 3 | ffnd 6719 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
5 | off2.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
6 | off2.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
7 | eqid 2730 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐵) | |
8 | eqidd 2731 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
9 | eqidd 2731 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
10 | 2, 4, 5, 6, 7, 8, 9 | offval 7683 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ (𝐴 ∩ 𝐵) ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
11 | off2.6 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐶) | |
12 | 11 | mpteq1d 5244 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝐴 ∩ 𝐵) ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
13 | 10, 12 | eqtrd 2770 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
14 | 1 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝐹:𝐴⟶𝑆) |
15 | inss1 4229 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
16 | 11, 15 | eqsstrrdi 4038 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
17 | 16 | sselda 3983 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐴) |
18 | 14, 17 | ffvelcdmd 7088 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
19 | 3 | adantr 479 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝐺:𝐵⟶𝑇) |
20 | inss2 4230 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
21 | 11, 20 | eqsstrrdi 4038 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
22 | 21 | sselda 3983 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐵) |
23 | 19, 22 | ffvelcdmd 7088 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
24 | off2.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
25 | 24 | ralrimivva 3198 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
26 | 25 | adantr 479 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
27 | ovrspc2v 7439 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | |
28 | 18, 23, 26, 27 | syl21anc 834 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
29 | 13, 28 | fmpt3d 7118 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1539 ∈ wcel 2104 ∀wral 3059 ∩ cin 3948 ↦ cmpt 5232 ⟶wf 6540 ‘cfv 6544 (class class class)co 7413 ∘f cof 7672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7416 df-oprab 7417 df-mpo 7418 df-of 7674 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |