| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > off2 | Structured version Visualization version GIF version | ||
| Description: The function operation produces a function - alternative form with all antecedents as deduction. (Contributed by Thierry Arnoux, 17-Feb-2017.) |
| Ref | Expression |
|---|---|
| off2.1 | ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) |
| off2.2 | ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) |
| off2.3 | ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) |
| off2.4 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| off2.5 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| off2.6 | ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐶) |
| Ref | Expression |
|---|---|
| off2 | ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | off2.2 | . . . . 5 ⊢ (𝜑 → 𝐹:𝐴⟶𝑆) | |
| 2 | 1 | ffnd 6712 | . . . 4 ⊢ (𝜑 → 𝐹 Fn 𝐴) |
| 3 | off2.3 | . . . . 5 ⊢ (𝜑 → 𝐺:𝐵⟶𝑇) | |
| 4 | 3 | ffnd 6712 | . . . 4 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
| 5 | off2.4 | . . . 4 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 6 | off2.5 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 7 | eqid 2736 | . . . 4 ⊢ (𝐴 ∩ 𝐵) = (𝐴 ∩ 𝐵) | |
| 8 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐴) → (𝐹‘𝑧) = (𝐹‘𝑧)) | |
| 9 | eqidd 2737 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐵) → (𝐺‘𝑧) = (𝐺‘𝑧)) | |
| 10 | 2, 4, 5, 6, 7, 8, 9 | offval 7685 | . . 3 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ (𝐴 ∩ 𝐵) ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
| 11 | off2.6 | . . . 4 ⊢ (𝜑 → (𝐴 ∩ 𝐵) = 𝐶) | |
| 12 | 11 | mpteq1d 5215 | . . 3 ⊢ (𝜑 → (𝑧 ∈ (𝐴 ∩ 𝐵) ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧))) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
| 13 | 10, 12 | eqtrd 2771 | . 2 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑧 ∈ 𝐶 ↦ ((𝐹‘𝑧)𝑅(𝐺‘𝑧)))) |
| 14 | 1 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝐹:𝐴⟶𝑆) |
| 15 | inss1 4217 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐴 | |
| 16 | 11, 15 | eqsstrrdi 4009 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐴) |
| 17 | 16 | sselda 3963 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐴) |
| 18 | 14, 17 | ffvelcdmd 7080 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐹‘𝑧) ∈ 𝑆) |
| 19 | 3 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝐺:𝐵⟶𝑇) |
| 20 | inss2 4218 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ⊆ 𝐵 | |
| 21 | 11, 20 | eqsstrrdi 4009 | . . . . 5 ⊢ (𝜑 → 𝐶 ⊆ 𝐵) |
| 22 | 21 | sselda 3963 | . . . 4 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → 𝑧 ∈ 𝐵) |
| 23 | 19, 22 | ffvelcdmd 7080 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → (𝐺‘𝑧) ∈ 𝑇) |
| 24 | off2.1 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑇)) → (𝑥𝑅𝑦) ∈ 𝑈) | |
| 25 | 24 | ralrimivva 3188 | . . . 4 ⊢ (𝜑 → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 26 | 25 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) |
| 27 | ovrspc2v 7436 | . . 3 ⊢ ((((𝐹‘𝑧) ∈ 𝑆 ∧ (𝐺‘𝑧) ∈ 𝑇) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑇 (𝑥𝑅𝑦) ∈ 𝑈) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) | |
| 28 | 18, 23, 26, 27 | syl21anc 837 | . 2 ⊢ ((𝜑 ∧ 𝑧 ∈ 𝐶) → ((𝐹‘𝑧)𝑅(𝐺‘𝑧)) ∈ 𝑈) |
| 29 | 13, 28 | fmpt3d 7111 | 1 ⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺):𝐶⟶𝑈) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∩ cin 3930 ↦ cmpt 5206 ⟶wf 6532 ‘cfv 6536 (class class class)co 7410 ∘f cof 7674 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |