![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > submgmcl | Structured version Visualization version GIF version |
Description: Submagmas are closed under the magma operation. (Contributed by AV, 26-Feb-2020.) |
Ref | Expression |
---|---|
submgmcl.p | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
submgmcl | ⊢ ((𝑆 ∈ (SubMgm‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submgmrcl 18664 | . . . . . . 7 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm) | |
2 | eqid 2728 | . . . . . . . 8 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
3 | submgmcl.p | . . . . . . . 8 ⊢ + = (+g‘𝑀) | |
4 | 2, 3 | issubmgm 18671 | . . . . . . 7 ⊢ (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |
5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |
6 | 5 | ibi 266 | . . . . 5 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) |
7 | 6 | simprd 494 | . . . 4 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) |
8 | ovrspc2v 7452 | . . . 4 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | |
9 | 7, 8 | sylan2 591 | . . 3 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ 𝑆 ∈ (SubMgm‘𝑀)) → (𝑋 + 𝑌) ∈ 𝑆) |
10 | 9 | ancoms 457 | . 2 ⊢ ((𝑆 ∈ (SubMgm‘𝑀) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋 + 𝑌) ∈ 𝑆) |
11 | 10 | 3impb 1112 | 1 ⊢ ((𝑆 ∈ (SubMgm‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3058 ⊆ wss 3949 ‘cfv 6553 (class class class)co 7426 Basecbs 17189 +gcplusg 17242 Mgmcmgm 18607 SubMgmcsubmgm 18660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pow 5369 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-mpt 5236 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-iota 6505 df-fun 6555 df-fv 6561 df-ov 7429 df-submgm 18662 |
This theorem is referenced by: resmgmhm 18680 mgmhmima 18684 |
Copyright terms: Public domain | W3C validator |