Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > submgmcl | Structured version Visualization version GIF version |
Description: Submagmas are closed under the monoid operation. (Contributed by AV, 26-Feb-2020.) |
Ref | Expression |
---|---|
submgmcl.p | ⊢ + = (+g‘𝑀) |
Ref | Expression |
---|---|
submgmcl | ⊢ ((𝑆 ∈ (SubMgm‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | submgmrcl 45336 | . . . . . . 7 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → 𝑀 ∈ Mgm) | |
2 | eqid 2738 | . . . . . . . 8 ⊢ (Base‘𝑀) = (Base‘𝑀) | |
3 | submgmcl.p | . . . . . . . 8 ⊢ + = (+g‘𝑀) | |
4 | 2, 3 | issubmgm 45343 | . . . . . . 7 ⊢ (𝑀 ∈ Mgm → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |
5 | 1, 4 | syl 17 | . . . . . 6 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → (𝑆 ∈ (SubMgm‘𝑀) ↔ (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆))) |
6 | 5 | ibi 266 | . . . . 5 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → (𝑆 ⊆ (Base‘𝑀) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆)) |
7 | 6 | simprd 496 | . . . 4 ⊢ (𝑆 ∈ (SubMgm‘𝑀) → ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) |
8 | ovrspc2v 7301 | . . . 4 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ ∀𝑥 ∈ 𝑆 ∀𝑦 ∈ 𝑆 (𝑥 + 𝑦) ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) | |
9 | 7, 8 | sylan2 593 | . . 3 ⊢ (((𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) ∧ 𝑆 ∈ (SubMgm‘𝑀)) → (𝑋 + 𝑌) ∈ 𝑆) |
10 | 9 | ancoms 459 | . 2 ⊢ ((𝑆 ∈ (SubMgm‘𝑀) ∧ (𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆)) → (𝑋 + 𝑌) ∈ 𝑆) |
11 | 10 | 3impb 1114 | 1 ⊢ ((𝑆 ∈ (SubMgm‘𝑀) ∧ 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ 𝑆) → (𝑋 + 𝑌) ∈ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ⊆ wss 3887 ‘cfv 6433 (class class class)co 7275 Basecbs 16912 +gcplusg 16962 Mgmcmgm 18324 SubMgmcsubmgm 45332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-submgm 45334 |
This theorem is referenced by: resmgmhm 45352 mgmhmima 45356 |
Copyright terms: Public domain | W3C validator |