MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsummatr01lem2 Structured version   Visualization version   GIF version

Theorem gsummatr01lem2 21357
Description: Lemma B for gsummatr01 21360. (Contributed by AV, 8-Jan-2019.)
Hypotheses
Ref Expression
gsummatr01.p 𝑃 = (Base‘(SymGrp‘𝑁))
gsummatr01.r 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
Assertion
Ref Expression
gsummatr01lem2 ((𝑄𝑅𝑋𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑋𝐴(𝑄𝑋)) ∈ (Base‘𝐺)))
Distinct variable groups:   𝐴,𝑖,𝑗   𝑖,𝐺,𝑗   𝑖,𝐾,𝑗   𝐾,𝑟   𝑖,𝐿,𝑗   𝐿,𝑟   𝑖,𝑁,𝑗   𝑃,𝑟   𝑄,𝑟   𝑄,𝑖,𝑗   𝑅,𝑖,𝑗   𝑖,𝑋,𝑗
Allowed substitution hints:   𝐴(𝑟)   𝑃(𝑖,𝑗)   𝑅(𝑟)   𝐺(𝑟)   𝑁(𝑟)   𝑋(𝑟)

Proof of Theorem gsummatr01lem2
StepHypRef Expression
1 simpr 489 . . . 4 ((𝑄𝑅𝑋𝑁) → 𝑋𝑁)
2 gsummatr01.p . . . . 5 𝑃 = (Base‘(SymGrp‘𝑁))
3 gsummatr01.r . . . . 5 𝑅 = {𝑟𝑃 ∣ (𝑟𝐾) = 𝐿}
42, 3gsummatr01lem1 21356 . . . 4 ((𝑄𝑅𝑋𝑁) → (𝑄𝑋) ∈ 𝑁)
51, 4jca 516 . . 3 ((𝑄𝑅𝑋𝑁) → (𝑋𝑁 ∧ (𝑄𝑋) ∈ 𝑁))
6 ovrspc2v 7177 . . 3 (((𝑋𝑁 ∧ (𝑄𝑋) ∈ 𝑁) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺)) → (𝑋𝐴(𝑄𝑋)) ∈ (Base‘𝐺))
75, 6sylan 584 . 2 (((𝑄𝑅𝑋𝑁) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺)) → (𝑋𝐴(𝑄𝑋)) ∈ (Base‘𝐺))
87ex 417 1 ((𝑄𝑅𝑋𝑁) → (∀𝑖𝑁𝑗𝑁 (𝑖𝐴𝑗) ∈ (Base‘𝐺) → (𝑋𝐴(𝑄𝑋)) ∈ (Base‘𝐺)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 400   = wceq 1539  wcel 2112  wral 3071  {crab 3075  cfv 6336  (class class class)co 7151  Basecbs 16542  SymGrpcsymg 18563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pow 5235  ax-pr 5299  ax-un 7460  ax-cnex 10632  ax-resscn 10633  ax-1cn 10634  ax-icn 10635  ax-addcl 10636  ax-addrcl 10637  ax-mulcl 10638  ax-mulrcl 10639  ax-mulcom 10640  ax-addass 10641  ax-mulass 10642  ax-distr 10643  ax-i2m1 10644  ax-1ne0 10645  ax-1rid 10646  ax-rnegex 10647  ax-rrecex 10648  ax-cnre 10649  ax-pre-lttri 10650  ax-pre-lttrn 10651  ax-pre-ltadd 10652  ax-pre-mulgt0 10653
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ne 2953  df-nel 3057  df-ral 3076  df-rex 3077  df-reu 3078  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-pss 3878  df-nul 4227  df-if 4422  df-pw 4497  df-sn 4524  df-pr 4526  df-tp 4528  df-op 4530  df-uni 4800  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5431  df-eprel 5436  df-po 5444  df-so 5445  df-fr 5484  df-we 5486  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-rn 5536  df-res 5537  df-ima 5538  df-pred 6127  df-ord 6173  df-on 6174  df-lim 6175  df-suc 6176  df-iota 6295  df-fun 6338  df-fn 6339  df-f 6340  df-f1 6341  df-fo 6342  df-f1o 6343  df-fv 6344  df-riota 7109  df-ov 7154  df-oprab 7155  df-mpo 7156  df-om 7581  df-1st 7694  df-2nd 7695  df-wrecs 7958  df-recs 8019  df-rdg 8057  df-1o 8113  df-er 8300  df-map 8419  df-en 8529  df-dom 8530  df-sdom 8531  df-fin 8532  df-pnf 10716  df-mnf 10717  df-xr 10718  df-ltxr 10719  df-le 10720  df-sub 10911  df-neg 10912  df-nn 11676  df-2 11738  df-3 11739  df-4 11740  df-5 11741  df-6 11742  df-7 11743  df-8 11744  df-9 11745  df-n0 11936  df-z 12022  df-uz 12284  df-fz 12941  df-struct 16544  df-ndx 16545  df-slot 16546  df-base 16548  df-sets 16549  df-ress 16550  df-plusg 16637  df-tset 16643  df-efmnd 18101  df-symg 18564
This theorem is referenced by:  gsummatr01lem3  21358  gsummatr01  21360
  Copyright terms: Public domain W3C validator