MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano1OLD Structured version   Visualization version   GIF version

Theorem peano1OLD 7874
Description: Obsolete version of peano1 7873 as of 29-Nov-2024. (Contributed by NM, 15-May-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
peano1OLD ∅ ∈ ω

Proof of Theorem peano1OLD
StepHypRef Expression
1 limom 7866 . 2 Lim ω
2 0ellim 6404 . 2 (Lim ω → ∅ ∈ ω)
31, 2ax-mp 5 1 ∅ ∈ ω
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  c0 4304  Lim wlim 6341  ωcom 7850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5259  ax-nul 5269  ax-pr 5395  ax-un 7718
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2928  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-dif 3925  df-un 3927  df-in 3929  df-ss 3939  df-pss 3942  df-nul 4305  df-if 4497  df-pw 4573  df-sn 4598  df-pr 4600  df-op 4604  df-uni 4880  df-br 5116  df-opab 5178  df-tr 5223  df-eprel 5546  df-po 5554  df-so 5555  df-fr 5599  df-we 5601  df-ord 6343  df-on 6344  df-lim 6345  df-suc 6346  df-om 7851
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator