MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  peano1OLD Structured version   Visualization version   GIF version

Theorem peano1OLD 7873
Description: Obsolete version of peano1 7872 as of 29-Nov-2024. (Contributed by NM, 15-May-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
peano1OLD ∅ ∈ ω

Proof of Theorem peano1OLD
StepHypRef Expression
1 limom 7864 . 2 Lim ω
2 0ellim 6417 . 2 (Lim ω → ∅ ∈ ω)
31, 2ax-mp 5 1 ∅ ∈ ω
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  c0 4314  Lim wlim 6355  ωcom 7848
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-tr 5256  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-we 5623  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-om 7849
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator