![]() |
Metamath
Proof Explorer Theorem List (p. 93 of 491) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30946) |
![]() (30947-32469) |
![]() (32470-49035) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | findcard 9201* | Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (∀𝑧 ∈ 𝑦 𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | findcard2 9202* | Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.) Avoid ax-pow 5370. (Revised by BTernaryTau, 26-Aug-2024.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | findcard2s 9203* | Variation of findcard2 9202 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | findcard2d 9204* | Deduction version of findcard2 9202. (Contributed by SO, 16-Jul-2018.) |
⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝜃 → 𝜏)) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | nnfi 9205 | Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5370. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | ||
Theorem | pssnn 9206* | A proper subset of a natural number is equinumerous to some smaller number. Lemma 6F of [Enderton] p. 137. (Contributed by NM, 22-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) Avoid ax-pow 5370. (Revised by BTernaryTau, 31-Jul-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) | ||
Theorem | ssnnfi 9207 | A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
Theorem | 0finOLD 9208 | Obsolete version of 0fi 9080 as of 13-Jan-2025. (Contributed by FL, 14-Jul-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∅ ∈ Fin | ||
Theorem | unfi 9209 | The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 16-Nov-2002.) Avoid ax-pow 5370. (Revised by BTernaryTau, 7-Aug-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | ||
Theorem | unfid 9210 | The union of two finite sets is finite. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ Fin) | ||
Theorem | ssfi 9211 | A subset of a finite set is finite. Corollary 6G of [Enderton] p. 138. For a shorter proof using ax-pow 5370, see ssfiALT 9212. (Contributed by NM, 24-Jun-1998.) Avoid ax-pow 5370. (Revised by BTernaryTau, 12-Aug-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
Theorem | ssfiALT 9212 | Shorter proof of ssfi 9211 using ax-pow 5370. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
Theorem | diffi 9213 | If 𝐴 is finite, (𝐴 ∖ 𝐵) is finite. (Contributed by FL, 3-Aug-2009.) |
⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) | ||
Theorem | cnvfi 9214 | If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014.) Avoid ax-pow 5370. (Revised by BTernaryTau, 9-Sep-2024.) |
⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | ||
Theorem | fnfi 9215 | A version of fnex 7236 for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | ||
Theorem | f1oenfi 9216 | If the domain of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1oeng 9009). (Contributed by BTernaryTau, 8-Sep-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
Theorem | f1oenfirn 9217 | If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
Theorem | f1domfi 9218 | If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 9010). (Contributed by BTernaryTau, 25-Sep-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
Theorem | f1domfi2 9219 | If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g 9008). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
Theorem | enreffi 9220 | Equinumerosity is reflexive for finite sets, proved without using the Axiom of Power Sets (unlike enrefg 9022). (Contributed by BTernaryTau, 8-Sep-2024.) |
⊢ (𝐴 ∈ Fin → 𝐴 ≈ 𝐴) | ||
Theorem | ensymfib 9221 | Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 9040). (Contributed by BTernaryTau, 9-Sep-2024.) |
⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | ||
Theorem | entrfil 9222 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 9044). (Contributed by BTernaryTau, 10-Sep-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
Theorem | enfii 9223 | A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5370. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | ||
Theorem | enfi 9224 | Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5370, see enfiALT 9225. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5370. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | ||
Theorem | enfiALT 9225 | Shorter proof of enfi 9224 using ax-pow 5370. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | ||
Theorem | domfi 9226 | A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | ||
Theorem | entrfi 9227 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 9044). (Contributed by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
Theorem | entrfir 9228 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 9044). (Contributed by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
Theorem | domtrfil 9229 | Transitivity of dominance relation when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domtr 9045). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
Theorem | domtrfi 9230 | Transitivity of dominance relation when 𝐵 is finite, proved without using the Axiom of Power Sets (unlike domtr 9045). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
Theorem | domtrfir 9231 | Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr 9045). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
Theorem | f1imaenfi 9232 | If a function is one-to-one, then the image of a finite subset of its domain under it is equinumerous to the subset. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1imaeng 9052). (Contributed by BTernaryTau, 29-Sep-2024.) |
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ Fin) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
Theorem | ssdomfi 9233 | A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg 9038). (Contributed by BTernaryTau, 12-Nov-2024.) |
⊢ (𝐵 ∈ Fin → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | ||
Theorem | ssdomfi2 9234 | A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg 9038). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) | ||
Theorem | sbthfilem 9235* | Lemma for sbthfi 9236. (Contributed by BTernaryTau, 4-Nov-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
Theorem | sbthfi 9236 | Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth 9131). (Contributed by BTernaryTau, 4-Nov-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
Theorem | domnsymfi 9237 | If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym 9137). (Contributed by BTernaryTau, 22-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) | ||
Theorem | sdomdomtrfi 9238 | Transitivity of strict dominance and dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr 9148). (Contributed by BTernaryTau, 25-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | ||
Theorem | domsdomtrfi 9239 | Transitivity of dominance and strict dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domsdomtr 9150). (Contributed by BTernaryTau, 25-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | ||
Theorem | sucdom2 9240 | Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) Avoid ax-pow 5370. (Revised by BTernaryTau, 4-Dec-2024.) |
⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) | ||
Theorem | phplem1 9241 | Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998.) Avoid ax-pow 5370. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) | ||
Theorem | phplem2 9242 | Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) Avoid ax-pow 5370. (Revised by BTernaryTau, 4-Nov-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) | ||
Theorem | nneneq 9243 | Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.) Avoid ax-pow 5370. (Revised by BTernaryTau, 11-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | php 9244 | Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of phplem1 9241, phplem2 9242, nneneq 9243, and this final piece of the proof. (Contributed by NM, 29-May-1998.) Avoid ax-pow 5370. (Revised by BTernaryTau, 18-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | ||
Theorem | php2 9245 | Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.) Avoid ax-pow 5370. (Revised by BTernaryTau, 20-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
Theorem | php3 9246 | Corollary of Pigeonhole Principle. If 𝐴 is finite and 𝐵 is a proper subset of 𝐴, the 𝐵 is strictly less numerous than 𝐴. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5370. (Revised by BTernaryTau, 26-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
Theorem | php4 9247 | Corollary of the Pigeonhole Principle php 9244: a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004.) |
⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) | ||
Theorem | php5 9248 | Corollary of the Pigeonhole Principle php 9244: a natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.) |
⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) | ||
Theorem | phpeqd 9249 | Corollary of the Pigeonhole Principle using equality. Strengthening of php 9244 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-pow 5370. (Revised by BTernaryTau, 28-Nov-2024.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | nndomog 9250 | Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 9266 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9266. (Revised by RP, 5-Nov-2023.) Avoid ax-pow 5370. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | phplem1OLD 9251 | Obsolete lemma for php 9244 as of 22-Nov-2024. (Contributed by NM, 25-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵})) | ||
Theorem | phplem2OLD 9252 | Obsolete lemma for php 9244 as of 22-Nov-2024. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) | ||
Theorem | phplem3OLD 9253 | Obsolete version of phplem1 9241 as of 4-Nov-2024. (Contributed by NM, 26-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) | ||
Theorem | phplem4OLD 9254 | Obsolete version of phplem2 9242 as of 4-Nov-2024. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) | ||
Theorem | nneneqOLD 9255 | Obsolete version of nneneq 9243 as of 11-Nov-2024. (Contributed by NM, 28-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | phpOLD 9256 | Obsolete version of php 9244 as of 18-Nov-2024. (Contributed by NM, 29-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | ||
Theorem | php2OLD 9257 | Obsolete version of php2 9245 as of 20-Nov-2024. (Contributed by NM, 31-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
Theorem | php3OLD 9258 | Obsolete version of php3 9246 as of 26-Nov-2024. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
Theorem | phpeqdOLD 9259 | Obsolete version of phpeqd 9249 as of 28-Nov-2024. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | nndomogOLD 9260 | Obsolete version of nndomog 9250 as of 29-Nov-2024. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9266. (Revised by RP, 5-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | snnen2oOLD 9261 | Obsolete version of snnen2o 9270 as of 18-Nov-2024. (Contributed by AV, 6-Aug-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ {𝐴} ≈ 2o | ||
Theorem | onomeneq 9262 | An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.) Avoid ax-pow 5370. (Revised by BTernaryTau, 2-Dec-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | onomeneqOLD 9263 | Obsolete version of onomeneq 9262 as of 29-Nov-2024. (Contributed by NM, 26-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | onfin 9264 | An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.) |
⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) | ||
Theorem | onfin2 9265 | A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.) |
⊢ ω = (On ∩ Fin) | ||
Theorem | nndomo 9266 | Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | nnsdomo 9267 | Cardinal ordering agrees with natural number ordering. (Contributed by NM, 17-Jun-1998.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≺ 𝐵 ↔ 𝐴 ⊊ 𝐵)) | ||
Theorem | sucdom 9268 | Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-pow 5370. (Revised by BTernaryTau, 4-Dec-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) | ||
Theorem | sucdomOLD 9269 | Obsolete version of sucdom 9268 as of 4-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) | ||
Theorem | snnen2o 9270 | A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5370, ax-un 7753. (Revised by BTernaryTau, 1-Dec-2024.) |
⊢ ¬ {𝐴} ≈ 2o | ||
Theorem | 0sdom1dom 9271 | Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7753, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7753. (Revised by BTernaryTau, 7-Dec-2024.) |
⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | ||
Theorem | 0sdom1domALT 9272 | Alternate proof of 0sdom1dom 9271, shorter but requiring ax-un 7753. (Contributed by NM, 28-Sep-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | ||
Theorem | 1sdom2 9273 | Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7753, see 1sdom2ALT 9274. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7753. (Revised by BTernaryTau, 8-Dec-2024.) |
⊢ 1o ≺ 2o | ||
Theorem | 1sdom2ALT 9274 | Alternate proof of 1sdom2 9273, shorter but requiring ax-un 7753. (Contributed by NM, 4-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 1o ≺ 2o | ||
Theorem | sdom1 9275 | A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.) Avoid ax-pow 5370, ax-un 7753. (Revised by BTernaryTau, 12-Dec-2024.) |
⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) | ||
Theorem | sdom1OLD 9276 | Obsolete version of sdom1 9275 as of 12-Dec-2024. (Contributed by Stefan O'Rear, 28-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) | ||
Theorem | modom 9277 | Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1o) | ||
Theorem | modom2 9278* | Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 ≼ 1o) | ||
Theorem | rex2dom 9279* | A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) | ||
Theorem | 1sdom2dom 9280 | Strict dominance over 1 is the same as dominance over 2. (Contributed by BTernaryTau, 23-Dec-2024.) |
⊢ (1o ≺ 𝐴 ↔ 2o ≼ 𝐴) | ||
Theorem | 1sdom 9281* | A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 9068.) (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-un 7753. (Revised by BTernaryTau, 30-Dec-2024.) |
⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) | ||
Theorem | 1sdomOLD 9282* | Obsolete version of 1sdom 9281 as of 30-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) | ||
Theorem | unxpdomlem1 9283* | Lemma for unxpdom 9286. (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013.) |
⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) ⇒ ⊢ (𝑧 ∈ (𝑎 ∪ 𝑏) → (𝐹‘𝑧) = if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉)) | ||
Theorem | unxpdomlem2 9284* | Lemma for unxpdom 9286. (Contributed by Mario Carneiro, 13-Jan-2013.) |
⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) & ⊢ (𝜑 → 𝑤 ∈ (𝑎 ∪ 𝑏)) & ⊢ (𝜑 → ¬ 𝑚 = 𝑛) & ⊢ (𝜑 → ¬ 𝑠 = 𝑡) ⇒ ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎)) → ¬ (𝐹‘𝑧) = (𝐹‘𝑤)) | ||
Theorem | unxpdomlem3 9285* | Lemma for unxpdom 9286. (Contributed by Mario Carneiro, 13-Jan-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) ⇒ ⊢ ((1o ≺ 𝑎 ∧ 1o ≺ 𝑏) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏)) | ||
Theorem | unxpdom 9286 | Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) | ||
Theorem | unxpdom2 9287 | Corollary of unxpdom 9286. (Contributed by NM, 16-Sep-2004.) |
⊢ ((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐴)) | ||
Theorem | sucxpdom 9288 | Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
⊢ (1o ≺ 𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴)) | ||
Theorem | pssinf 9289 | A set equinumerous to a proper subset of itself is infinite. Corollary 6D(a) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) |
⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ∈ Fin) | ||
Theorem | fisseneq 9290 | A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) | ||
Theorem | ominf 9291 | The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) Avoid ax-pow 5370. (Revised by BTernaryTau, 2-Jan-2025.) |
⊢ ¬ ω ∈ Fin | ||
Theorem | ominfOLD 9292 | Obsolete version of ominf 9291 as of 2-Jan-2025. (Contributed by NM, 2-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ ω ∈ Fin | ||
Theorem | isinf 9293* | Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013.) Avoid ax-pow 5370. (Revised by BTernaryTau, 2-Jan-2025.) |
⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
Theorem | isinfOLD 9294* | Obsolete version of isinf 9293 as of 2-Jan-2025. (Contributed by Mario Carneiro, 15-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
Theorem | fineqvlem 9295 | Lemma for fineqv 9296. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴) | ||
Theorem | fineqv 9296 | If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.) |
⊢ (¬ ω ∈ V ↔ Fin = V) | ||
Theorem | xpfir 9297 | The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.) |
⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
Theorem | ssfid 9298 | A subset of a finite set is finite, deduction version of ssfi 9211. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ Fin) | ||
Theorem | infi 9299 | The intersection of two sets is finite if one of them is. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐵) ∈ Fin) | ||
Theorem | rabfi 9300* | A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |