![]() |
Metamath
Proof Explorer Theorem List (p. 93 of 489) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30950) |
![]() (30951-32473) |
![]() (32474-48899) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | disjenex 9201* | Existence version of disjen 9200. (Contributed by Mario Carneiro, 7-Feb-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑥((𝐴 ∩ 𝑥) = ∅ ∧ 𝑥 ≈ 𝐵)) | ||
Theorem | domss2 9202 | A corollary of disjenex 9201. If 𝐹 is an injection from 𝐴 to 𝐵 then 𝐺 is a right inverse of 𝐹 from 𝐵 to a superset of 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐺 = ◡(𝐹 ∪ (1st ↾ ((𝐵 ∖ ran 𝐹) × {𝒫 ∪ ran 𝐴}))) ⇒ ⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐺:𝐵–1-1-onto→ran 𝐺 ∧ 𝐴 ⊆ ran 𝐺 ∧ (𝐺 ∘ 𝐹) = ( I ↾ 𝐴))) | ||
Theorem | domssex2 9203* | A corollary of disjenex 9201. If 𝐹 is an injection from 𝐴 to 𝐵 then there is a right inverse 𝑔 of 𝐹 from 𝐵 to a superset of 𝐴. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ∃𝑔(𝑔:𝐵–1-1→V ∧ (𝑔 ∘ 𝐹) = ( I ↾ 𝐴))) | ||
Theorem | domssex 9204* | Weakening of domssex2 9203 to forget the functions in favor of dominance and equinumerosity. (Contributed by Mario Carneiro, 7-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
⊢ (𝐴 ≼ 𝐵 → ∃𝑥(𝐴 ⊆ 𝑥 ∧ 𝐵 ≈ 𝑥)) | ||
Theorem | xpf1o 9205* | Construct a bijection on a Cartesian product given bijections on the factors. (Contributed by Mario Carneiro, 30-May-2015.) |
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↦ 𝑋):𝐴–1-1-onto→𝐵) & ⊢ (𝜑 → (𝑦 ∈ 𝐶 ↦ 𝑌):𝐶–1-1-onto→𝐷) ⇒ ⊢ (𝜑 → (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐶 ↦ 〈𝑋, 𝑌〉):(𝐴 × 𝐶)–1-1-onto→(𝐵 × 𝐷)) | ||
Theorem | xpen 9206 | Equinumerosity law for Cartesian product. Proposition 4.22(b) of [Mendelson] p. 254. (Contributed by NM, 24-Jul-2004.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 × 𝐶) ≈ (𝐵 × 𝐷)) | ||
Theorem | mapen 9207 | Two set exponentiations are equinumerous when their bases and exponents are equinumerous. Theorem 6H(c) of [Enderton] p. 139. (Contributed by NM, 16-Dec-2003.) (Proof shortened by Mario Carneiro, 26-Apr-2015.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐶 ≈ 𝐷) → (𝐴 ↑m 𝐶) ≈ (𝐵 ↑m 𝐷)) | ||
Theorem | mapdom1 9208 | Order-preserving property of set exponentiation. Theorem 6L(c) of [Enderton] p. 149. (Contributed by NM, 27-Jul-2004.) (Revised by Mario Carneiro, 9-Mar-2013.) |
⊢ (𝐴 ≼ 𝐵 → (𝐴 ↑m 𝐶) ≼ (𝐵 ↑m 𝐶)) | ||
Theorem | mapxpen 9209 | Equinumerosity law for double set exponentiation. Proposition 10.45 of [TakeutiZaring] p. 96. (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) → ((𝐴 ↑m 𝐵) ↑m 𝐶) ≈ (𝐴 ↑m (𝐵 × 𝐶))) | ||
Theorem | xpmapenlem 9210* | Lemma for xpmapen 9211. (Contributed by NM, 1-May-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V & ⊢ 𝐷 = (𝑧 ∈ 𝐶 ↦ (1st ‘(𝑥‘𝑧))) & ⊢ 𝑅 = (𝑧 ∈ 𝐶 ↦ (2nd ‘(𝑥‘𝑧))) & ⊢ 𝑆 = (𝑧 ∈ 𝐶 ↦ 〈((1st ‘𝑦)‘𝑧), ((2nd ‘𝑦)‘𝑧)〉) ⇒ ⊢ ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴 ↑m 𝐶) × (𝐵 ↑m 𝐶)) | ||
Theorem | xpmapen 9211 | Equinumerosity law for set exponentiation of a Cartesian product. Exercise 4.47 of [Mendelson] p. 255. (Contributed by NM, 23-Feb-2004.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V & ⊢ 𝐶 ∈ V ⇒ ⊢ ((𝐴 × 𝐵) ↑m 𝐶) ≈ ((𝐴 ↑m 𝐶) × (𝐵 ↑m 𝐶)) | ||
Theorem | mapunen 9212 | Equinumerosity law for set exponentiation of a disjoint union. Exercise 4.45 of [Mendelson] p. 255. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐶 ∈ 𝑋) ∧ (𝐴 ∩ 𝐵) = ∅) → (𝐶 ↑m (𝐴 ∪ 𝐵)) ≈ ((𝐶 ↑m 𝐴) × (𝐶 ↑m 𝐵))) | ||
Theorem | map2xp 9213 | A cardinal power with exponent 2 is equivalent to a Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.) (Proof shortened by AV, 17-Jul-2022.) |
⊢ (𝐴 ∈ 𝑉 → (𝐴 ↑m 2o) ≈ (𝐴 × 𝐴)) | ||
Theorem | mapdom2 9214 | Order-preserving property of set exponentiation. Theorem 6L(d) of [Enderton] p. 149. (Contributed by NM, 23-Sep-2004.) (Revised by Mario Carneiro, 30-Apr-2015.) |
⊢ ((𝐴 ≼ 𝐵 ∧ ¬ (𝐴 = ∅ ∧ 𝐶 = ∅)) → (𝐶 ↑m 𝐴) ≼ (𝐶 ↑m 𝐵)) | ||
Theorem | mapdom3 9215 | Set exponentiation dominates the base. (Contributed by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 17-Jul-2022.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ 𝐵 ≠ ∅) → 𝐴 ≼ (𝐴 ↑m 𝐵)) | ||
Theorem | pwen 9216 | If two sets are equinumerous, then their power sets are equinumerous. Proposition 10.15 of [TakeutiZaring] p. 87. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 9-Apr-2015.) |
⊢ (𝐴 ≈ 𝐵 → 𝒫 𝐴 ≈ 𝒫 𝐵) | ||
Theorem | ssenen 9217* | Equinumerosity of equinumerous subsets of a set. (Contributed by NM, 30-Sep-2004.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ (𝐴 ≈ 𝐵 → {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶)} ≈ {𝑥 ∣ (𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶)}) | ||
Theorem | limenpsi 9218 | A limit ordinal is equinumerous to a proper subset of itself. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ Lim 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ (𝐴 ∖ {∅})) | ||
Theorem | limensuci 9219 | A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
⊢ Lim 𝐴 ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐴 ≈ suc 𝐴) | ||
Theorem | limensuc 9220 | A limit ordinal is equinumerous to its successor. (Contributed by NM, 30-Oct-2003.) |
⊢ ((𝐴 ∈ 𝑉 ∧ Lim 𝐴) → 𝐴 ≈ suc 𝐴) | ||
Theorem | infensuc 9221 | Any infinite ordinal is equinumerous to its successor. Exercise 7 of [TakeutiZaring] p. 88. Proved without the Axiom of Infinity. (Contributed by NM, 30-Oct-2003.) (Revised by Mario Carneiro, 13-Jan-2013.) |
⊢ ((𝐴 ∈ On ∧ ω ⊆ 𝐴) → 𝐴 ≈ suc 𝐴) | ||
Theorem | dif1enlem 9222 | Lemma for rexdif1en 9224 and dif1en 9226. (Contributed by BTernaryTau, 18-Aug-2024.) Generalize to all ordinals and add a sethood requirement to avoid ax-un 7770. (Revised by BTernaryTau, 5-Jan-2025.) |
⊢ (((𝐹 ∈ 𝑉 ∧ 𝐴 ∈ 𝑊 ∧ 𝑀 ∈ On) ∧ 𝐹:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) | ||
Theorem | dif1enlemOLD 9223 | Obsolete version of dif1enlem 9222 as of 5-Jan-2025. (Contributed by BTernaryTau, 18-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝑀 ∈ ω ∧ 𝐹:𝐴–1-1-onto→suc 𝑀) → (𝐴 ∖ {(◡𝐹‘𝑀)}) ≈ 𝑀) | ||
Theorem | rexdif1en 9224* | If a set is equinumerous to a nonzero ordinal, then there exists an element in that set such that removing it leaves the set equinumerous to the predecessor of that ordinal. (Contributed by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals and avoid ax-un 7770. (Revised by BTernaryTau, 5-Jan-2025.) |
⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) | ||
Theorem | rexdif1enOLD 9225* | Obsolete version of rexdif1en 9224 as of 5-Jan-2025. (Contributed by BTernaryTau, 26-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀) → ∃𝑥 ∈ 𝐴 (𝐴 ∖ {𝑥}) ≈ 𝑀) | ||
Theorem | dif1en 9226 | If a set 𝐴 is equinumerous to the successor of an ordinal 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) Avoid ax-pow 5383. (Revised by BTernaryTau, 26-Aug-2024.) Generalize to all ordinals. (Revised by BTernaryTau, 6-Jan-2025.) |
⊢ ((𝑀 ∈ On ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
Theorem | dif1ennn 9227 | If a set 𝐴 is equinumerous to the successor of a natural number 𝑀, then 𝐴 with an element removed is equinumerous to 𝑀. See also dif1ennnALT 9339. (Contributed by BTernaryTau, 6-Jan-2025.) |
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
Theorem | dif1enOLD 9228 | Obsolete version of dif1en 9226 as of 6-Jan-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) Avoid ax-pow 5383. (Revised by BTernaryTau, 26-Aug-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
Theorem | findcard 9229* | Schema for induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on the given set with any one element removed. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = (𝑦 ∖ {𝑧}) → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (∀𝑧 ∈ 𝑦 𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | findcard2 9230* | Schema for induction on the cardinality of a finite set. The inductive step shows that the result is true if one more element is added to the set. The result is then proven to be true for all finite sets. (Contributed by Jeff Madsen, 8-Jul-2010.) Avoid ax-pow 5383. (Revised by BTernaryTau, 26-Aug-2024.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | findcard2s 9231* | Variation of findcard2 9230 requiring that the element added in the induction step not be a member of the original set. (Contributed by Paul Chapman, 30-Nov-2012.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ ((𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦) → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | findcard2d 9232* | Deduction version of findcard2 9230. (Contributed by SO, 16-Jul-2018.) |
⊢ (𝑥 = ∅ → (𝜓 ↔ 𝜒)) & ⊢ (𝑥 = 𝑦 → (𝜓 ↔ 𝜃)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜓 ↔ 𝜏)) & ⊢ (𝑥 = 𝐴 → (𝜓 ↔ 𝜂)) & ⊢ (𝜑 → 𝜒) & ⊢ ((𝜑 ∧ (𝑦 ⊆ 𝐴 ∧ 𝑧 ∈ (𝐴 ∖ 𝑦))) → (𝜃 → 𝜏)) & ⊢ (𝜑 → 𝐴 ∈ Fin) ⇒ ⊢ (𝜑 → 𝜂) | ||
Theorem | nnfi 9233 | Natural numbers are finite sets. (Contributed by Stefan O'Rear, 21-Mar-2015.) Avoid ax-pow 5383. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | ||
Theorem | pssnn 9234* | A proper subset of a natural number is equinumerous to some smaller number. Lemma 6F of [Enderton] p. 137. (Contributed by NM, 22-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) Avoid ax-pow 5383. (Revised by BTernaryTau, 31-Jul-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) | ||
Theorem | ssnnfi 9235 | A subset of a natural number is finite. (Contributed by NM, 24-Jun-1998.) (Proof shortened by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
Theorem | ssnnfiOLD 9236 | Obsolete version of ssnnfi 9235 as of 23-Sep-2024. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
Theorem | 0finOLD 9237 | Obsolete version of 0fi 9108 as of 13-Jan-2025. (Contributed by FL, 14-Jul-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ∅ ∈ Fin | ||
Theorem | unfi 9238 | The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. (Contributed by NM, 16-Nov-2002.) Avoid ax-pow 5383. (Revised by BTernaryTau, 7-Aug-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | ||
Theorem | unfid 9239 | The union of two finite sets is finite. (Contributed by Glauco Siliprandi, 5-Feb-2022.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ∈ Fin) ⇒ ⊢ (𝜑 → (𝐴 ∪ 𝐵) ∈ Fin) | ||
Theorem | ssfi 9240 | A subset of a finite set is finite. Corollary 6G of [Enderton] p. 138. For a shorter proof using ax-pow 5383, see ssfiALT 9241. (Contributed by NM, 24-Jun-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 12-Aug-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
Theorem | ssfiALT 9241 | Shorter proof of ssfi 9240 using ax-pow 5383. (Contributed by NM, 24-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | ||
Theorem | diffi 9242 | If 𝐴 is finite, (𝐴 ∖ 𝐵) is finite. (Contributed by FL, 3-Aug-2009.) |
⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) | ||
Theorem | cnvfi 9243 | If a set is finite, its converse is as well. (Contributed by Mario Carneiro, 28-Dec-2014.) Avoid ax-pow 5383. (Revised by BTernaryTau, 9-Sep-2024.) |
⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | ||
Theorem | fnfi 9244 | A version of fnex 7254 for finite sets that does not require Replacement or Power Sets. (Contributed by Mario Carneiro, 16-Nov-2014.) (Revised by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐹 Fn 𝐴 ∧ 𝐴 ∈ Fin) → 𝐹 ∈ Fin) | ||
Theorem | f1oenfi 9245 | If the domain of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1oeng 9031). (Contributed by BTernaryTau, 8-Sep-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
Theorem | f1oenfirn 9246 | If the range of a one-to-one, onto function is finite, then the domain and range of the function are equinumerous. (Contributed by BTernaryTau, 9-Sep-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1-onto→𝐵) → 𝐴 ≈ 𝐵) | ||
Theorem | f1domfi 9247 | If the codomain of a one-to-one function is finite, then the function's domain is dominated by its codomain. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1domg 9032). (Contributed by BTernaryTau, 25-Sep-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
Theorem | f1domfi2 9248 | If the domain of a one-to-one function is finite, then the function's domain is dominated by its codomain when the latter is a set. This theorem is proved without using the Axiom of Power Sets (unlike f1dom2g 9029). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ≼ 𝐵) | ||
Theorem | enreffi 9249 | Equinumerosity is reflexive for finite sets, proved without using the Axiom of Power Sets (unlike enrefg 9044). (Contributed by BTernaryTau, 8-Sep-2024.) |
⊢ (𝐴 ∈ Fin → 𝐴 ≈ 𝐴) | ||
Theorem | ensymfib 9250 | Symmetry of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike ensymb 9062). (Contributed by BTernaryTau, 9-Sep-2024.) |
⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | ||
Theorem | entrfil 9251 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 9066). (Contributed by BTernaryTau, 10-Sep-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
Theorem | enfii 9252 | A set equinumerous to a finite set is finite. (Contributed by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5383. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | ||
Theorem | enfi 9253 | Equinumerous sets have the same finiteness. For a shorter proof using ax-pow 5383, see enfiALT 9254. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5383. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | ||
Theorem | enfiALT 9254 | Shorter proof of enfi 9253 using ax-pow 5383. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ∈ Fin ↔ 𝐵 ∈ Fin)) | ||
Theorem | domfi 9255 | A set dominated by a finite set is finite. (Contributed by NM, 23-Mar-2006.) (Revised by Mario Carneiro, 12-Mar-2015.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ≼ 𝐴) → 𝐵 ∈ Fin) | ||
Theorem | entrfi 9256 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 9066). (Contributed by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
Theorem | entrfir 9257 | Transitivity of equinumerosity for finite sets, proved without using the Axiom of Power Sets (unlike entr 9066). (Contributed by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ≈ 𝐶) → 𝐴 ≈ 𝐶) | ||
Theorem | domtrfil 9258 | Transitivity of dominance relation when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domtr 9067). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
Theorem | domtrfi 9259 | Transitivity of dominance relation when 𝐵 is finite, proved without using the Axiom of Power Sets (unlike domtr 9067). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
Theorem | domtrfir 9260 | Transitivity of dominance relation for finite sets, proved without using the Axiom of Power Sets (unlike domtr 9067). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐶 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≼ 𝐶) | ||
Theorem | f1imaenfi 9261 | If a function is one-to-one, then the image of a finite subset of its domain under it is equinumerous to the subset. This theorem is proved without using the Axiom of Replacement or the Axiom of Power Sets (unlike f1imaeng 9074). (Contributed by BTernaryTau, 29-Sep-2024.) |
⊢ ((𝐹:𝐴–1-1→𝐵 ∧ 𝐶 ⊆ 𝐴 ∧ 𝐶 ∈ Fin) → (𝐹 “ 𝐶) ≈ 𝐶) | ||
Theorem | ssdomfi 9262 | A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg 9060). (Contributed by BTernaryTau, 12-Nov-2024.) |
⊢ (𝐵 ∈ Fin → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | ||
Theorem | ssdomfi2 9263 | A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg 9060). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) | ||
Theorem | sbthfilem 9264* | Lemma for sbthfi 9265. (Contributed by BTernaryTau, 4-Nov-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
Theorem | sbthfi 9265 | Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth 9159). (Contributed by BTernaryTau, 4-Nov-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
Theorem | domnsymfi 9266 | If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym 9165). (Contributed by BTernaryTau, 22-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) | ||
Theorem | sdomdomtrfi 9267 | Transitivity of strict dominance and dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr 9176). (Contributed by BTernaryTau, 25-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | ||
Theorem | domsdomtrfi 9268 | Transitivity of dominance and strict dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domsdomtr 9178). (Contributed by BTernaryTau, 25-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | ||
Theorem | sucdom2 9269 | Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) Avoid ax-pow 5383. (Revised by BTernaryTau, 4-Dec-2024.) |
⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) | ||
Theorem | phplem1 9270 | Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) | ||
Theorem | phplem2 9271 | Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) Avoid ax-pow 5383. (Revised by BTernaryTau, 4-Nov-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) | ||
Theorem | nneneq 9272 | Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 11-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | php 9273 | Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of phplem1 9270, phplem2 9271, nneneq 9272, and this final piece of the proof. (Contributed by NM, 29-May-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 18-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | ||
Theorem | php2 9274 | Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.) Avoid ax-pow 5383. (Revised by BTernaryTau, 20-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
Theorem | php3 9275 | Corollary of Pigeonhole Principle. If 𝐴 is finite and 𝐵 is a proper subset of 𝐴, the 𝐵 is strictly less numerous than 𝐴. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5383. (Revised by BTernaryTau, 26-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
Theorem | php4 9276 | Corollary of the Pigeonhole Principle php 9273: a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004.) |
⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) | ||
Theorem | php5 9277 | Corollary of the Pigeonhole Principle php 9273: a natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.) |
⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) | ||
Theorem | phpeqd 9278 | Corollary of the Pigeonhole Principle using equality. Strengthening of php 9273 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-pow 5383. (Revised by BTernaryTau, 28-Nov-2024.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | nndomog 9279 | Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 9296 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9296. (Revised by RP, 5-Nov-2023.) Avoid ax-pow 5383. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | phplem1OLD 9280 | Obsolete lemma for php 9273 as of 22-Nov-2024. (Contributed by NM, 25-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵})) | ||
Theorem | phplem2OLD 9281 | Obsolete lemma for php 9273 as of 22-Nov-2024. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) | ||
Theorem | phplem3OLD 9282 | Obsolete version of phplem1 9270 as of 23-Sep-2024. (Contributed by NM, 26-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) | ||
Theorem | phplem4OLD 9283 | Obsolete version of phplem2 9271 as of 4-Nov-2024. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) | ||
Theorem | nneneqOLD 9284 | Obsolete version of nneneq 9272 as of 11-Nov-2024. (Contributed by NM, 28-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | phpOLD 9285 | Obsolete version of php 9273 as of 18-Nov-2024. (Contributed by NM, 29-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | ||
Theorem | php2OLD 9286 | Obsolete version of php2 9274 as of 20-Nov-2024. (Contributed by NM, 31-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
Theorem | php3OLD 9287 | Obsolete version of php3 9275 as of 26-Nov-2024. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
Theorem | phpeqdOLD 9288 | Obsolete version of phpeqd 9278 as of 28-Nov-2024. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | nndomogOLD 9289 | Obsolete version of nndomog 9279 as of 29-Nov-2024. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9296. (Revised by RP, 5-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | snnen2oOLD 9290 | Obsolete version of snnen2o 9300 as of 18-Nov-2024. (Contributed by AV, 6-Aug-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ {𝐴} ≈ 2o | ||
Theorem | onomeneq 9291 | An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.) Avoid ax-pow 5383. (Revised by BTernaryTau, 2-Dec-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | onomeneqOLD 9292 | Obsolete version of onomeneq 9291 as of 29-Nov-2024. (Contributed by NM, 26-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | onfin 9293 | An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.) |
⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) | ||
Theorem | onfin2 9294 | A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.) |
⊢ ω = (On ∩ Fin) | ||
Theorem | nnfiOLD 9295 | Obsolete version of nnfi 9233 as of 23-Sep-2024. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | ||
Theorem | nndomo 9296 | Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | nnsdomo 9297 | Cardinal ordering agrees with natural number ordering. (Contributed by NM, 17-Jun-1998.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≺ 𝐵 ↔ 𝐴 ⊊ 𝐵)) | ||
Theorem | sucdom 9298 | Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-pow 5383. (Revised by BTernaryTau, 4-Dec-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) | ||
Theorem | sucdomOLD 9299 | Obsolete version of sucdom 9298 as of 4-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) | ||
Theorem | snnen2o 9300 | A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5383, ax-un 7770. (Revised by BTernaryTau, 1-Dec-2024.) |
⊢ ¬ {𝐴} ≈ 2o |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |