| Metamath
Proof Explorer Theorem List (p. 93 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30847) |
(30848-32370) |
(32371-49794) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | unxpdom2 9201 | Corollary of unxpdom 9200. (Contributed by NM, 16-Sep-2004.) |
| ⊢ ((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐴)) | ||
| Theorem | sucxpdom 9202 | Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
| ⊢ (1o ≺ 𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴)) | ||
| Theorem | pssinf 9203 | A set equinumerous to a proper subset of itself is infinite. Corollary 6D(a) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) |
| ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ∈ Fin) | ||
| Theorem | fisseneq 9204 | A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) | ||
| Theorem | ominf 9205 | The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) Avoid ax-pow 5320. (Revised by BTernaryTau, 2-Jan-2025.) |
| ⊢ ¬ ω ∈ Fin | ||
| Theorem | ominfOLD 9206 | Obsolete version of ominf 9205 as of 2-Jan-2025. (Contributed by NM, 2-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ω ∈ Fin | ||
| Theorem | isinf 9207* | Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013.) Avoid ax-pow 5320. (Revised by BTernaryTau, 2-Jan-2025.) |
| ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
| Theorem | isinfOLD 9208* | Obsolete version of isinf 9207 as of 2-Jan-2025. (Contributed by Mario Carneiro, 15-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
| Theorem | fineqvlem 9209 | Lemma for fineqv 9210. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴) | ||
| Theorem | fineqv 9210 | If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.) |
| ⊢ (¬ ω ∈ V ↔ Fin = V) | ||
| Theorem | xpfir 9211 | The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
| Theorem | ssfid 9212 | A subset of a finite set is finite, deduction version of ssfi 9137. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ Fin) | ||
| Theorem | infi 9213 | The intersection of two sets is finite if one of them is. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐵) ∈ Fin) | ||
| Theorem | rabfi 9214* | A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) | ||
| Theorem | finresfin 9215 | The restriction of a finite set is finite. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
| ⊢ (𝐸 ∈ Fin → (𝐸 ↾ 𝐵) ∈ Fin) | ||
| Theorem | f1finf1o 9216 | Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) Avoid ax-pow 5320. (Revised by BTernaryTau, 4-Jan-2025.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | ||
| Theorem | f1finf1oOLD 9217 | Obsolete version of f1finf1o 9216 as of 4-Jan-2025. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | ||
| Theorem | nfielex 9218* | If a class is not finite, then it contains at least one element. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
| ⊢ (¬ 𝐴 ∈ Fin → ∃𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | en1eqsn 9219 | A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) Avoid ax-pow 5320, ax-un 7711. (Revised by BTernaryTau, 4-Jan-2025.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | ||
| Theorem | en1eqsnOLD 9220 | Obsolete version of en1eqsn 9219 as of 4-Jan-2025. (Contributed by FL, 18-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | ||
| Theorem | en1eqsnbi 9221 | A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr 20686. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝐴})) | ||
| Theorem | dif1ennnALT 9222 | Alternate proof of dif1ennn 9125 using ax-pow 5320. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
| Theorem | enp1ilem 9223 | Lemma for uses of enp1i 9224. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ 𝑇 = ({𝑥} ∪ 𝑆) ⇒ ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆 → 𝐴 = 𝑇)) | ||
| Theorem | enp1i 9224* | Proof induction for en2 9226 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5320, ax-un 7711. (Revised by BTernaryTau, 6-Jan-2025.) |
| ⊢ Ord 𝑀 & ⊢ 𝑁 = suc 𝑀 & ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) & ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) | ||
| Theorem | enp1iOLD 9225* | Obsolete version of enp1i 9224 as of 6-Jan-2025. (Contributed by Mario Carneiro, 5-Jan-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑀 ∈ ω & ⊢ 𝑁 = suc 𝑀 & ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) & ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) | ||
| Theorem | en2 9226* | A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) | ||
| Theorem | en3 9227* | A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (𝐴 ≈ 3o → ∃𝑥∃𝑦∃𝑧 𝐴 = {𝑥, 𝑦, 𝑧}) | ||
| Theorem | en4 9228* | A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (𝐴 ≈ 4o → ∃𝑥∃𝑦∃𝑧∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})) | ||
| Theorem | findcard3 9229* | Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013.) Avoid ax-pow 5320. (Revised by BTernaryTau, 7-Jan-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 ∈ Fin → (∀𝑥(𝑥 ⊊ 𝑦 → 𝜑) → 𝜒)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard3OLD 9230* | Obsolete version of findcard3 9229 as of 7-Jan-2025. (Contributed by Mario Carneiro, 13-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 ∈ Fin → (∀𝑥(𝑥 ⊊ 𝑦 → 𝜑) → 𝜒)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | ac6sfi 9231* | A version of ac6s 10437 for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | frfi 9232 | A partial order is well-founded on a finite set. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 Fr 𝐴) | ||
| Theorem | fimax2g 9233* | A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | ||
| Theorem | fimaxg 9234* | A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦𝑅𝑥)) | ||
| Theorem | fisupg 9235* | Lemma showing existence and closure of supremum of a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))) | ||
| Theorem | wofi 9236 | A total order on a finite set is a well-order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 We 𝐴) | ||
| Theorem | ordunifi 9237 | The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) | ||
| Theorem | nnunifi 9238 | The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) | ||
| Theorem | unblem1 9239* | Lemma for unbnn 9243. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.) |
| ⊢ (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) ∧ 𝐴 ∈ 𝐵) → ∩ (𝐵 ∖ suc 𝐴) ∈ 𝐵) | ||
| Theorem | unblem2 9240* | Lemma for unbnn 9243. The value of the function 𝐹 belongs to the unbounded set of natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
| ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ 𝐴)) | ||
| Theorem | unblem3 9241* | Lemma for unbnn 9243. The value of the function 𝐹 is less than its value at a successor. (Contributed by NM, 3-Dec-2003.) |
| ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧))) | ||
| Theorem | unblem4 9242* | Lemma for unbnn 9243. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
| ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) | ||
| Theorem | unbnn 9243* | Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 9612 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.) |
| ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≈ ω) | ||
| Theorem | unbnn2 9244* | Version of unbnn 9243 that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004.) |
| ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) | ||
| Theorem | isfinite2 9245 | Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) | ||
| Theorem | nnsdomg 9246 | Omega strictly dominates a natural number. Example 3 of [Enderton] p. 146. In order to avoid the Axiom of Infinity, we include it as part of the antecedent. See nnsdom 9607 for the version without this sethood requirement. (Contributed by NM, 15-Jun-1998.) Avoid ax-pow 5320. (Revised by BTernaryTau, 7-Jan-2025.) |
| ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) | ||
| Theorem | nnsdomgOLD 9247 | Obsolete version of nnsdomg 9246 as of 7-Jan-2025. (Contributed by NM, 15-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) | ||
| Theorem | isfiniteg 9248 | A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 3-Nov-2002.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| ⊢ (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)) | ||
| Theorem | infsdomnn 9249 | An infinite set strictly dominates a natural number. (Contributed by NM, 22-Nov-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) Avoid ax-pow 5320. (Revised by BTernaryTau, 7-Jan-2025.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐵 ∈ ω) → 𝐵 ≺ 𝐴) | ||
| Theorem | infsdomnnOLD 9250 | Obsolete version of infsdomnn 9249 as of 7-Jan-2025. (Contributed by NM, 22-Nov-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐵 ∈ ω) → 𝐵 ≺ 𝐴) | ||
| Theorem | infn0 9251 | An infinite set is not empty. For a shorter proof using ax-un 7711, see infn0ALT 9252. (Contributed by NM, 23-Oct-2004.) Avoid ax-un 7711. (Revised by BTernaryTau, 8-Jan-2025.) |
| ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | ||
| Theorem | infn0ALT 9252 | Shorter proof of infn0 9251 using ax-un 7711. (Contributed by NM, 23-Oct-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | ||
| Theorem | fin2inf 9253 | This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.) |
| ⊢ (𝐴 ≺ ω → ω ∈ V) | ||
| Theorem | unfilem1 9254* | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ⇒ ⊢ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴) | ||
| Theorem | unfilem2 9255* | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ⇒ ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) | ||
| Theorem | unfilem3 9256 | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 16-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴)) | ||
| Theorem | unfir 9257 | If a union is finite, the operands are finite. Converse of unfi 9135. (Contributed by FL, 3-Aug-2009.) |
| ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
| Theorem | unfib 9258 | A union is finite if and only if the operands are finite. (Contributed by AV, 10-May-2025.) |
| ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
| Theorem | unfi2 9259 | The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. This version of unfi 9135 is useful only if we assume the Axiom of Infinity (see comments in fin2inf 9253). (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) | ||
| Theorem | difinf 9260 | An infinite set 𝐴 minus a finite set is infinite. (Contributed by FL, 3-Aug-2009.) |
| ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) | ||
| Theorem | fodomfi 9261 | An onto function implies dominance of domain over range, for finite sets. Unlike fodomg 10475 for arbitrary sets, this theorem does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) Avoid ax-pow 5320. (Revised by BTernaryTau, 20-Jun-2025.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | ||
| Theorem | fofi 9262 | If an onto function has a finite domain, its codomain/range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) | ||
| Theorem | f1fi 9263 | If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) | ||
| Theorem | imafi 9264 | Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) | ||
| Theorem | imafiOLD 9265 | Obsolete version of imafi 9264 as of 25-Jun-2025. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid ax-pow 5320. (Revised by BTernaryTau, 7-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) | ||
| Theorem | pwfir 9266 | If the power set of a set is finite, then the set itself is finite. (Contributed by BTernaryTau, 7-Sep-2024.) |
| ⊢ (𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin) | ||
| Theorem | pwfilem 9267* | Lemma for pwfi 9268. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5320. (Revised by BTernaryTau, 7-Sep-2024.) |
| ⊢ 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥})) ⇒ ⊢ (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin) | ||
| Theorem | pwfi 9268 | The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5320. (Revised by BTernaryTau, 7-Sep-2024.) |
| ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | ||
| Theorem | xpfi 9269 | The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5320. (Revised by BTernaryTau, 10-Jan-2025.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) | ||
| Theorem | xpfiOLD 9270 | Obsolete version of xpfi 9269 as of 10-Jan-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) | ||
| Theorem | 3xpfi 9271 | The Cartesian product of three finite sets is a finite set. (Contributed by Alexander van der Vekens, 11-Mar-2018.) |
| ⊢ (𝑉 ∈ Fin → ((𝑉 × 𝑉) × 𝑉) ∈ Fin) | ||
| Theorem | domunfican 9272 | A finite set union cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝐴 ∪ 𝑋) ≼ (𝐵 ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) | ||
| Theorem | infcntss 9273* | Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) | ||
| Theorem | prfi 9274 | An unordered pair is finite. For a shorter proof using ax-un 7711, see prfiALT 9275. (Contributed by NM, 22-Aug-2008.) Avoid ax-11 2158, ax-un 7711. (Revised by BTernaryTau, 13-Jan-2025.) |
| ⊢ {𝐴, 𝐵} ∈ Fin | ||
| Theorem | prfiALT 9275 | Shorter proof of prfi 9274 using ax-un 7711. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {𝐴, 𝐵} ∈ Fin | ||
| Theorem | tpfi 9276 | An unordered triple is finite. (Contributed by Mario Carneiro, 28-Sep-2013.) |
| ⊢ {𝐴, 𝐵, 𝐶} ∈ Fin | ||
| Theorem | fiint 9277* | Equivalent ways of stating the finite intersection property. We show two ways of saying, "the intersection of elements in every finite nonempty subcollection of 𝐴 is in 𝐴". This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use the left-hand version of this axiom and others the right-hand version, but as our proof here shows, their "intuitively obvious" equivalence can be non-trivial to establish formally. (Contributed by NM, 22-Sep-2002.) Use a separate setvar for the right-hand side and avoid ax-pow 5320. (Revised by BTernaryTau, 14-Jan-2025.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ ∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin) → ∩ 𝑧 ∈ 𝐴)) | ||
| Theorem | fiintOLD 9278* | Obsolete version of fiint 9277 as of 14-Jan-2025. (Contributed by NM, 22-Sep-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐴)) | ||
| Theorem | fodomfir 9279* | There exists a mapping from a finite set onto any nonempty set that it dominates, proved without using the Axiom of Power Sets (unlike fodomr 9092). (Contributed by BTernaryTau, 23-Jun-2025.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴) → ∃𝑓 𝑓:𝐴–onto→𝐵) | ||
| Theorem | fodomfib 9280* | Equivalence of an onto mapping and dominance for a nonempty finite set. Unlike fodomb 10479 for arbitrary sets, this theorem does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5320. (Revised by BTernaryTau, 23-Jun-2025.) |
| ⊢ (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) ↔ (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴))) | ||
| Theorem | fodomfiOLD 9281 | Obsolete version of fodomfi 9261 as of 20-Jun-2025. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | ||
| Theorem | fodomfibOLD 9282* | Obsolete version of fodomfib 9280 as of 23-Jun-2025. (Contributed by NM, 23-Mar-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) ↔ (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴))) | ||
| Theorem | fofinf1o 9283 | Any surjection from one finite set to another of equal size must be a bijection. (Contributed by Mario Carneiro, 19-Aug-2014.) |
| ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐹:𝐴–1-1-onto→𝐵) | ||
| Theorem | rneqdmfinf1o 9284 | Any function from a finite set onto the same set must be a bijection. (Contributed by AV, 5-Jul-2021.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) | ||
| Theorem | fidomdm 9285 | Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) | ||
| Theorem | dmfi 9286 | The domain of a finite set is finite. (Contributed by Mario Carneiro, 24-Sep-2013.) |
| ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) | ||
| Theorem | fundmfibi 9287 | A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.) |
| ⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | ||
| Theorem | resfnfinfin 9288 | The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) ∈ Fin) | ||
| Theorem | residfi 9289 | A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.) |
| ⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) | ||
| Theorem | cnvfiALT 9290 | Shorter proof of cnvfi 9140 using ax-pow 5320. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | ||
| Theorem | rnfi 9291 | The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) | ||
| Theorem | f1dmvrnfibi 9292 | A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 9293. (Contributed by AV, 10-Jan-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
| Theorem | f1vrnfibi 9293 | A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 9292. (Contributed by AV, 10-Jan-2020.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
| Theorem | iunfi 9294* | The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. This is the indexed union version of unifi 9295. Note that 𝐵 depends on 𝑥, i.e. can be thought of as 𝐵(𝑥). (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin) | ||
| Theorem | unifi 9295 | The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. (Contributed by NM, 22-Aug-2008.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐴 ⊆ Fin) → ∪ 𝐴 ∈ Fin) | ||
| Theorem | unifi2 9296* | The finite union of finite sets is finite. Exercise 13 of [Enderton] p. 144. This version of unifi 9295 is useful only if we assume the Axiom of Infinity (see comments in fin2inf 9253). (Contributed by NM, 11-Mar-2006.) |
| ⊢ ((𝐴 ≺ ω ∧ ∀𝑥 ∈ 𝐴 𝑥 ≺ ω) → ∪ 𝐴 ≺ ω) | ||
| Theorem | infssuni 9297* | If an infinite set 𝐴 is included in the underlying set of a finite cover 𝐵, then there exists a set of the cover that contains an infinite number of element of 𝐴. (Contributed by FL, 2-Aug-2009.) |
| ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ∧ 𝐴 ⊆ ∪ 𝐵) → ∃𝑥 ∈ 𝐵 ¬ (𝐴 ∩ 𝑥) ∈ Fin) | ||
| Theorem | unirnffid 9298 | The union of the range of a function from a finite set into the class of finite sets is finite. Deduction form. (Contributed by David Moews, 1-May-2017.) |
| ⊢ (𝜑 → 𝐹:𝑇⟶Fin) & ⊢ (𝜑 → 𝑇 ∈ Fin) ⇒ ⊢ (𝜑 → ∪ ran 𝐹 ∈ Fin) | ||
| Theorem | mapfi 9299 | Set exponentiation of finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ↑m 𝐵) ∈ Fin) | ||
| Theorem | ixpfi 9300* | A Cartesian product of finitely many finite sets is finite. (Contributed by Jeff Madsen, 19-Jun-2011.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 𝐵 ∈ Fin) → X𝑥 ∈ 𝐴 𝐵 ∈ Fin) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |