![]() |
Metamath
Proof Explorer Theorem List (p. 93 of 480) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-30438) |
![]() (30439-31961) |
![]() (31962-47939) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | ssdomfi 9201 | A finite set dominates its subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8998). (Contributed by BTernaryTau, 12-Nov-2024.) |
⊢ (𝐵 ∈ Fin → (𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵)) | ||
Theorem | ssdomfi2 9202 | A set dominates its finite subsets, proved without using the Axiom of Power Sets (unlike ssdomg 8998). (Contributed by BTernaryTau, 24-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ 𝑉 ∧ 𝐴 ⊆ 𝐵) → 𝐴 ≼ 𝐵) | ||
Theorem | sbthfilem 9203* | Lemma for sbthfi 9204. (Contributed by BTernaryTau, 4-Nov-2024.) |
⊢ 𝐴 ∈ V & ⊢ 𝐷 = {𝑥 ∣ (𝑥 ⊆ 𝐴 ∧ (𝑔 “ (𝐵 ∖ (𝑓 “ 𝑥))) ⊆ (𝐴 ∖ 𝑥))} & ⊢ 𝐻 = ((𝑓 ↾ ∪ 𝐷) ∪ (◡𝑔 ↾ (𝐴 ∖ ∪ 𝐷))) & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
Theorem | sbthfi 9204 | Schroeder-Bernstein Theorem for finite sets, proved without using the Axiom of Power Sets (unlike sbth 9095). (Contributed by BTernaryTau, 4-Nov-2024.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≼ 𝐴) → 𝐴 ≈ 𝐵) | ||
Theorem | domnsymfi 9205 | If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym 9101). (Contributed by BTernaryTau, 22-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵) → ¬ 𝐵 ≺ 𝐴) | ||
Theorem | sdomdomtrfi 9206 | Transitivity of strict dominance and dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike sdomdomtr 9112). (Contributed by BTernaryTau, 25-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≺ 𝐵 ∧ 𝐵 ≼ 𝐶) → 𝐴 ≺ 𝐶) | ||
Theorem | domsdomtrfi 9207 | Transitivity of dominance and strict dominance when 𝐴 is finite, proved without using the Axiom of Power Sets (unlike domsdomtr 9114). (Contributed by BTernaryTau, 25-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐴 ≼ 𝐵 ∧ 𝐵 ≺ 𝐶) → 𝐴 ≺ 𝐶) | ||
Theorem | sucdom2 9208 | Strict dominance of a set over another set implies dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) Avoid ax-pow 5362. (Revised by BTernaryTau, 4-Dec-2024.) |
⊢ (𝐴 ≺ 𝐵 → suc 𝐴 ≼ 𝐵) | ||
Theorem | phplem1 9209 | Lemma for Pigeonhole Principle. A natural number is equinumerous to its successor minus any element of the successor. (Contributed by NM, 26-May-1998.) Avoid ax-pow 5362. (Revised by BTernaryTau, 23-Sep-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) | ||
Theorem | phplem2 9210 | Lemma for Pigeonhole Principle. Equinumerosity of successors implies equinumerosity of the original natural numbers. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) Avoid ax-pow 5362. (Revised by BTernaryTau, 4-Nov-2024.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) | ||
Theorem | nneneq 9211 | Two equinumerous natural numbers are equal. Proposition 10.20 of [TakeutiZaring] p. 90 and its converse. Also compare Corollary 6E of [Enderton] p. 136. (Contributed by NM, 28-May-1998.) Avoid ax-pow 5362. (Revised by BTernaryTau, 11-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | php 9212 | Pigeonhole Principle. A natural number is not equinumerous to a proper subset of itself. Theorem (Pigeonhole Principle) of [Enderton] p. 134. The theorem is so-called because you can't put n + 1 pigeons into n holes (if each hole holds only one pigeon). The proof consists of phplem1 9209, phplem2 9210, nneneq 9211, and this final piece of the proof. (Contributed by NM, 29-May-1998.) Avoid ax-pow 5362. (Revised by BTernaryTau, 18-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | ||
Theorem | php2 9213 | Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.) Avoid ax-pow 5362. (Revised by BTernaryTau, 20-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
Theorem | php3 9214 | Corollary of Pigeonhole Principle. If 𝐴 is finite and 𝐵 is a proper subset of 𝐴, the 𝐵 is strictly less numerous than 𝐴. Stronger version of Corollary 6C of [Enderton] p. 135. (Contributed by NM, 22-Aug-2008.) Avoid ax-pow 5362. (Revised by BTernaryTau, 26-Nov-2024.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
Theorem | php4 9215 | Corollary of the Pigeonhole Principle php 9212: a natural number is strictly dominated by its successor. (Contributed by NM, 26-Jul-2004.) |
⊢ (𝐴 ∈ ω → 𝐴 ≺ suc 𝐴) | ||
Theorem | php5 9216 | Corollary of the Pigeonhole Principle php 9212: a natural number is not equinumerous to its successor. Corollary 10.21(1) of [TakeutiZaring] p. 90. (Contributed by NM, 26-Jul-2004.) |
⊢ (𝐴 ∈ ω → ¬ 𝐴 ≈ suc 𝐴) | ||
Theorem | phpeqd 9217 | Corollary of the Pigeonhole Principle using equality. Strengthening of php 9212 expressed without negation. (Contributed by Rohan Ridenour, 3-Aug-2023.) Avoid ax-pow. (Revised by BTernaryTau, 28-Nov-2024.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | nndomog 9218 | Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo 9235 when both are natural numbers. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9235. (Revised by RP, 5-Nov-2023.) Avoid ax-pow 5362. (Revised by BTernaryTau, 29-Nov-2024.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | phplem1OLD 9219 | Obsolete lemma for php 9212 as of 22-Nov-2024. (Contributed by NM, 25-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → ({𝐴} ∪ (𝐴 ∖ {𝐵})) = (suc 𝐴 ∖ {𝐵})) | ||
Theorem | phplem2OLD 9220 | Obsolete lemma for php 9212 as of 22-Nov-2024. (Contributed by NM, 11-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) | ||
Theorem | phplem3OLD 9221 | Obsolete version of phplem1 9209 as of 23-Sep-2024. (Contributed by NM, 26-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ suc 𝐴) → 𝐴 ≈ (suc 𝐴 ∖ {𝐵})) | ||
Theorem | phplem4OLD 9222 | Obsolete version of phplem2 9210 as of 4-Nov-2024. (Contributed by NM, 28-May-1998.) (Revised by Mario Carneiro, 24-Jun-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝐴 ∈ V & ⊢ 𝐵 ∈ V ⇒ ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (suc 𝐴 ≈ suc 𝐵 → 𝐴 ≈ 𝐵)) | ||
Theorem | nneneqOLD 9223 | Obsolete version of nneneq 9211 as of 11-Nov-2024. (Contributed by NM, 28-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | phpOLD 9224 | Obsolete version of php 9212 as of 18-Nov-2024. (Contributed by NM, 29-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | ||
Theorem | php2OLD 9225 | Obsolete version of php2 9213 as of 20-Nov-2024. (Contributed by NM, 31-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
Theorem | php3OLD 9226 | Obsolete version of php3 9214 as of 26-Nov-2024. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) | ||
Theorem | phpeqdOLD 9227 | Obsolete version of phpeqd 9217 as of 28-Nov-2024. (Contributed by Rohan Ridenour, 3-Aug-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐴 ≈ 𝐵) ⇒ ⊢ (𝜑 → 𝐴 = 𝐵) | ||
Theorem | nndomogOLD 9228 | Obsolete version of nndomog 9218 as of 29-Nov-2024. (Contributed by NM, 17-Jun-1998.) Generalize from nndomo 9235. (Revised by RP, 5-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ On) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | snnen2oOLD 9229 | Obsolete version of snnen2o 9239 as of 18-Nov-2024. (Contributed by AV, 6-Aug-2019.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ {𝐴} ≈ 2o | ||
Theorem | onomeneq 9230 | An ordinal number equinumerous to a natural number is equal to it. Proposition 10.22 of [TakeutiZaring] p. 90 and its converse. (Contributed by NM, 26-Jul-2004.) Avoid ax-pow 5362. (Revised by BTernaryTau, 2-Dec-2024.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | onomeneqOLD 9231 | Obsolete version of onomeneq 9230 as of 29-Nov-2024. (Contributed by NM, 26-Jul-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ ω) → (𝐴 ≈ 𝐵 ↔ 𝐴 = 𝐵)) | ||
Theorem | onfin 9232 | An ordinal number is finite iff it is a natural number. Proposition 10.32 of [TakeutiZaring] p. 92. (Contributed by NM, 26-Jul-2004.) |
⊢ (𝐴 ∈ On → (𝐴 ∈ Fin ↔ 𝐴 ∈ ω)) | ||
Theorem | onfin2 9233 | A set is a natural number iff it is a finite ordinal. (Contributed by Mario Carneiro, 22-Jan-2013.) |
⊢ ω = (On ∩ Fin) | ||
Theorem | nnfiOLD 9234 | Obsolete version of nnfi 9169 as of 23-Sep-2024. (Contributed by Stefan O'Rear, 21-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | ||
Theorem | nndomo 9235 | Cardinal ordering agrees with natural number ordering. Example 3 of [Enderton] p. 146. (Contributed by NM, 17-Jun-1998.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≼ 𝐵 ↔ 𝐴 ⊆ 𝐵)) | ||
Theorem | nnsdomo 9236 | Cardinal ordering agrees with natural number ordering. (Contributed by NM, 17-Jun-1998.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → (𝐴 ≺ 𝐵 ↔ 𝐴 ⊊ 𝐵)) | ||
Theorem | sucdom 9237 | Strict dominance of a set over a natural number is the same as dominance over its successor. (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-pow 5362. (Revised by BTernaryTau, 4-Dec-2024.) (Proof shortened by BJ, 11-Jan-2025.) |
⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) | ||
Theorem | sucdomOLD 9238 | Obsolete version of sucdom 9237 as of 4-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ ω → (𝐴 ≺ 𝐵 ↔ suc 𝐴 ≼ 𝐵)) | ||
Theorem | snnen2o 9239 | A singleton {𝐴} is never equinumerous with the ordinal number 2. This holds for proper singletons (𝐴 ∈ V) as well as for singletons being the empty set (𝐴 ∉ V). (Contributed by AV, 6-Aug-2019.) Avoid ax-pow 5362, ax-un 7727. (Revised by BTernaryTau, 1-Dec-2024.) |
⊢ ¬ {𝐴} ≈ 2o | ||
Theorem | 0sdom1dom 9240 | Strict dominance over 0 is the same as dominance over 1. For a shorter proof requiring ax-un 7727, see 0sdom1domALT . (Contributed by NM, 28-Sep-2004.) Avoid ax-un 7727. (Revised by BTernaryTau, 7-Dec-2024.) |
⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | ||
Theorem | 0sdom1domALT 9241 | Alternate proof of 0sdom1dom 9240, shorter but requiring ax-un 7727. (Contributed by NM, 28-Sep-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (∅ ≺ 𝐴 ↔ 1o ≼ 𝐴) | ||
Theorem | 1sdom2 9242 | Ordinal 1 is strictly dominated by ordinal 2. For a shorter proof requiring ax-un 7727, see 1sdom2ALT 9243. (Contributed by NM, 4-Apr-2007.) Avoid ax-un 7727. (Revised by BTernaryTau, 8-Dec-2024.) |
⊢ 1o ≺ 2o | ||
Theorem | 1sdom2ALT 9243 | Alternate proof of 1sdom2 9242, shorter but requiring ax-un 7727. (Contributed by NM, 4-Apr-2007.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 1o ≺ 2o | ||
Theorem | sdom1 9244 | A set has less than one member iff it is empty. (Contributed by Stefan O'Rear, 28-Oct-2014.) Avoid ax-pow 5362, ax-un 7727. (Revised by BTernaryTau, 12-Dec-2024.) |
⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) | ||
Theorem | sdom1OLD 9245 | Obsolete version of sdom1 9244 as of 12-Dec-2024. (Contributed by Stefan O'Rear, 28-Oct-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ≺ 1o ↔ 𝐴 = ∅) | ||
Theorem | modom 9246 | Two ways to express "at most one". (Contributed by Stefan O'Rear, 28-Oct-2014.) |
⊢ (∃*𝑥𝜑 ↔ {𝑥 ∣ 𝜑} ≼ 1o) | ||
Theorem | modom2 9247* | Two ways to express "at most one". (Contributed by Mario Carneiro, 24-Dec-2016.) |
⊢ (∃*𝑥 𝑥 ∈ 𝐴 ↔ 𝐴 ≼ 1o) | ||
Theorem | rex2dom 9248* | A set that has at least 2 different members dominates ordinal 2. (Contributed by BTernaryTau, 30-Dec-2024.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 𝑥 ≠ 𝑦) → 2o ≼ 𝐴) | ||
Theorem | 1sdom2dom 9249 | Strict dominance over 1 is the same as dominance over 2. (Contributed by BTernaryTau, 23-Dec-2024.) |
⊢ (1o ≺ 𝐴 ↔ 2o ≼ 𝐴) | ||
Theorem | 1sdom 9250* | A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 9032.) (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-un 7727. (Revised by BTernaryTau, 30-Dec-2024.) |
⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) | ||
Theorem | 1sdomOLD 9251* | Obsolete version of 1sdom 9250 as of 30-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) | ||
Theorem | unxpdomlem1 9252* | Lemma for unxpdom 9255. (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013.) |
⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩) ⇒ ⊢ (𝑧 ∈ (𝑎 ∪ 𝑏) → (𝐹‘𝑧) = if(𝑧 ∈ 𝑎, ⟨𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧⟩)) | ||
Theorem | unxpdomlem2 9253* | Lemma for unxpdom 9255. (Contributed by Mario Carneiro, 13-Jan-2013.) |
⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩) & ⊢ (𝜑 → 𝑤 ∈ (𝑎 ∪ 𝑏)) & ⊢ (𝜑 → ¬ 𝑚 = 𝑛) & ⊢ (𝜑 → ¬ 𝑠 = 𝑡) ⇒ ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎)) → ¬ (𝐹‘𝑧) = (𝐹‘𝑤)) | ||
Theorem | unxpdomlem3 9254* | Lemma for unxpdom 9255. (Contributed by Mario Carneiro, 13-Jan-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, ⟨𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)⟩, ⟨if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥⟩) ⇒ ⊢ ((1o ≺ 𝑎 ∧ 1o ≺ 𝑏) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏)) | ||
Theorem | unxpdom 9255 | Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) | ||
Theorem | unxpdom2 9256 | Corollary of unxpdom 9255. (Contributed by NM, 16-Sep-2004.) |
⊢ ((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐴)) | ||
Theorem | sucxpdom 9257 | Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
⊢ (1o ≺ 𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴)) | ||
Theorem | pssinf 9258 | A set equinumerous to a proper subset of itself is infinite. Corollary 6D(a) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) |
⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ∈ Fin) | ||
Theorem | fisseneq 9259 | A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) | ||
Theorem | ominf 9260 | The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) Avoid ax-pow 5362. (Revised by BTernaryTau, 2-Jan-2025.) |
⊢ ¬ ω ∈ Fin | ||
Theorem | ominfOLD 9261 | Obsolete version of ominf 9260 as of 2-Jan-2025. (Contributed by NM, 2-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ¬ ω ∈ Fin | ||
Theorem | isinf 9262* | Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013.) Avoid ax-pow 5362. (Revised by BTernaryTau, 2-Jan-2025.) |
⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
Theorem | isinfOLD 9263* | Obsolete version of isinf 9262 as of 2-Jan-2025. (Contributed by Mario Carneiro, 15-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
Theorem | fineqvlem 9264 | Lemma for fineqv 9265. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴) | ||
Theorem | fineqv 9265 | If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.) |
⊢ (¬ ω ∈ V ↔ Fin = V) | ||
Theorem | enfiiOLD 9266 | Obsolete version of enfii 9191 as of 23-Sep-2024. (Contributed by Mario Carneiro, 12-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐵 ∈ Fin ∧ 𝐴 ≈ 𝐵) → 𝐴 ∈ Fin) | ||
Theorem | pssnnOLD 9267* | Obsolete version of pssnn 9170 as of 31-Jul-2024. (Contributed by NM, 22-Jun-1998.) (Revised by Mario Carneiro, 16-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ∃𝑥 ∈ 𝐴 𝐵 ≈ 𝑥) | ||
Theorem | xpfir 9268 | The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.) |
⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
Theorem | ssfid 9269 | A subset of a finite set is finite, deduction version of ssfi 9175. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ Fin) | ||
Theorem | infi 9270 | The intersection of two sets is finite if one of them is. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐵) ∈ Fin) | ||
Theorem | rabfi 9271* | A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) | ||
Theorem | finresfin 9272 | The restriction of a finite set is finite. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
⊢ (𝐸 ∈ Fin → (𝐸 ↾ 𝐵) ∈ Fin) | ||
Theorem | f1finf1o 9273 | Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) Avoid ax-pow 5362. (Revised by BTernaryTau, 4-Jan-2025.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | ||
Theorem | f1finf1oOLD 9274 | Obsolete version of f1finf1o 9273 as of 4-Jan-2025. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | ||
Theorem | nfielex 9275* | If a class is not finite, then it contains at least one element. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
⊢ (¬ 𝐴 ∈ Fin → ∃𝑥 𝑥 ∈ 𝐴) | ||
Theorem | en1eqsn 9276 | A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) Avoid ax-pow 5362, ax-un 7727. (Revised by BTernaryTau, 4-Jan-2025.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | ||
Theorem | en1eqsnOLD 9277 | Obsolete version of en1eqsn 9276 as of 4-Jan-2025. (Contributed by FL, 18-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | ||
Theorem | en1eqsnbi 9278 | A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr 20541. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝐴})) | ||
Theorem | dif1ennnALT 9279 | Alternate proof of dif1ennn 9163 using ax-pow 5362. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
Theorem | enp1ilem 9280 | Lemma for uses of enp1i 9281. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ 𝑇 = ({𝑥} ∪ 𝑆) ⇒ ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆 → 𝐴 = 𝑇)) | ||
Theorem | enp1i 9281* | Proof induction for en2 9283 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5362, ax-un 7727. (Revised by BTernaryTau, 6-Jan-2025.) |
⊢ Ord 𝑀 & ⊢ 𝑁 = suc 𝑀 & ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) & ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) | ||
Theorem | enp1iOLD 9282* | Obsolete version of enp1i 9281 as of 6-Jan-2025. (Contributed by Mario Carneiro, 5-Jan-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ 𝑀 ∈ ω & ⊢ 𝑁 = suc 𝑀 & ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) & ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) | ||
Theorem | en2 9283* | A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) | ||
Theorem | en3 9284* | A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (𝐴 ≈ 3o → ∃𝑥∃𝑦∃𝑧 𝐴 = {𝑥, 𝑦, 𝑧}) | ||
Theorem | en4 9285* | A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
⊢ (𝐴 ≈ 4o → ∃𝑥∃𝑦∃𝑧∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})) | ||
Theorem | findcard2OLD 9286* | Obsolete version of findcard2 9166 as of 6-Aug-2024. (Contributed by Jeff Madsen, 8-Jul-2010.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = ∅ → (𝜑 ↔ 𝜓)) & ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = (𝑦 ∪ {𝑧}) → (𝜑 ↔ 𝜃)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ 𝜓 & ⊢ (𝑦 ∈ Fin → (𝜒 → 𝜃)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | findcard3 9287* | Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013.) Avoid ax-pow 5362. (Revised by BTernaryTau, 7-Jan-2025.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 ∈ Fin → (∀𝑥(𝑥 ⊊ 𝑦 → 𝜑) → 𝜒)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | findcard3OLD 9288* | Obsolete version of findcard3 9287 as of 7-Jan-2025. (Contributed by Mario Carneiro, 13-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 ∈ Fin → (∀𝑥(𝑥 ⊊ 𝑦 → 𝜑) → 𝜒)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
Theorem | ac6sfi 9289* | A version of ac6s 10481 for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
Theorem | frfi 9290 | A partial order is well-founded on a finite set. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
⊢ ((𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 Fr 𝐴) | ||
Theorem | fimax2g 9291* | A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | ||
Theorem | fimaxg 9292* | A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦𝑅𝑥)) | ||
Theorem | fisupg 9293* | Lemma showing existence and closure of supremum of a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))) | ||
Theorem | wofi 9294 | A total order on a finite set is a well-order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 We 𝐴) | ||
Theorem | ordunifi 9295 | The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) | ||
Theorem | nnunifi 9296 | The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) | ||
Theorem | unblem1 9297* | Lemma for unbnn 9301. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.) |
⊢ (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) ∧ 𝐴 ∈ 𝐵) → ∩ (𝐵 ∖ suc 𝐴) ∈ 𝐵) | ||
Theorem | unblem2 9298* | Lemma for unbnn 9301. The value of the function 𝐹 belongs to the unbounded set of natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ 𝐴)) | ||
Theorem | unblem3 9299* | Lemma for unbnn 9301. The value of the function 𝐹 is less than its value at a successor. (Contributed by NM, 3-Dec-2003.) |
⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧))) | ||
Theorem | unblem4 9300* | Lemma for unbnn 9301. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |