Home | Metamath
Proof Explorer Theorem List (p. 93 of 464) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | Metamath Proof Explorer
(1-29181) |
Hilbert Space Explorer
(29182-30704) |
Users' Mathboxes
(30705-46395) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | oieq1 9201 | Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ (𝑅 = 𝑆 → OrdIso(𝑅, 𝐴) = OrdIso(𝑆, 𝐴)) | ||
Theorem | oieq2 9202 | Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ (𝐴 = 𝐵 → OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐵)) | ||
Theorem | nfoi 9203 | Hypothesis builder for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥OrdIso(𝑅, 𝐴) | ||
Theorem | ordiso2 9204 | Generalize ordiso 9205 to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) | ||
Theorem | ordiso 9205* | Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) | ||
Theorem | ordtypecbv 9206* | Lemma for ordtype 9221. (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) ⇒ ⊢ recs((𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = 𝐹 | ||
Theorem | ordtypelem1 9207* | Lemma for ordtype 9221. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) | ||
Theorem | ordtypelem2 9208* | Lemma for ordtype 9221. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → Ord 𝑇) | ||
Theorem | ordtypelem3 9209* | Lemma for ordtype 9221. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹‘𝑀) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) | ||
Theorem | ordtypelem4 9210* | Lemma for ordtype 9221. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) | ||
Theorem | ordtypelem5 9211* | Lemma for ordtype 9221. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) | ||
Theorem | ordtypelem6 9212* | Lemma for ordtype 9221. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → (𝑁 ∈ 𝑀 → (𝑂‘𝑁)𝑅(𝑂‘𝑀))) | ||
Theorem | ordtypelem7 9213* | Lemma for ordtype 9221. ran 𝑂 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (((𝜑 ∧ 𝑁 ∈ 𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂‘𝑀)𝑅𝑁 ∨ 𝑁 ∈ ran 𝑂)) | ||
Theorem | ordtypelem8 9214* | Lemma for ordtype 9221. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) | ||
Theorem | ordtypelem9 9215* | Lemma for ordtype 9221. Either the function OrdIso is an isomorphism onto all of 𝐴, or OrdIso is not a set, which by oif 9219 implies that either ran 𝑂 ⊆ 𝐴 is a proper class or dom 𝑂 = On. (Contributed by Mario Carneiro, 25-Jun-2015.) (Revised by AV, 28-Jul-2024.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑂 ∈ 𝑉) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) | ||
Theorem | ordtypelem10 9216* | Lemma for ordtype 9221. Using ax-rep 5205, exclude the possibility that 𝑂 is a proper class and does not enumerate all of 𝐴. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) | ||
Theorem | oi0 9217 | Definition of the ordinal isomorphism when its arguments are not meaningful. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 = ∅) | ||
Theorem | oicl 9218 | The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ Ord dom 𝐹 | ||
Theorem | oif 9219 | The order isomorphism of the well-order 𝑅 on 𝐴 is a function. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ 𝐹:dom 𝐹⟶𝐴 | ||
Theorem | oiiso2 9220 | The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism onto ran 𝑂 (which is a subset of 𝐴 by oif 9219). (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, ran 𝐹)) | ||
Theorem | ordtype 9221 | For any set-like well-ordered class, there is an isomorphic ordinal number called its order type. (Contributed by Jeff Hankins, 17-Oct-2009.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
Theorem | oiiniseg 9222 | ran 𝐹 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑁 ∈ 𝐴 ∧ 𝑀 ∈ dom 𝐹)) → ((𝐹‘𝑀)𝑅𝑁 ∨ 𝑁 ∈ ran 𝐹)) | ||
Theorem | ordtype2 9223 | For any set-like well-ordered class, if the order isomorphism exists (is a set), then it maps some ordinal onto 𝐴 isomorphically. Otherwise, 𝐹 is a proper class, which implies that either ran 𝐹 ⊆ 𝐴 is a proper class or dom 𝐹 = On. This weak version of ordtype 9221 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 ∈ V) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
Theorem | oiexg 9224 | The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) | ||
Theorem | oion 9225 | The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → dom 𝐹 ∈ On) | ||
Theorem | oiiso 9226 | The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
Theorem | oien 9227 | The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → dom 𝐹 ≈ 𝐴) | ||
Theorem | oieu 9228 | Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ((Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹))) | ||
Theorem | oismo 9229 | When 𝐴 is a subclass of On, 𝐹 is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of 𝐴). The proof avoids ax-rep 5205 (the second statement is trivial under ax-rep 5205). (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = OrdIso( E , 𝐴) ⇒ ⊢ (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴)) | ||
Theorem | oiid 9230 | The order type of an ordinal under the ∈ order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) | ||
Theorem | hartogslem1 9231* | Lemma for hartogs 9233. (Contributed by Mario Carneiro, 14-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} & ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} ⇒ ⊢ (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) | ||
Theorem | hartogslem2 9232* | Lemma for hartogs 9233. (Contributed by Mario Carneiro, 14-Jan-2013.) |
⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} & ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) | ||
Theorem | hartogs 9233* | The class of ordinals dominated by a given set is an ordinal. A shorter (when taking into account lemmas hartogslem1 9231 and hartogslem2 9232) proof can be given using the axiom of choice, see ondomon 10250. As its label indicates, this result is used to justify the definition of the Hartogs function df-har 9246. (Contributed by Jeff Hankins, 22-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) | ||
Theorem | wofib 9234 | The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 23-May-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) ↔ (𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴)) | ||
Theorem | wemaplem1 9235* | Value of the lexicographic order on a sequence space. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑄 ∈ 𝑊) → (𝑃𝑇𝑄 ↔ ∃𝑎 ∈ 𝐴 ((𝑃‘𝑎)𝑆(𝑄‘𝑎) ∧ ∀𝑏 ∈ 𝐴 (𝑏𝑅𝑎 → (𝑃‘𝑏) = (𝑄‘𝑏))))) | ||
Theorem | wemaplem2 9236* | Lemma for wemapso 9240. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Po 𝐵) & ⊢ (𝜑 → 𝑎 ∈ 𝐴) & ⊢ (𝜑 → (𝑃‘𝑎)𝑆(𝑋‘𝑎)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))) & ⊢ (𝜑 → 𝑏 ∈ 𝐴) & ⊢ (𝜑 → (𝑋‘𝑏)𝑆(𝑄‘𝑏)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) ⇒ ⊢ (𝜑 → 𝑃𝑇𝑄) | ||
Theorem | wemaplem3 9237* | Lemma for wemapso 9240. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑m 𝐴)) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Po 𝐵) & ⊢ (𝜑 → 𝑃𝑇𝑋) & ⊢ (𝜑 → 𝑋𝑇𝑄) ⇒ ⊢ (𝜑 → 𝑃𝑇𝑄) | ||
Theorem | wemappo 9238* |
Construct lexicographic order on a function space based on a
well-ordering of the indices and a total ordering of the values.
Without totality on the values or least differing indices, the best we can prove here is a partial order. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) → 𝑇 Po (𝐵 ↑m 𝐴)) | ||
Theorem | wemapsolem 9239* | Lemma for wemapso 9240. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 ⊆ (𝐵 ↑m 𝐴) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Or 𝐵) & ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) ∧ 𝑎 ≠ 𝑏)) → ∃𝑐 ∈ dom (𝑎 ∖ 𝑏)∀𝑑 ∈ dom (𝑎 ∖ 𝑏) ¬ 𝑑𝑅𝑐) ⇒ ⊢ (𝜑 → 𝑇 Or 𝑈) | ||
Theorem | wemapso 9240* | Construct lexicographic order on a function space based on a well-ordering of the indices and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 21-Jul-2024.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or (𝐵 ↑m 𝐴)) | ||
Theorem | wemapso2lem 9241* | Lemma for wemapso2 9242. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) ∧ 𝑍 ∈ 𝑊) → 𝑇 Or 𝑈) | ||
Theorem | wemapso2 9242* | An alternative to having a well-order on 𝑅 in wemapso 9240 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑m 𝐴) ∣ 𝑥 finSupp 𝑍} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈) | ||
Theorem | card2on 9243* | The alternate definition of the cardinal of a set given in cardval2 9680 always gives a set, and indeed an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013.) |
⊢ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ On | ||
Theorem | card2inf 9244* | The alternate definition of the cardinal of a set given in cardval2 9680 has the curious property that for non-numerable sets (for which ndmfv 6786 yields ∅), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) | ||
Syntax | char 9245 | Class symbol for the Hartogs function. |
class har | ||
Definition | df-har 9246* |
Define the Hartogs function as mapping a set to the class of ordinals it
dominates. That class is an ordinal by hartogs 9233, which is used in
harf 9247.
The Hartogs number of a set is the least ordinal not dominated by that set. Theorem harval2 9686 proves that the Hartogs function actually gives the Hartogs number for well-orderable sets. The Hartogs number of an ordinal is its cardinal successor. This is proved for finite ordinal in harsucnn 9687. Traditionally, the Hartogs number of a set 𝑋 is written ℵ(𝑋), and its cardinal successor, 𝑋 +; we use functional notation for this, and cannot use the aleph symbol because it is taken for the enumerating function of the infinite initial ordinals df-aleph 9629. Some authors define the Hartogs number of a set to be the least *infinite* ordinal which does not inject into it, thus causing the range to consist only of alephs. We use the simpler definition where the value can be any successor cardinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ har = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥}) | ||
Theorem | harf 9247 | Functionality of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ har:V⟶On | ||
Theorem | harcl 9248 | Values of the Hartogs function are ordinals (closure of the Hartogs function in the ordinals). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (har‘𝑋) ∈ On | ||
Theorem | harval 9249* | Function value of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ∈ 𝑉 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | ||
Theorem | elharval 9250 | The Hartogs number of a set contains exactly the ordinals that set dominates. Combined with harcl 9248, this implies that the Hartogs number of a set is greater than all ordinals that set dominates. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) | ||
Theorem | harndom 9251 | The Hartogs number of a set does not inject into that set. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ ¬ (har‘𝑋) ≼ 𝑋 | ||
Theorem | harword 9252 | Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) | ||
Syntax | cwdom 9253 | Class symbol for the weak dominance relation. |
class ≼* | ||
Definition | df-wdom 9254* | A set is weakly dominated by a "larger" set if the "larger" set can be mapped onto the "smaller" set or the smaller set is empty, or equivalently, if the smaller set can be placed into bijection with some partition of the larger set. Dominance (df-dom 8693) implies weak dominance (over ZF). The principle asserting the converse is known as the partition principle and is independent of ZF. Theorem fodom 10210 proves that the axiom of choice implies the partition principle (over ZF). It is not known whether the partition principle is equivalent to the axiom of choice (over ZF), although it is know to imply dependent choice. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | ||
Theorem | relwdom 9255 | Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ Rel ≼* | ||
Theorem | brwdom 9256* | Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑌 ∈ 𝑉 → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | ||
Theorem | brwdomi 9257* | Property of weak dominance, forward direction only. (Contributed by Mario Carneiro, 5-May-2015.) |
⊢ (𝑋 ≼* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋)) | ||
Theorem | brwdomn0 9258* | Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) | ||
Theorem | 0wdom 9259 | Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) | ||
Theorem | fowdom 9260 | An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝑌–onto→𝑋) → 𝑋 ≼* 𝑌) | ||
Theorem | wdomref 9261 | Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋) | ||
Theorem | brwdom2 9262* | Alternate characterization of the weak dominance predicate which does not require special treatment of the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑌 ∈ 𝑉 → (𝑋 ≼* 𝑌 ↔ ∃𝑦 ∈ 𝒫 𝑌∃𝑧 𝑧:𝑦–onto→𝑋)) | ||
Theorem | domwdom 9263 | Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) | ||
Theorem | wdomtr 9264 | Transitivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ ((𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍) → 𝑋 ≼* 𝑍) | ||
Theorem | wdomen1 9265 | Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) | ||
Theorem | wdomen2 9266 | Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵)) | ||
Theorem | wdompwdom 9267 | Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) | ||
Theorem | canthwdom 9268 | Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 8866, equivalent to canth 7209). (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ¬ 𝒫 𝐴 ≼* 𝐴 | ||
Theorem | wdom2d 9269* | Deduce weak dominance from an implicit onto function (stated in a way which avoids ax-rep 5205). (Contributed by Stefan O'Rear, 13-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ≼* 𝐵) | ||
Theorem | wdomd 9270* | Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015.) |
⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ≼* 𝐵) | ||
Theorem | brwdom3 9271* | Condition for weak dominance with a condition reminiscent of wdomd 9270. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝑋 ≼* 𝑌 ↔ ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | ||
Theorem | brwdom3i 9272* | Weak dominance implies existence of a covering function. (Contributed by Stefan O'Rear, 13-Feb-2015.) |
⊢ (𝑋 ≼* 𝑌 → ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) | ||
Theorem | unwdomg 9273 | Weak dominance of a (disjoint) union. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≼* (𝐵 ∪ 𝐷)) | ||
Theorem | xpwdomg 9274 | Weak dominance of a Cartesian product. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷)) | ||
Theorem | wdomima2g 9275 | A set is weakly dominant over its image under any function. This version of wdomimag 9276 is stated so as to avoid ax-rep 5205. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ (𝐹 “ 𝐴) ∈ 𝑊) → (𝐹 “ 𝐴) ≼* 𝐴) | ||
Theorem | wdomimag 9276 | A set is weakly dominant over its image under any function. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ≼* 𝐴) | ||
Theorem | unxpwdom2 9277 | Lemma for unxpwdom 9278. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝐴 × 𝐴) ≈ (𝐵 ∪ 𝐶) → (𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶)) | ||
Theorem | unxpwdom 9278 | If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) → (𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶)) | ||
Theorem | ixpiunwdom 9279* | Describe an onto function from the indexed cartesian product to the indexed union. Together with ixpssmapg 8674 this shows that ∪ 𝑥 ∈ 𝐴𝐵 and X𝑥 ∈ 𝐴𝐵 have closely linked cardinalities. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X𝑥 ∈ 𝐴 𝐵 ≠ ∅) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼* (X𝑥 ∈ 𝐴 𝐵 × 𝐴)) | ||
Theorem | harwdom 9280 | The value of the Hartogs function at a set 𝑋 is weakly dominated by 𝒫 (𝑋 × 𝑋). This follows from a more precise analysis of the bound used in hartogs 9233 to prove that (har‘𝑋) is an ordinal. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (𝑋 ∈ 𝑉 → (har‘𝑋) ≼* 𝒫 (𝑋 × 𝑋)) | ||
Axiom | ax-reg 9281* | Axiom of Regularity. An axiom of Zermelo-Fraenkel set theory. Also called the Axiom of Foundation. A rather non-intuitive axiom that denies more than it asserts, it states (in the form of zfreg 9284) that every nonempty set contains a set disjoint from itself. One consequence is that it denies the existence of a set containing itself (elirrv 9285). A stronger version that works for proper classes is proved as zfregs 9421. (Contributed by NM, 14-Aug-1993.) |
⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | ||
Theorem | axreg2 9282* | Axiom of Regularity expressed more compactly. (Contributed by NM, 14-Aug-2003.) |
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
Theorem | zfregcl 9283* | The Axiom of Regularity with class variables. (Contributed by NM, 5-Aug-1994.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.) |
⊢ (𝐴 ∈ 𝑉 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) | ||
Theorem | zfreg 9284* | The Axiom of Regularity using abbreviations. Axiom 6 of [TakeutiZaring] p. 21. This is called the "weak form". Axiom Reg of [BellMachover] p. 480. There is also a "strong form", not requiring that 𝐴 be a set, that can be proved with more difficulty (see zfregs 9421). (Contributed by NM, 26-Nov-1995.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) | ||
Theorem | elirrv 9285 | The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (This is trivial to prove from zfregfr 9293 and efrirr 5561, but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993.) |
⊢ ¬ 𝑥 ∈ 𝑥 | ||
Theorem | elirr 9286 | No class is a member of itself. Exercise 6 of [TakeutiZaring] p. 22. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 9-Jul-2011.) |
⊢ ¬ 𝐴 ∈ 𝐴 | ||
Theorem | elneq 9287 | A class is not equal to any of its elements. (Contributed by AV, 14-Jun-2022.) |
⊢ (𝐴 ∈ 𝐵 → 𝐴 ≠ 𝐵) | ||
Theorem | nelaneq 9288 | A class is not an element of and equal to a class at the same time. Variant of elneq 9287 analogously to elnotel 9298 and en2lp 9294. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐴 = 𝐵) | ||
Theorem | epinid0 9289 | The membership relation and the identity relation are disjoint. Variable-free version of nelaneq 9288. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 18-Jun-2022.) |
⊢ ( E ∩ I ) = ∅ | ||
Theorem | sucprcreg 9290 | A class is equal to its successor iff it is a proper class (assuming the Axiom of Regularity). (Contributed by NM, 9-Jul-2004.) (Proof shortened by BJ, 16-Apr-2019.) |
⊢ (¬ 𝐴 ∈ V ↔ suc 𝐴 = 𝐴) | ||
Theorem | ruv 9291 | The Russell class is equal to the universe V. Exercise 5 of [TakeutiZaring] p. 22. (Contributed by Alan Sare, 4-Oct-2008.) |
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} = V | ||
Theorem | ruALT 9292 | Alternate proof of ru 3710, simplified using (indirectly) the Axiom of Regularity ax-reg 9281. (Contributed by Alan Sare, 4-Oct-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
⊢ {𝑥 ∣ 𝑥 ∉ 𝑥} ∉ V | ||
Theorem | zfregfr 9293 | The membership relation is well-founded on any class. (Contributed by NM, 26-Nov-1995.) |
⊢ E Fr 𝐴 | ||
Theorem | en2lp 9294 | No class has 2-cycle membership loops. Theorem 7X(b) of [Enderton] p. 206. (Contributed by NM, 16-Oct-1996.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ¬ (𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐴) | ||
Theorem | elnanel 9295 | Two classes are not elements of each other simultaneously. This is just a rewriting of en2lp 9294 and serves as an example in the context of Godel codes, see elnanelprv 33291. (Contributed by AV, 5-Nov-2023.) (New usage is discouraged.) |
⊢ (𝐴 ∈ 𝐵 ⊼ 𝐵 ∈ 𝐴) | ||
Theorem | cnvepnep 9296 | The membership (epsilon) relation and its converse are disjoint, i.e., E is an asymmetric relation. Variable-free version of en2lp 9294. (Proposed by BJ, 18-Jun-2022.) (Contributed by AV, 19-Jun-2022.) |
⊢ (◡ E ∩ E ) = ∅ | ||
Theorem | epnsym 9297 | The membership (epsilon) relation is not symmetric. (Contributed by AV, 18-Jun-2022.) |
⊢ ◡ E ≠ E | ||
Theorem | elnotel 9298 | A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.) |
⊢ (𝐴 ∈ 𝐵 → ¬ 𝐵 ∈ 𝐴) | ||
Theorem | elnel 9299 | A class cannot be an element of one of its elements. (Contributed by AV, 14-Jun-2022.) |
⊢ (𝐴 ∈ 𝐵 → 𝐵 ∉ 𝐴) | ||
Theorem | en3lplem1 9300* | Lemma for en3lp 9302. (Contributed by Alan Sare, 28-Oct-2011.) |
⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ 𝐶 ∧ 𝐶 ∈ 𝐴) → (𝑥 = 𝐴 → (𝑥 ∩ {𝐴, 𝐵, 𝐶}) ≠ ∅)) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |