| Metamath
Proof Explorer Theorem List (p. 93 of 498) | < Previous Next > | |
| Bad symbols? Try the
GIF version. |
||
|
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
||
| Color key: | (1-30854) |
(30855-32377) |
(32378-49798) |
| Type | Label | Description |
|---|---|---|
| Statement | ||
| Theorem | 1sdom2dom 9201 | Strict dominance over 1 is the same as dominance over 2. (Contributed by BTernaryTau, 23-Dec-2024.) |
| ⊢ (1o ≺ 𝐴 ↔ 2o ≼ 𝐴) | ||
| Theorem | 1sdom 9202* | A set that strictly dominates ordinal 1 has at least 2 different members. (Closely related to 2dom 9004.) (Contributed by Mario Carneiro, 12-Jan-2013.) Avoid ax-un 7714. (Revised by BTernaryTau, 30-Dec-2024.) |
| ⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) | ||
| Theorem | 1sdomOLD 9203* | Obsolete version of 1sdom 9202 as of 30-Dec-2024. (Contributed by Mario Carneiro, 12-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ 𝑉 → (1o ≺ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐴 ¬ 𝑥 = 𝑦)) | ||
| Theorem | unxpdomlem1 9204* | Lemma for unxpdom 9207. (Trivial substitution proof.) (Contributed by Mario Carneiro, 13-Jan-2013.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) ⇒ ⊢ (𝑧 ∈ (𝑎 ∪ 𝑏) → (𝐹‘𝑧) = if(𝑧 ∈ 𝑎, 〈𝑧, if(𝑧 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑧 = 𝑡, 𝑛, 𝑚), 𝑧〉)) | ||
| Theorem | unxpdomlem2 9205* | Lemma for unxpdom 9207. (Contributed by Mario Carneiro, 13-Jan-2013.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) & ⊢ (𝜑 → 𝑤 ∈ (𝑎 ∪ 𝑏)) & ⊢ (𝜑 → ¬ 𝑚 = 𝑛) & ⊢ (𝜑 → ¬ 𝑠 = 𝑡) ⇒ ⊢ ((𝜑 ∧ (𝑧 ∈ 𝑎 ∧ ¬ 𝑤 ∈ 𝑎)) → ¬ (𝐹‘𝑧) = (𝐹‘𝑤)) | ||
| Theorem | unxpdomlem3 9206* | Lemma for unxpdom 9207. (Contributed by Mario Carneiro, 13-Jan-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ 𝐹 = (𝑥 ∈ (𝑎 ∪ 𝑏) ↦ 𝐺) & ⊢ 𝐺 = if(𝑥 ∈ 𝑎, 〈𝑥, if(𝑥 = 𝑚, 𝑡, 𝑠)〉, 〈if(𝑥 = 𝑡, 𝑛, 𝑚), 𝑥〉) ⇒ ⊢ ((1o ≺ 𝑎 ∧ 1o ≺ 𝑏) → (𝑎 ∪ 𝑏) ≼ (𝑎 × 𝑏)) | ||
| Theorem | unxpdom 9207 | Cartesian product dominates union for sets with cardinality greater than 1. Proposition 10.36 of [TakeutiZaring] p. 93. (Contributed by Mario Carneiro, 13-Jan-2013.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
| ⊢ ((1o ≺ 𝐴 ∧ 1o ≺ 𝐵) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐵)) | ||
| Theorem | unxpdom2 9208 | Corollary of unxpdom 9207. (Contributed by NM, 16-Sep-2004.) |
| ⊢ ((1o ≺ 𝐴 ∧ 𝐵 ≼ 𝐴) → (𝐴 ∪ 𝐵) ≼ (𝐴 × 𝐴)) | ||
| Theorem | sucxpdom 9209 | Cartesian product dominates successor for set with cardinality greater than 1. Proposition 10.38 of [TakeutiZaring] p. 93 (but generalized to arbitrary sets, not just ordinals). (Contributed by NM, 3-Sep-2004.) (Proof shortened by Mario Carneiro, 27-Apr-2015.) |
| ⊢ (1o ≺ 𝐴 → suc 𝐴 ≼ (𝐴 × 𝐴)) | ||
| Theorem | pssinf 9210 | A set equinumerous to a proper subset of itself is infinite. Corollary 6D(a) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) |
| ⊢ ((𝐴 ⊊ 𝐵 ∧ 𝐴 ≈ 𝐵) → ¬ 𝐵 ∈ Fin) | ||
| Theorem | fisseneq 9211 | A finite set is equal to its subset if they are equinumerous. (Contributed by FL, 11-Aug-2008.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐴 ⊆ 𝐵 ∧ 𝐴 ≈ 𝐵) → 𝐴 = 𝐵) | ||
| Theorem | ominf 9212 | The set of natural numbers is infinite. Corollary 6D(b) of [Enderton] p. 136. (Contributed by NM, 2-Jun-1998.) Avoid ax-pow 5323. (Revised by BTernaryTau, 2-Jan-2025.) |
| ⊢ ¬ ω ∈ Fin | ||
| Theorem | ominfOLD 9213 | Obsolete version of ominf 9212 as of 2-Jan-2025. (Contributed by NM, 2-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ¬ ω ∈ Fin | ||
| Theorem | isinf 9214* | Any set that is not finite is literally infinite, in the sense that it contains subsets of arbitrarily large finite cardinality. (It cannot be proven that the set has countably infinite subsets unless AC is invoked.) The proof does not require the Axiom of Infinity. (Contributed by Mario Carneiro, 15-Jan-2013.) Avoid ax-pow 5323. (Revised by BTernaryTau, 2-Jan-2025.) |
| ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
| Theorem | isinfOLD 9215* | Obsolete version of isinf 9214 as of 2-Jan-2025. (Contributed by Mario Carneiro, 15-Jan-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (¬ 𝐴 ∈ Fin → ∀𝑛 ∈ ω ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝑛)) | ||
| Theorem | fineqvlem 9216 | Lemma for fineqv 9217. (Contributed by Mario Carneiro, 20-Jan-2013.) (Proof shortened by Stefan O'Rear, 3-Nov-2014.) (Revised by Mario Carneiro, 17-May-2015.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ ¬ 𝐴 ∈ Fin) → ω ≼ 𝒫 𝒫 𝐴) | ||
| Theorem | fineqv 9217 | If the Axiom of Infinity is denied, then all sets are finite (which implies the Axiom of Choice). (Contributed by Mario Carneiro, 20-Jan-2013.) (Revised by Mario Carneiro, 3-Jan-2015.) |
| ⊢ (¬ ω ∈ V ↔ Fin = V) | ||
| Theorem | xpfir 9218 | The components of a nonempty finite Cartesian product are finite. (Contributed by Paul Chapman, 11-Apr-2009.) (Proof shortened by Mario Carneiro, 29-Apr-2015.) |
| ⊢ (((𝐴 × 𝐵) ∈ Fin ∧ (𝐴 × 𝐵) ≠ ∅) → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
| Theorem | ssfid 9219 | A subset of a finite set is finite, deduction version of ssfi 9143. (Contributed by Glauco Siliprandi, 21-Nov-2020.) |
| ⊢ (𝜑 → 𝐴 ∈ Fin) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) ⇒ ⊢ (𝜑 → 𝐵 ∈ Fin) | ||
| Theorem | infi 9220 | The intersection of two sets is finite if one of them is. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| ⊢ (𝐴 ∈ Fin → (𝐴 ∩ 𝐵) ∈ Fin) | ||
| Theorem | rabfi 9221* | A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.) |
| ⊢ (𝐴 ∈ Fin → {𝑥 ∈ 𝐴 ∣ 𝜑} ∈ Fin) | ||
| Theorem | finresfin 9222 | The restriction of a finite set is finite. (Contributed by Alexander van der Vekens, 3-Jan-2018.) |
| ⊢ (𝐸 ∈ Fin → (𝐸 ↾ 𝐵) ∈ Fin) | ||
| Theorem | f1finf1o 9223 | Any injection from one finite set to another of equal size must be a bijection. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) Avoid ax-pow 5323. (Revised by BTernaryTau, 4-Jan-2025.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | ||
| Theorem | f1finf1oOLD 9224 | Obsolete version of f1finf1o 9223 as of 4-Jan-2025. (Contributed by Jeff Madsen, 5-Jun-2010.) (Revised by Mario Carneiro, 27-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → (𝐹:𝐴–1-1→𝐵 ↔ 𝐹:𝐴–1-1-onto→𝐵)) | ||
| Theorem | nfielex 9225* | If a class is not finite, then it contains at least one element. (Contributed by Alexander van der Vekens, 12-Jan-2018.) |
| ⊢ (¬ 𝐴 ∈ Fin → ∃𝑥 𝑥 ∈ 𝐴) | ||
| Theorem | en1eqsn 9226 | A set with one element is a singleton. (Contributed by FL, 18-Aug-2008.) Avoid ax-pow 5323, ax-un 7714. (Revised by BTernaryTau, 4-Jan-2025.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | ||
| Theorem | en1eqsnOLD 9227 | Obsolete version of en1eqsn 9226 as of 4-Jan-2025. (Contributed by FL, 18-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ≈ 1o) → 𝐵 = {𝐴}) | ||
| Theorem | en1eqsnbi 9228 | A set containing an element has exactly one element iff it is a singleton. Formerly part of proof for rngen1zr 20693. (Contributed by FL, 13-Feb-2010.) (Revised by AV, 25-Jan-2020.) |
| ⊢ (𝐴 ∈ 𝐵 → (𝐵 ≈ 1o ↔ 𝐵 = {𝐴})) | ||
| Theorem | dif1ennnALT 9229 | Alternate proof of dif1ennn 9131 using ax-pow 5323. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Stefan O'Rear, 16-Aug-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝑀 ∈ ω ∧ 𝐴 ≈ suc 𝑀 ∧ 𝑋 ∈ 𝐴) → (𝐴 ∖ {𝑋}) ≈ 𝑀) | ||
| Theorem | enp1ilem 9230 | Lemma for uses of enp1i 9231. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ 𝑇 = ({𝑥} ∪ 𝑆) ⇒ ⊢ (𝑥 ∈ 𝐴 → ((𝐴 ∖ {𝑥}) = 𝑆 → 𝐴 = 𝑇)) | ||
| Theorem | enp1i 9231* | Proof induction for en2 9233 and related theorems. (Contributed by Mario Carneiro, 5-Jan-2016.) Generalize to all ordinals and avoid ax-pow 5323, ax-un 7714. (Revised by BTernaryTau, 6-Jan-2025.) |
| ⊢ Ord 𝑀 & ⊢ 𝑁 = suc 𝑀 & ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) & ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) | ||
| Theorem | enp1iOLD 9232* | Obsolete version of enp1i 9231 as of 6-Jan-2025. (Contributed by Mario Carneiro, 5-Jan-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ 𝑀 ∈ ω & ⊢ 𝑁 = suc 𝑀 & ⊢ ((𝐴 ∖ {𝑥}) ≈ 𝑀 → 𝜑) & ⊢ (𝑥 ∈ 𝐴 → (𝜑 → 𝜓)) ⇒ ⊢ (𝐴 ≈ 𝑁 → ∃𝑥𝜓) | ||
| Theorem | en2 9233* | A set equinumerous to ordinal 2 is a pair. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (𝐴 ≈ 2o → ∃𝑥∃𝑦 𝐴 = {𝑥, 𝑦}) | ||
| Theorem | en3 9234* | A set equinumerous to ordinal 3 is a triple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (𝐴 ≈ 3o → ∃𝑥∃𝑦∃𝑧 𝐴 = {𝑥, 𝑦, 𝑧}) | ||
| Theorem | en4 9235* | A set equinumerous to ordinal 4 is a quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.) |
| ⊢ (𝐴 ≈ 4o → ∃𝑥∃𝑦∃𝑧∃𝑤 𝐴 = ({𝑥, 𝑦} ∪ {𝑧, 𝑤})) | ||
| Theorem | findcard3 9236* | Schema for strong induction on the cardinality of a finite set. The inductive hypothesis is that the result is true on any proper subset. The result is then proven to be true for all finite sets. (Contributed by Mario Carneiro, 13-Dec-2013.) Avoid ax-pow 5323. (Revised by BTernaryTau, 7-Jan-2025.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 ∈ Fin → (∀𝑥(𝑥 ⊊ 𝑦 → 𝜑) → 𝜒)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | findcard3OLD 9237* | Obsolete version of findcard3 9236 as of 7-Jan-2025. (Contributed by Mario Carneiro, 13-Dec-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝑥 = 𝑦 → (𝜑 ↔ 𝜒)) & ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜏)) & ⊢ (𝑦 ∈ Fin → (∀𝑥(𝑥 ⊊ 𝑦 → 𝜑) → 𝜒)) ⇒ ⊢ (𝐴 ∈ Fin → 𝜏) | ||
| Theorem | ac6sfi 9238* | A version of ac6s 10444 for finite sets. (Contributed by Jeff Hankins, 26-Jun-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ (𝑦 = (𝑓‘𝑥) → (𝜑 ↔ 𝜓)) ⇒ ⊢ ((𝐴 ∈ Fin ∧ ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑) → ∃𝑓(𝑓:𝐴⟶𝐵 ∧ ∀𝑥 ∈ 𝐴 𝜓)) | ||
| Theorem | frfi 9239 | A partial order is well-founded on a finite set. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝑅 Po 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 Fr 𝐴) | ||
| Theorem | fimax2g 9240* | A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) | ||
| Theorem | fimaxg 9241* | A finite set has a maximum under a total order. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑦𝑅𝑥)) | ||
| Theorem | fisupg 9242* | Lemma showing existence and closure of supremum of a finite set. (Contributed by Jeff Madsen, 2-Sep-2009.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦 ∧ ∀𝑦 ∈ 𝐴 (𝑦𝑅𝑥 → ∃𝑧 ∈ 𝐴 𝑦𝑅𝑧))) | ||
| Theorem | wofi 9243 | A total order on a finite set is a well-order. (Contributed by Jeff Madsen, 18-Jun-2010.) (Proof shortened by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) → 𝑅 We 𝐴) | ||
| Theorem | ordunifi 9244 | The maximum of a finite collection of ordinals is in the set. (Contributed by Mario Carneiro, 28-May-2013.) (Revised by Mario Carneiro, 29-Jan-2014.) |
| ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∪ 𝐴 ∈ 𝐴) | ||
| Theorem | nnunifi 9245 | The union (supremum) of a finite set of finite ordinals is a finite ordinal. (Contributed by Stefan O'Rear, 5-Nov-2014.) |
| ⊢ ((𝑆 ⊆ ω ∧ 𝑆 ∈ Fin) → ∪ 𝑆 ∈ ω) | ||
| Theorem | unblem1 9246* | Lemma for unbnn 9250. After removing the successor of an element from an unbounded set of natural numbers, the intersection of the result belongs to the original unbounded set. (Contributed by NM, 3-Dec-2003.) |
| ⊢ (((𝐵 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐵 𝑥 ∈ 𝑦) ∧ 𝐴 ∈ 𝐵) → ∩ (𝐵 ∖ suc 𝐴) ∈ 𝐵) | ||
| Theorem | unblem2 9247* | Lemma for unbnn 9250. The value of the function 𝐹 belongs to the unbounded set of natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
| ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ 𝐴)) | ||
| Theorem | unblem3 9248* | Lemma for unbnn 9250. The value of the function 𝐹 is less than its value at a successor. (Contributed by NM, 3-Dec-2003.) |
| ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → (𝑧 ∈ ω → (𝐹‘𝑧) ∈ (𝐹‘suc 𝑧))) | ||
| Theorem | unblem4 9249* | Lemma for unbnn 9250. The function 𝐹 maps the set of natural numbers one-to-one to the set of unbounded natural numbers 𝐴. (Contributed by NM, 3-Dec-2003.) |
| ⊢ 𝐹 = (rec((𝑥 ∈ V ↦ ∩ (𝐴 ∖ suc 𝑥)), ∩ 𝐴) ↾ ω) ⇒ ⊢ ((𝐴 ⊆ ω ∧ ∀𝑤 ∈ ω ∃𝑣 ∈ 𝐴 𝑤 ∈ 𝑣) → 𝐹:ω–1-1→𝐴) | ||
| Theorem | unbnn 9250* | Any unbounded subset of natural numbers is equinumerous to the set of all natural numbers. Part of the proof of Theorem 42 of [Suppes] p. 151. See unbnn3 9619 for a stronger version without the first assumption. (Contributed by NM, 3-Dec-2003.) |
| ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ∈ 𝑦) → 𝐴 ≈ ω) | ||
| Theorem | unbnn2 9251* | Version of unbnn 9250 that does not require a strict upper bound. (Contributed by NM, 24-Apr-2004.) |
| ⊢ ((ω ∈ V ∧ 𝐴 ⊆ ω ∧ ∀𝑥 ∈ ω ∃𝑦 ∈ 𝐴 𝑥 ⊆ 𝑦) → 𝐴 ≈ ω) | ||
| Theorem | isfinite2 9252 | Any set strictly dominated by the class of natural numbers is finite. Sufficiency part of Theorem 42 of [Suppes] p. 151. This theorem does not require the Axiom of Infinity. (Contributed by NM, 24-Apr-2004.) |
| ⊢ (𝐴 ≺ ω → 𝐴 ∈ Fin) | ||
| Theorem | nnsdomg 9253 | Omega strictly dominates a natural number. Example 3 of [Enderton] p. 146. In order to avoid the Axiom of Infinity, we include it as part of the antecedent. See nnsdom 9614 for the version without this sethood requirement. (Contributed by NM, 15-Jun-1998.) Avoid ax-pow 5323. (Revised by BTernaryTau, 7-Jan-2025.) |
| ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) | ||
| Theorem | nnsdomgOLD 9254 | Obsolete version of nnsdomg 9253 as of 7-Jan-2025. (Contributed by NM, 15-Jun-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((ω ∈ V ∧ 𝐴 ∈ ω) → 𝐴 ≺ ω) | ||
| Theorem | isfiniteg 9255 | A set is finite iff it is strictly dominated by the class of natural number. Theorem 42 of [Suppes] p. 151. In order to avoid the Axiom of infinity, we include it as a hypothesis. (Contributed by NM, 3-Nov-2002.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| ⊢ (ω ∈ V → (𝐴 ∈ Fin ↔ 𝐴 ≺ ω)) | ||
| Theorem | infsdomnn 9256 | An infinite set strictly dominates a natural number. (Contributed by NM, 22-Nov-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 7-Jan-2025.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐵 ∈ ω) → 𝐵 ≺ 𝐴) | ||
| Theorem | infsdomnnOLD 9257 | Obsolete version of infsdomnn 9256 as of 7-Jan-2025. (Contributed by NM, 22-Nov-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((ω ≼ 𝐴 ∧ 𝐵 ∈ ω) → 𝐵 ≺ 𝐴) | ||
| Theorem | infn0 9258 | An infinite set is not empty. For a shorter proof using ax-un 7714, see infn0ALT 9259. (Contributed by NM, 23-Oct-2004.) Avoid ax-un 7714. (Revised by BTernaryTau, 8-Jan-2025.) |
| ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | ||
| Theorem | infn0ALT 9259 | Shorter proof of infn0 9258 using ax-un 7714. (Contributed by NM, 23-Oct-2004.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (ω ≼ 𝐴 → 𝐴 ≠ ∅) | ||
| Theorem | fin2inf 9260 | This (useless) theorem, which was proved without the Axiom of Infinity, demonstrates an artifact of our definition of binary relation, which is meaningful only when its arguments exist. In particular, the antecedent cannot be satisfied unless ω exists. (Contributed by NM, 13-Nov-2003.) |
| ⊢ (𝐴 ≺ ω → ω ∈ V) | ||
| Theorem | unfilem1 9261* | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ⇒ ⊢ ran 𝐹 = ((𝐴 +o 𝐵) ∖ 𝐴) | ||
| Theorem | unfilem2 9262* | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 10-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ 𝐴 ∈ ω & ⊢ 𝐵 ∈ ω & ⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ (𝐴 +o 𝑥)) ⇒ ⊢ 𝐹:𝐵–1-1-onto→((𝐴 +o 𝐵) ∖ 𝐴) | ||
| Theorem | unfilem3 9263 | Lemma for proving that the union of two finite sets is finite. (Contributed by NM, 16-Nov-2002.) (Revised by Mario Carneiro, 31-Aug-2015.) |
| ⊢ ((𝐴 ∈ ω ∧ 𝐵 ∈ ω) → 𝐵 ≈ ((𝐴 +o 𝐵) ∖ 𝐴)) | ||
| Theorem | unfir 9264 | If a union is finite, the operands are finite. Converse of unfi 9141. (Contributed by FL, 3-Aug-2009.) |
| ⊢ ((𝐴 ∪ 𝐵) ∈ Fin → (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
| Theorem | unfib 9265 | A union is finite if and only if the operands are finite. (Contributed by AV, 10-May-2025.) |
| ⊢ ((𝐴 ∪ 𝐵) ∈ Fin ↔ (𝐴 ∈ Fin ∧ 𝐵 ∈ Fin)) | ||
| Theorem | unfi2 9266 | The union of two finite sets is finite. Part of Corollary 6K of [Enderton] p. 144. This version of unfi 9141 is useful only if we assume the Axiom of Infinity (see comments in fin2inf 9260). (Contributed by NM, 22-Oct-2004.) (Revised by Mario Carneiro, 27-Apr-2015.) |
| ⊢ ((𝐴 ≺ ω ∧ 𝐵 ≺ ω) → (𝐴 ∪ 𝐵) ≺ ω) | ||
| Theorem | difinf 9267 | An infinite set 𝐴 minus a finite set is infinite. (Contributed by FL, 3-Aug-2009.) |
| ⊢ ((¬ 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ¬ (𝐴 ∖ 𝐵) ∈ Fin) | ||
| Theorem | fodomfi 9268 | An onto function implies dominance of domain over range, for finite sets. Unlike fodomg 10482 for arbitrary sets, this theorem does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) Avoid ax-pow 5323. (Revised by BTernaryTau, 20-Jun-2025.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | ||
| Theorem | fofi 9269 | If an onto function has a finite domain, its codomain/range is finite. Theorem 37 of [Suppes] p. 104. (Contributed by NM, 25-Mar-2007.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ∈ Fin) | ||
| Theorem | f1fi 9270 | If a 1-to-1 function has a finite codomain its domain is finite. (Contributed by FL, 31-Jul-2009.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| ⊢ ((𝐵 ∈ Fin ∧ 𝐹:𝐴–1-1→𝐵) → 𝐴 ∈ Fin) | ||
| Theorem | imafi 9271 | Images of finite sets are finite. (Contributed by Stefan O'Rear, 22-Feb-2015.) |
| ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) | ||
| Theorem | imafiOLD 9272 | Obsolete version of imafi 9271 as of 25-Jun-2025. (Contributed by Stefan O'Rear, 22-Feb-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 7-Sep-2024.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((Fun 𝐹 ∧ 𝑋 ∈ Fin) → (𝐹 “ 𝑋) ∈ Fin) | ||
| Theorem | pwfir 9273 | If the power set of a set is finite, then the set itself is finite. (Contributed by BTernaryTau, 7-Sep-2024.) |
| ⊢ (𝒫 𝐵 ∈ Fin → 𝐵 ∈ Fin) | ||
| Theorem | pwfilem 9274* | Lemma for pwfi 9275. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5323. (Revised by BTernaryTau, 7-Sep-2024.) |
| ⊢ 𝐹 = (𝑐 ∈ 𝒫 𝑏 ↦ (𝑐 ∪ {𝑥})) ⇒ ⊢ (𝒫 𝑏 ∈ Fin → 𝒫 (𝑏 ∪ {𝑥}) ∈ Fin) | ||
| Theorem | pwfi 9275 | The power set of a finite set is finite and vice-versa. Theorem 38 of [Suppes] p. 104 and its converse, Theorem 40 of [Suppes] p. 105. (Contributed by NM, 26-Mar-2007.) Avoid ax-pow 5323. (Revised by BTernaryTau, 7-Sep-2024.) |
| ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | ||
| Theorem | xpfi 9276 | The Cartesian product of two finite sets is finite. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) Avoid ax-pow 5323. (Revised by BTernaryTau, 10-Jan-2025.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) | ||
| Theorem | xpfiOLD 9277 | Obsolete version of xpfi 9276 as of 10-Jan-2025. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 × 𝐵) ∈ Fin) | ||
| Theorem | 3xpfi 9278 | The Cartesian product of three finite sets is a finite set. (Contributed by Alexander van der Vekens, 11-Mar-2018.) |
| ⊢ (𝑉 ∈ Fin → ((𝑉 × 𝑉) × 𝑉) ∈ Fin) | ||
| Theorem | domunfican 9279 | A finite set union cancellation law for dominance. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.) |
| ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ≈ 𝐴) ∧ ((𝐴 ∩ 𝑋) = ∅ ∧ (𝐵 ∩ 𝑌) = ∅)) → ((𝐴 ∪ 𝑋) ≼ (𝐵 ∪ 𝑌) ↔ 𝑋 ≼ 𝑌)) | ||
| Theorem | infcntss 9280* | Every infinite set has a denumerable subset. Similar to Exercise 8 of [TakeutiZaring] p. 91. (However, we need neither AC nor the Axiom of Infinity because of the way we express "infinite" in the antecedent.) (Contributed by NM, 23-Oct-2004.) |
| ⊢ 𝐴 ∈ V ⇒ ⊢ (ω ≼ 𝐴 → ∃𝑥(𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ ω)) | ||
| Theorem | prfi 9281 | An unordered pair is finite. For a shorter proof using ax-un 7714, see prfiALT 9282. (Contributed by NM, 22-Aug-2008.) Avoid ax-11 2158, ax-un 7714. (Revised by BTernaryTau, 13-Jan-2025.) |
| ⊢ {𝐴, 𝐵} ∈ Fin | ||
| Theorem | prfiALT 9282 | Shorter proof of prfi 9281 using ax-un 7714. (Contributed by NM, 22-Aug-2008.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ {𝐴, 𝐵} ∈ Fin | ||
| Theorem | tpfi 9283 | An unordered triple is finite. (Contributed by Mario Carneiro, 28-Sep-2013.) |
| ⊢ {𝐴, 𝐵, 𝐶} ∈ Fin | ||
| Theorem | fiint 9284* | Equivalent ways of stating the finite intersection property. We show two ways of saying, "the intersection of elements in every finite nonempty subcollection of 𝐴 is in 𝐴". This theorem is applicable to a topology, which (among other axioms) is closed under finite intersections. Some texts use the left-hand version of this axiom and others the right-hand version, but as our proof here shows, their "intuitively obvious" equivalence can be non-trivial to establish formally. (Contributed by NM, 22-Sep-2002.) Use a separate setvar for the right-hand side and avoid ax-pow 5323. (Revised by BTernaryTau, 14-Jan-2025.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ ∀𝑧((𝑧 ⊆ 𝐴 ∧ 𝑧 ≠ ∅ ∧ 𝑧 ∈ Fin) → ∩ 𝑧 ∈ 𝐴)) | ||
| Theorem | fiintOLD 9285* | Obsolete version of fiint 9284 as of 14-Jan-2025. (Contributed by NM, 22-Sep-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ∩ 𝑦) ∈ 𝐴 ↔ ∀𝑥((𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ∧ 𝑥 ∈ Fin) → ∩ 𝑥 ∈ 𝐴)) | ||
| Theorem | fodomfir 9286* | There exists a mapping from a finite set onto any nonempty set that it dominates, proved without using the Axiom of Power Sets (unlike fodomr 9098). (Contributed by BTernaryTau, 23-Jun-2025.) |
| ⊢ ((𝐴 ∈ Fin ∧ ∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴) → ∃𝑓 𝑓:𝐴–onto→𝐵) | ||
| Theorem | fodomfib 9287* | Equivalence of an onto mapping and dominance for a nonempty finite set. Unlike fodomb 10486 for arbitrary sets, this theorem does not require the Axiom of Replacement nor the Axiom of Power Sets nor the Axiom of Choice for its proof. (Contributed by NM, 23-Mar-2006.) Avoid ax-pow 5323. (Revised by BTernaryTau, 23-Jun-2025.) |
| ⊢ (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) ↔ (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴))) | ||
| Theorem | fodomfiOLD 9288 | Obsolete version of fodomfi 9268 as of 20-Jun-2025. (Contributed by NM, 23-Mar-2006.) (Proof shortened by Mario Carneiro, 16-Nov-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹:𝐴–onto→𝐵) → 𝐵 ≼ 𝐴) | ||
| Theorem | fodomfibOLD 9289* | Obsolete version of fodomfib 9287 as of 23-Jun-2025. (Contributed by NM, 23-Mar-2006.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Fin → ((𝐴 ≠ ∅ ∧ ∃𝑓 𝑓:𝐴–onto→𝐵) ↔ (∅ ≺ 𝐵 ∧ 𝐵 ≼ 𝐴))) | ||
| Theorem | fofinf1o 9290 | Any surjection from one finite set to another of equal size must be a bijection. (Contributed by Mario Carneiro, 19-Aug-2014.) |
| ⊢ ((𝐹:𝐴–onto→𝐵 ∧ 𝐴 ≈ 𝐵 ∧ 𝐵 ∈ Fin) → 𝐹:𝐴–1-1-onto→𝐵) | ||
| Theorem | rneqdmfinf1o 9291 | Any function from a finite set onto the same set must be a bijection. (Contributed by AV, 5-Jul-2021.) |
| ⊢ ((𝐴 ∈ Fin ∧ 𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐴) → 𝐹:𝐴–1-1-onto→𝐴) | ||
| Theorem | fidomdm 9292 | Any finite set dominates its domain. (Contributed by Mario Carneiro, 22-Sep-2013.) (Revised by Mario Carneiro, 16-Nov-2014.) |
| ⊢ (𝐹 ∈ Fin → dom 𝐹 ≼ 𝐹) | ||
| Theorem | dmfi 9293 | The domain of a finite set is finite. (Contributed by Mario Carneiro, 24-Sep-2013.) |
| ⊢ (𝐴 ∈ Fin → dom 𝐴 ∈ Fin) | ||
| Theorem | fundmfibi 9294 | A function is finite if and only if its domain is finite. (Contributed by AV, 10-Jan-2020.) |
| ⊢ (Fun 𝐹 → (𝐹 ∈ Fin ↔ dom 𝐹 ∈ Fin)) | ||
| Theorem | resfnfinfin 9295 | The restriction of a function to a finite set is finite. (Contributed by Alexander van der Vekens, 3-Feb-2018.) |
| ⊢ ((𝐹 Fn 𝐴 ∧ 𝐵 ∈ Fin) → (𝐹 ↾ 𝐵) ∈ Fin) | ||
| Theorem | residfi 9296 | A restricted identity function is finite iff the restricting class is finite. (Contributed by AV, 10-Jan-2020.) |
| ⊢ (( I ↾ 𝐴) ∈ Fin ↔ 𝐴 ∈ Fin) | ||
| Theorem | cnvfiALT 9297 | Shorter proof of cnvfi 9146 using ax-pow 5323. (Contributed by Mario Carneiro, 28-Dec-2014.) (Proof modification is discouraged.) (New usage is discouraged.) |
| ⊢ (𝐴 ∈ Fin → ◡𝐴 ∈ Fin) | ||
| Theorem | rnfi 9298 | The range of a finite set is finite. (Contributed by Mario Carneiro, 28-Dec-2014.) |
| ⊢ (𝐴 ∈ Fin → ran 𝐴 ∈ Fin) | ||
| Theorem | f1dmvrnfibi 9299 | A one-to-one function whose domain is a set is finite if and only if its range is finite. See also f1vrnfibi 9300. (Contributed by AV, 10-Jan-2020.) |
| ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
| Theorem | f1vrnfibi 9300 | A one-to-one function which is a set is finite if and only if its range is finite. See also f1dmvrnfibi 9299. (Contributed by AV, 10-Jan-2020.) |
| ⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝐴–1-1→𝐵) → (𝐹 ∈ Fin ↔ ran 𝐹 ∈ Fin)) | ||
| < Previous Next > |
| Copyright terms: Public domain | < Previous Next > |