Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl3anbrc | Structured version Visualization version GIF version |
Description: Syllogism inference. (Contributed by Mario Carneiro, 11-May-2014.) |
Ref | Expression |
---|---|
syl3anbrc.1 | ⊢ (𝜑 → 𝜓) |
syl3anbrc.2 | ⊢ (𝜑 → 𝜒) |
syl3anbrc.3 | ⊢ (𝜑 → 𝜃) |
syl3anbrc.4 | ⊢ (𝜏 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
Ref | Expression |
---|---|
syl3anbrc | ⊢ (𝜑 → 𝜏) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anbrc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anbrc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | syl3anbrc.3 | . . 3 ⊢ (𝜑 → 𝜃) | |
4 | 1, 2, 3 | 3jca 1126 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒 ∧ 𝜃)) |
5 | syl3anbrc.4 | . 2 ⊢ (𝜏 ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) | |
6 | 4, 5 | sylibr 233 | 1 ⊢ (𝜑 → 𝜏) |
Copyright terms: Public domain | W3C validator |