![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lidlnz | Structured version Visualization version GIF version |
Description: A nonzero ideal contains a nonzero element. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lidlnz.u | β’ π = (LIdealβπ ) |
lidlnz.z | β’ 0 = (0gβπ ) |
Ref | Expression |
---|---|
lidlnz | β’ ((π β Ring β§ πΌ β π β§ πΌ β { 0 }) β βπ₯ β πΌ π₯ β 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlnz.u | . . . . . . 7 β’ π = (LIdealβπ ) | |
2 | lidlnz.z | . . . . . . 7 β’ 0 = (0gβπ ) | |
3 | 1, 2 | lidl0cl 20984 | . . . . . 6 β’ ((π β Ring β§ πΌ β π) β 0 β πΌ) |
4 | 3 | snssd 4811 | . . . . 5 β’ ((π β Ring β§ πΌ β π) β { 0 } β πΌ) |
5 | 4 | 3adant3 1130 | . . . 4 β’ ((π β Ring β§ πΌ β π β§ πΌ β { 0 }) β { 0 } β πΌ) |
6 | simp3 1136 | . . . . 5 β’ ((π β Ring β§ πΌ β π β§ πΌ β { 0 }) β πΌ β { 0 }) | |
7 | 6 | necomd 2994 | . . . 4 β’ ((π β Ring β§ πΌ β π β§ πΌ β { 0 }) β { 0 } β πΌ) |
8 | df-pss 3966 | . . . 4 β’ ({ 0 } β πΌ β ({ 0 } β πΌ β§ { 0 } β πΌ)) | |
9 | 5, 7, 8 | sylanbrc 581 | . . 3 β’ ((π β Ring β§ πΌ β π β§ πΌ β { 0 }) β { 0 } β πΌ) |
10 | pssnel 4469 | . . 3 β’ ({ 0 } β πΌ β βπ₯(π₯ β πΌ β§ Β¬ π₯ β { 0 })) | |
11 | 9, 10 | syl 17 | . 2 β’ ((π β Ring β§ πΌ β π β§ πΌ β { 0 }) β βπ₯(π₯ β πΌ β§ Β¬ π₯ β { 0 })) |
12 | velsn 4643 | . . . . . 6 β’ (π₯ β { 0 } β π₯ = 0 ) | |
13 | 12 | necon3bbii 2986 | . . . . 5 β’ (Β¬ π₯ β { 0 } β π₯ β 0 ) |
14 | 13 | anbi2i 621 | . . . 4 β’ ((π₯ β πΌ β§ Β¬ π₯ β { 0 }) β (π₯ β πΌ β§ π₯ β 0 )) |
15 | 14 | exbii 1848 | . . 3 β’ (βπ₯(π₯ β πΌ β§ Β¬ π₯ β { 0 }) β βπ₯(π₯ β πΌ β§ π₯ β 0 )) |
16 | df-rex 3069 | . . 3 β’ (βπ₯ β πΌ π₯ β 0 β βπ₯(π₯ β πΌ β§ π₯ β 0 )) | |
17 | 15, 16 | bitr4i 277 | . 2 β’ (βπ₯(π₯ β πΌ β§ Β¬ π₯ β { 0 }) β βπ₯ β πΌ π₯ β 0 ) |
18 | 11, 17 | sylib 217 | 1 β’ ((π β Ring β§ πΌ β π β§ πΌ β { 0 }) β βπ₯ β πΌ π₯ β 0 ) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β§ w3a 1085 = wceq 1539 βwex 1779 β wcel 2104 β wne 2938 βwrex 3068 β wss 3947 β wpss 3948 {csn 4627 βcfv 6542 0gc0g 17389 Ringcrg 20127 LIdealclidl 20928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-3 12280 df-4 12281 df-5 12282 df-6 12283 df-7 12284 df-8 12285 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-ress 17178 df-plusg 17214 df-mulr 17215 df-sca 17217 df-vsca 17218 df-ip 17219 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-grp 18858 df-minusg 18859 df-sbg 18860 df-subg 19039 df-mgp 20029 df-ur 20076 df-ring 20129 df-subrg 20459 df-lmod 20616 df-lss 20687 df-sra 20930 df-rgmod 20931 df-lidl 20932 |
This theorem is referenced by: drngnidl 21003 zringlpirlem1 21233 lidldomn1 46911 |
Copyright terms: Public domain | W3C validator |