MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlnz Structured version   Visualization version   GIF version

Theorem lidlnz 19502
Description: A nonzero ideal contains a nonzero element. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidlnz.u 𝑈 = (LIdeal‘𝑅)
lidlnz.z 0 = (0g𝑅)
Assertion
Ref Expression
lidlnz ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑥𝐼 𝑥0 )
Distinct variable groups:   𝑥,𝐼   𝑥, 0
Allowed substitution hints:   𝑅(𝑥)   𝑈(𝑥)

Proof of Theorem lidlnz
StepHypRef Expression
1 lidlnz.u . . . . . . 7 𝑈 = (LIdeal‘𝑅)
2 lidlnz.z . . . . . . 7 0 = (0g𝑅)
31, 2lidl0cl 19486 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
43snssd 4494 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → { 0 } ⊆ 𝐼)
543adant3 1162 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ⊆ 𝐼)
6 simp3 1168 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 })
76necomd 2992 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ≠ 𝐼)
8 df-pss 3748 . . . 4 ({ 0 } ⊊ 𝐼 ↔ ({ 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼))
95, 7, 8sylanbrc 578 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ⊊ 𝐼)
10 pssnel 4199 . . 3 ({ 0 } ⊊ 𝐼 → ∃𝑥(𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }))
119, 10syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑥(𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }))
12 velsn 4350 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
1312necon3bbii 2984 . . . . 5 𝑥 ∈ { 0 } ↔ 𝑥0 )
1413anbi2i 616 . . . 4 ((𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }) ↔ (𝑥𝐼𝑥0 ))
1514exbii 1943 . . 3 (∃𝑥(𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }) ↔ ∃𝑥(𝑥𝐼𝑥0 ))
16 df-rex 3061 . . 3 (∃𝑥𝐼 𝑥0 ↔ ∃𝑥(𝑥𝐼𝑥0 ))
1715, 16bitr4i 269 . 2 (∃𝑥(𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }) ↔ ∃𝑥𝐼 𝑥0 )
1811, 17sylib 209 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑥𝐼 𝑥0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384  w3a 1107   = wceq 1652  wex 1874  wcel 2155  wne 2937  wrex 3056  wss 3732  wpss 3733  {csn 4334  cfv 6068  0gc0g 16366  Ringcrg 18814  LIdealclidl 19444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-ndx 16133  df-slot 16134  df-base 16136  df-sets 16137  df-ress 16138  df-plusg 16227  df-mulr 16228  df-sca 16230  df-vsca 16231  df-ip 16232  df-0g 16368  df-mgm 17508  df-sgrp 17550  df-mnd 17561  df-grp 17692  df-minusg 17693  df-sbg 17694  df-subg 17855  df-mgp 18757  df-ur 18769  df-ring 18816  df-subrg 19047  df-lmod 19134  df-lss 19202  df-sra 19446  df-rgmod 19447  df-lidl 19448
This theorem is referenced by:  drngnidl  19503  zringlpirlem1  20105  lidldomn1  42590
  Copyright terms: Public domain W3C validator