MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lidlnz Structured version   Visualization version   GIF version

Theorem lidlnz 20412
Description: A nonzero ideal contains a nonzero element. (Contributed by Stefan O'Rear, 3-Jan-2015.)
Hypotheses
Ref Expression
lidlnz.u 𝑈 = (LIdeal‘𝑅)
lidlnz.z 0 = (0g𝑅)
Assertion
Ref Expression
lidlnz ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑥𝐼 𝑥0 )
Distinct variable groups:   𝑥,𝐼   𝑥, 0
Allowed substitution hints:   𝑅(𝑥)   𝑈(𝑥)

Proof of Theorem lidlnz
StepHypRef Expression
1 lidlnz.u . . . . . . 7 𝑈 = (LIdeal‘𝑅)
2 lidlnz.z . . . . . . 7 0 = (0g𝑅)
31, 2lidl0cl 20396 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → 0𝐼)
43snssd 4739 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈) → { 0 } ⊆ 𝐼)
543adant3 1130 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ⊆ 𝐼)
6 simp3 1136 . . . . 5 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 })
76necomd 2998 . . . 4 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ≠ 𝐼)
8 df-pss 3902 . . . 4 ({ 0 } ⊊ 𝐼 ↔ ({ 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼))
95, 7, 8sylanbrc 582 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → { 0 } ⊊ 𝐼)
10 pssnel 4401 . . 3 ({ 0 } ⊊ 𝐼 → ∃𝑥(𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }))
119, 10syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑥(𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }))
12 velsn 4574 . . . . . 6 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
1312necon3bbii 2990 . . . . 5 𝑥 ∈ { 0 } ↔ 𝑥0 )
1413anbi2i 622 . . . 4 ((𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }) ↔ (𝑥𝐼𝑥0 ))
1514exbii 1851 . . 3 (∃𝑥(𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }) ↔ ∃𝑥(𝑥𝐼𝑥0 ))
16 df-rex 3069 . . 3 (∃𝑥𝐼 𝑥0 ↔ ∃𝑥(𝑥𝐼𝑥0 ))
1715, 16bitr4i 277 . 2 (∃𝑥(𝑥𝐼 ∧ ¬ 𝑥 ∈ { 0 }) ↔ ∃𝑥𝐼 𝑥0 )
1811, 17sylib 217 1 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝐼 ≠ { 0 }) → ∃𝑥𝐼 𝑥0 )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wne 2942  wrex 3064  wss 3883  wpss 3884  {csn 4558  cfv 6418  0gc0g 17067  Ringcrg 19698  LIdealclidl 20347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-mgp 19636  df-ur 19653  df-ring 19700  df-subrg 19937  df-lmod 20040  df-lss 20109  df-sra 20349  df-rgmod 20350  df-lidl 20351
This theorem is referenced by:  drngnidl  20413  zringlpirlem1  20596  lidldomn1  45367
  Copyright terms: Public domain W3C validator