Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lidlnz | Structured version Visualization version GIF version |
Description: A nonzero ideal contains a nonzero element. (Contributed by Stefan O'Rear, 3-Jan-2015.) |
Ref | Expression |
---|---|
lidlnz.u | ⊢ 𝑈 = (LIdeal‘𝑅) |
lidlnz.z | ⊢ 0 = (0g‘𝑅) |
Ref | Expression |
---|---|
lidlnz | ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃𝑥 ∈ 𝐼 𝑥 ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lidlnz.u | . . . . . . 7 ⊢ 𝑈 = (LIdeal‘𝑅) | |
2 | lidlnz.z | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
3 | 1, 2 | lidl0cl 20589 | . . . . . 6 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → 0 ∈ 𝐼) |
4 | 3 | snssd 4761 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈) → { 0 } ⊆ 𝐼) |
5 | 4 | 3adant3 1132 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → { 0 } ⊆ 𝐼) |
6 | simp3 1138 | . . . . 5 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → 𝐼 ≠ { 0 }) | |
7 | 6 | necomd 2997 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → { 0 } ≠ 𝐼) |
8 | df-pss 3921 | . . . 4 ⊢ ({ 0 } ⊊ 𝐼 ↔ ({ 0 } ⊆ 𝐼 ∧ { 0 } ≠ 𝐼)) | |
9 | 5, 7, 8 | sylanbrc 584 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → { 0 } ⊊ 𝐼) |
10 | pssnel 4422 | . . 3 ⊢ ({ 0 } ⊊ 𝐼 → ∃𝑥(𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 })) | |
11 | 9, 10 | syl 17 | . 2 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃𝑥(𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 })) |
12 | velsn 4594 | . . . . . 6 ⊢ (𝑥 ∈ { 0 } ↔ 𝑥 = 0 ) | |
13 | 12 | necon3bbii 2989 | . . . . 5 ⊢ (¬ 𝑥 ∈ { 0 } ↔ 𝑥 ≠ 0 ) |
14 | 13 | anbi2i 624 | . . . 4 ⊢ ((𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 }) ↔ (𝑥 ∈ 𝐼 ∧ 𝑥 ≠ 0 )) |
15 | 14 | exbii 1850 | . . 3 ⊢ (∃𝑥(𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 }) ↔ ∃𝑥(𝑥 ∈ 𝐼 ∧ 𝑥 ≠ 0 )) |
16 | df-rex 3072 | . . 3 ⊢ (∃𝑥 ∈ 𝐼 𝑥 ≠ 0 ↔ ∃𝑥(𝑥 ∈ 𝐼 ∧ 𝑥 ≠ 0 )) | |
17 | 15, 16 | bitr4i 278 | . 2 ⊢ (∃𝑥(𝑥 ∈ 𝐼 ∧ ¬ 𝑥 ∈ { 0 }) ↔ ∃𝑥 ∈ 𝐼 𝑥 ≠ 0 ) |
18 | 11, 17 | sylib 217 | 1 ⊢ ((𝑅 ∈ Ring ∧ 𝐼 ∈ 𝑈 ∧ 𝐼 ≠ { 0 }) → ∃𝑥 ∈ 𝐼 𝑥 ≠ 0 ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ≠ wne 2941 ∃wrex 3071 ⊆ wss 3902 ⊊ wpss 3903 {csn 4578 ‘cfv 6484 0gc0g 17248 Ringcrg 19878 LIdealclidl 20538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-rep 5234 ax-sep 5248 ax-nul 5255 ax-pow 5313 ax-pr 5377 ax-un 7655 ax-cnex 11033 ax-resscn 11034 ax-1cn 11035 ax-icn 11036 ax-addcl 11037 ax-addrcl 11038 ax-mulcl 11039 ax-mulrcl 11040 ax-mulcom 11041 ax-addass 11042 ax-mulass 11043 ax-distr 11044 ax-i2m1 11045 ax-1ne0 11046 ax-1rid 11047 ax-rnegex 11048 ax-rrecex 11049 ax-cnre 11050 ax-pre-lttri 11051 ax-pre-lttrn 11052 ax-pre-ltadd 11053 ax-pre-mulgt0 11054 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3350 df-reu 3351 df-rab 3405 df-v 3444 df-sbc 3732 df-csb 3848 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3921 df-nul 4275 df-if 4479 df-pw 4554 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-iun 4948 df-br 5098 df-opab 5160 df-mpt 5181 df-tr 5215 df-id 5523 df-eprel 5529 df-po 5537 df-so 5538 df-fr 5580 df-we 5582 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-pred 6243 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6436 df-fun 6486 df-fn 6487 df-f 6488 df-f1 6489 df-fo 6490 df-f1o 6491 df-fv 6492 df-riota 7298 df-ov 7345 df-oprab 7346 df-mpo 7347 df-om 7786 df-1st 7904 df-2nd 7905 df-frecs 8172 df-wrecs 8203 df-recs 8277 df-rdg 8316 df-er 8574 df-en 8810 df-dom 8811 df-sdom 8812 df-pnf 11117 df-mnf 11118 df-xr 11119 df-ltxr 11120 df-le 11121 df-sub 11313 df-neg 11314 df-nn 12080 df-2 12142 df-3 12143 df-4 12144 df-5 12145 df-6 12146 df-7 12147 df-8 12148 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-mulr 17074 df-sca 17076 df-vsca 17077 df-ip 17078 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-minusg 18678 df-sbg 18679 df-subg 18849 df-mgp 19816 df-ur 19833 df-ring 19880 df-subrg 20127 df-lmod 20231 df-lss 20300 df-sra 20540 df-rgmod 20541 df-lidl 20542 |
This theorem is referenced by: drngnidl 20606 zringlpirlem1 20790 lidldomn1 45895 |
Copyright terms: Public domain | W3C validator |