Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsat0cv Structured version   Visualization version   GIF version

Theorem lsat0cv 38505
Description: A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
lsat0cv.o 0 = (0g𝑊)
lsat0cv.s 𝑆 = (LSubSp‘𝑊)
lsat0cv.a 𝐴 = (LSAtoms‘𝑊)
lsat0cv.c 𝐶 = ( ⋖L𝑊)
lsat0cv.w (𝜑𝑊 ∈ LVec)
lsat0cv.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lsat0cv (𝜑 → (𝑈𝐴 ↔ { 0 }𝐶𝑈))

Proof of Theorem lsat0cv
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsat0cv.o . . 3 0 = (0g𝑊)
2 lsat0cv.a . . 3 𝐴 = (LSAtoms‘𝑊)
3 lsat0cv.c . . 3 𝐶 = ( ⋖L𝑊)
4 lsat0cv.w . . . 4 (𝜑𝑊 ∈ LVec)
54adantr 480 . . 3 ((𝜑𝑈𝐴) → 𝑊 ∈ LVec)
6 simpr 484 . . 3 ((𝜑𝑈𝐴) → 𝑈𝐴)
71, 2, 3, 5, 6lsatcv0 38503 . 2 ((𝜑𝑈𝐴) → { 0 }𝐶𝑈)
8 lsat0cv.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
9 lveclmod 20990 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
104, 9syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
1110adantr 480 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑊 ∈ LMod)
121, 8lsssn0 20831 . . . . . . . . 9 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
1310, 12syl 17 . . . . . . . 8 (𝜑 → { 0 } ∈ 𝑆)
1413adantr 480 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 } ∈ 𝑆)
15 lsat0cv.u . . . . . . . 8 (𝜑𝑈𝑆)
1615adantr 480 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑈𝑆)
17 simpr 484 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 }𝐶𝑈)
188, 3, 11, 14, 16, 17lcvpss 38496 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 } ⊊ 𝑈)
19 pssnel 4471 . . . . . 6 ({ 0 } ⊊ 𝑈 → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }))
2018, 19syl 17 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }))
2115ad2antrr 725 . . . . . . . . . . 11 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑈𝑆)
22 simprl 770 . . . . . . . . . . 11 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥𝑈)
23 eqid 2728 . . . . . . . . . . . 12 (Base‘𝑊) = (Base‘𝑊)
2423, 8lssel 20820 . . . . . . . . . . 11 ((𝑈𝑆𝑥𝑈) → 𝑥 ∈ (Base‘𝑊))
2521, 22, 24syl2anc 583 . . . . . . . . . 10 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥 ∈ (Base‘𝑊))
26 velsn 4645 . . . . . . . . . . . . . 14 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2726biimpri 227 . . . . . . . . . . . . 13 (𝑥 = 0𝑥 ∈ { 0 })
2827necon3bi 2964 . . . . . . . . . . . 12 𝑥 ∈ { 0 } → 𝑥0 )
2928adantl 481 . . . . . . . . . . 11 ((𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → 𝑥0 )
3029adantl 481 . . . . . . . . . 10 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥0 )
31 eldifsn 4791 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑥 ∈ (Base‘𝑊) ∧ 𝑥0 ))
3225, 30, 31sylanbrc 582 . . . . . . . . 9 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥 ∈ ((Base‘𝑊) ∖ { 0 }))
3332, 22jca 511 . . . . . . . 8 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈))
3433ex 412 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → ((𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈)))
3534eximdv 1913 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → ∃𝑥(𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈)))
36 df-rex 3068 . . . . . 6 (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈 ↔ ∃𝑥(𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈))
3735, 36imbitrrdi 251 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈))
3820, 37mpd 15 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈)
39 simpllr 775 . . . . . . . 8 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → { 0 }𝐶𝑈)
408, 3, 4, 13, 15lcvbr2 38494 . . . . . . . . . . 11 (𝜑 → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4140adantr 480 . . . . . . . . . 10 ((𝜑 ∧ { 0 }𝐶𝑈) → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4241ad2antrr 725 . . . . . . . . 9 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4310ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LMod)
4443ad2antrr 725 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑊 ∈ LMod)
45 eldifi 4125 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥 ∈ (Base‘𝑊))
4645adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥 ∈ (Base‘𝑊))
4746ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥 ∈ (Base‘𝑊))
48 eqid 2728 . . . . . . . . . . . . . . . 16 (LSpan‘𝑊) = (LSpan‘𝑊)
4923, 8, 48lspsncl 20860 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆)
5044, 47, 49syl2anc 583 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆)
511, 8lss0ss 20832 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆) → { 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}))
5244, 50, 51syl2anc 583 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}))
53 eldifsni 4794 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥0 )
5453adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥0 )
5554ad2antrr 725 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥0 )
5623, 1, 48lspsneq0 20895 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑥}) = { 0 } ↔ 𝑥 = 0 ))
5744, 47, 56syl2anc 583 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (((LSpan‘𝑊)‘{𝑥}) = { 0 } ↔ 𝑥 = 0 ))
5857necon3bid 2982 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (((LSpan‘𝑊)‘{𝑥}) ≠ { 0 } ↔ 𝑥0 ))
5955, 58mpbird 257 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ≠ { 0 })
6059necomd 2993 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ≠ ((LSpan‘𝑊)‘{𝑥}))
61 df-pss 3966 . . . . . . . . . . . . 13 ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ↔ ({ 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}) ∧ { 0 } ≠ ((LSpan‘𝑊)‘{𝑥})))
6252, 60, 61sylanbrc 582 . . . . . . . . . . . 12 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}))
6315ad2antrr 725 . . . . . . . . . . . . . 14 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑈𝑆)
6463ad2antrr 725 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑈𝑆)
65 simplr 768 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥𝑈)
668, 48, 44, 64, 65lspsnel5a 20879 . . . . . . . . . . . 12 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)
6762, 66jca 511 . . . . . . . . . . 11 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
68 psseq2 4086 . . . . . . . . . . . . . . 15 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → ({ 0 } ⊊ 𝑠 ↔ { 0 } ⊊ ((LSpan‘𝑊)‘{𝑥})))
69 sseq1 4005 . . . . . . . . . . . . . . 15 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
7068, 69anbi12d 631 . . . . . . . . . . . . . 14 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (({ 0 } ⊊ 𝑠𝑠𝑈) ↔ ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)))
71 eqeq1 2732 . . . . . . . . . . . . . 14 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠 = 𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7270, 71imbi12d 344 . . . . . . . . . . . . 13 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → ((({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7372rspcv 3605 . . . . . . . . . . . 12 (((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆 → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7450, 73syl 17 . . . . . . . . . . 11 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7567, 74mpid 44 . . . . . . . . . 10 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7675expimpd 453 . . . . . . . . 9 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → (({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈)) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7742, 76sylbid 239 . . . . . . . 8 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ({ 0 }𝐶𝑈 → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7839, 77mpd 15 . . . . . . 7 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)
7978eqcomd 2734 . . . . . 6 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → 𝑈 = ((LSpan‘𝑊)‘{𝑥}))
8079ex 412 . . . . 5 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑥𝑈𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8180reximdva 3165 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈 → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8238, 81mpd 15 . . 3 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥}))
834adantr 480 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑊 ∈ LVec)
8423, 48, 1, 2islsat 38463 . . . 4 (𝑊 ∈ LVec → (𝑈𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8583, 84syl 17 . . 3 ((𝜑 ∧ { 0 }𝐶𝑈) → (𝑈𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8682, 85mpbird 257 . 2 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑈𝐴)
877, 86impbida 800 1 (𝜑 → (𝑈𝐴 ↔ { 0 }𝐶𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1534  wex 1774  wcel 2099  wne 2937  wral 3058  wrex 3067  cdif 3944  wss 3947  wpss 3948  {csn 4629   class class class wbr 5148  cfv 6548  Basecbs 17179  0gc0g 17420  LModclmod 20742  LSubSpclss 20814  LSpanclspn 20854  LVecclvec 20986  LSAtomsclsa 38446  L clcv 38490
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-cnex 11194  ax-resscn 11195  ax-1cn 11196  ax-icn 11197  ax-addcl 11198  ax-addrcl 11199  ax-mulcl 11200  ax-mulrcl 11201  ax-mulcom 11202  ax-addass 11203  ax-mulass 11204  ax-distr 11205  ax-i2m1 11206  ax-1ne0 11207  ax-1rid 11208  ax-rnegex 11209  ax-rrecex 11210  ax-cnre 11211  ax-pre-lttri 11212  ax-pre-lttrn 11213  ax-pre-ltadd 11214  ax-pre-mulgt0 11215
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-tpos 8231  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8964  df-dom 8965  df-sdom 8966  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-sub 11476  df-neg 11477  df-nn 12243  df-2 12305  df-3 12306  df-sets 17132  df-slot 17150  df-ndx 17162  df-base 17180  df-ress 17209  df-plusg 17245  df-mulr 17246  df-0g 17422  df-mgm 18599  df-sgrp 18678  df-mnd 18694  df-grp 18892  df-minusg 18893  df-sbg 18894  df-cmn 19736  df-abl 19737  df-mgp 20074  df-rng 20092  df-ur 20121  df-ring 20174  df-oppr 20272  df-dvdsr 20295  df-unit 20296  df-invr 20326  df-drng 20625  df-lmod 20744  df-lss 20815  df-lsp 20855  df-lvec 20987  df-lsatoms 38448  df-lcv 38491
This theorem is referenced by:  mapdcnvatN  41139  mapdat  41140
  Copyright terms: Public domain W3C validator