Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsat0cv Structured version   Visualization version   GIF version

Theorem lsat0cv 36202
Description: A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
lsat0cv.o 0 = (0g𝑊)
lsat0cv.s 𝑆 = (LSubSp‘𝑊)
lsat0cv.a 𝐴 = (LSAtoms‘𝑊)
lsat0cv.c 𝐶 = ( ⋖L𝑊)
lsat0cv.w (𝜑𝑊 ∈ LVec)
lsat0cv.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lsat0cv (𝜑 → (𝑈𝐴 ↔ { 0 }𝐶𝑈))

Proof of Theorem lsat0cv
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsat0cv.o . . 3 0 = (0g𝑊)
2 lsat0cv.a . . 3 𝐴 = (LSAtoms‘𝑊)
3 lsat0cv.c . . 3 𝐶 = ( ⋖L𝑊)
4 lsat0cv.w . . . 4 (𝜑𝑊 ∈ LVec)
54adantr 483 . . 3 ((𝜑𝑈𝐴) → 𝑊 ∈ LVec)
6 simpr 487 . . 3 ((𝜑𝑈𝐴) → 𝑈𝐴)
71, 2, 3, 5, 6lsatcv0 36200 . 2 ((𝜑𝑈𝐴) → { 0 }𝐶𝑈)
8 lsat0cv.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
9 lveclmod 19851 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
104, 9syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
1110adantr 483 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑊 ∈ LMod)
121, 8lsssn0 19692 . . . . . . . . 9 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
1310, 12syl 17 . . . . . . . 8 (𝜑 → { 0 } ∈ 𝑆)
1413adantr 483 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 } ∈ 𝑆)
15 lsat0cv.u . . . . . . . 8 (𝜑𝑈𝑆)
1615adantr 483 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑈𝑆)
17 simpr 487 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 }𝐶𝑈)
188, 3, 11, 14, 16, 17lcvpss 36193 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 } ⊊ 𝑈)
19 pssnel 4394 . . . . . 6 ({ 0 } ⊊ 𝑈 → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }))
2018, 19syl 17 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }))
2115ad2antrr 724 . . . . . . . . . . 11 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑈𝑆)
22 simprl 769 . . . . . . . . . . 11 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥𝑈)
23 eqid 2820 . . . . . . . . . . . 12 (Base‘𝑊) = (Base‘𝑊)
2423, 8lssel 19682 . . . . . . . . . . 11 ((𝑈𝑆𝑥𝑈) → 𝑥 ∈ (Base‘𝑊))
2521, 22, 24syl2anc 586 . . . . . . . . . 10 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥 ∈ (Base‘𝑊))
26 velsn 4557 . . . . . . . . . . . . . 14 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2726biimpri 230 . . . . . . . . . . . . 13 (𝑥 = 0𝑥 ∈ { 0 })
2827necon3bi 3032 . . . . . . . . . . . 12 𝑥 ∈ { 0 } → 𝑥0 )
2928adantl 484 . . . . . . . . . . 11 ((𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → 𝑥0 )
3029adantl 484 . . . . . . . . . 10 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥0 )
31 eldifsn 4693 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑥 ∈ (Base‘𝑊) ∧ 𝑥0 ))
3225, 30, 31sylanbrc 585 . . . . . . . . 9 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥 ∈ ((Base‘𝑊) ∖ { 0 }))
3332, 22jca 514 . . . . . . . 8 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈))
3433ex 415 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → ((𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈)))
3534eximdv 1918 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → ∃𝑥(𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈)))
36 df-rex 3131 . . . . . 6 (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈 ↔ ∃𝑥(𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈))
3735, 36syl6ibr 254 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈))
3820, 37mpd 15 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈)
39 simpllr 774 . . . . . . . 8 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → { 0 }𝐶𝑈)
408, 3, 4, 13, 15lcvbr2 36191 . . . . . . . . . . 11 (𝜑 → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4140adantr 483 . . . . . . . . . 10 ((𝜑 ∧ { 0 }𝐶𝑈) → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4241ad2antrr 724 . . . . . . . . 9 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4310ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LMod)
4443ad2antrr 724 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑊 ∈ LMod)
45 eldifi 4079 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥 ∈ (Base‘𝑊))
4645adantl 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥 ∈ (Base‘𝑊))
4746ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥 ∈ (Base‘𝑊))
48 eqid 2820 . . . . . . . . . . . . . . . 16 (LSpan‘𝑊) = (LSpan‘𝑊)
4923, 8, 48lspsncl 19722 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆)
5044, 47, 49syl2anc 586 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆)
511, 8lss0ss 19693 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆) → { 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}))
5244, 50, 51syl2anc 586 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}))
53 eldifsni 4696 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥0 )
5453adantl 484 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥0 )
5554ad2antrr 724 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥0 )
5623, 1, 48lspsneq0 19757 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑥}) = { 0 } ↔ 𝑥 = 0 ))
5744, 47, 56syl2anc 586 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (((LSpan‘𝑊)‘{𝑥}) = { 0 } ↔ 𝑥 = 0 ))
5857necon3bid 3050 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (((LSpan‘𝑊)‘{𝑥}) ≠ { 0 } ↔ 𝑥0 ))
5955, 58mpbird 259 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ≠ { 0 })
6059necomd 3061 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ≠ ((LSpan‘𝑊)‘{𝑥}))
61 df-pss 3930 . . . . . . . . . . . . 13 ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ↔ ({ 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}) ∧ { 0 } ≠ ((LSpan‘𝑊)‘{𝑥})))
6252, 60, 61sylanbrc 585 . . . . . . . . . . . 12 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}))
6315ad2antrr 724 . . . . . . . . . . . . . 14 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑈𝑆)
6463ad2antrr 724 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑈𝑆)
65 simplr 767 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥𝑈)
668, 48, 44, 64, 65lspsnel5a 19741 . . . . . . . . . . . 12 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)
6762, 66jca 514 . . . . . . . . . . 11 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
68 psseq2 4041 . . . . . . . . . . . . . . 15 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → ({ 0 } ⊊ 𝑠 ↔ { 0 } ⊊ ((LSpan‘𝑊)‘{𝑥})))
69 sseq1 3968 . . . . . . . . . . . . . . 15 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
7068, 69anbi12d 632 . . . . . . . . . . . . . 14 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (({ 0 } ⊊ 𝑠𝑠𝑈) ↔ ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)))
71 eqeq1 2824 . . . . . . . . . . . . . 14 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠 = 𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7270, 71imbi12d 347 . . . . . . . . . . . . 13 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → ((({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7372rspcv 3597 . . . . . . . . . . . 12 (((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆 → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7450, 73syl 17 . . . . . . . . . . 11 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7567, 74mpid 44 . . . . . . . . . 10 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7675expimpd 456 . . . . . . . . 9 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → (({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈)) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7742, 76sylbid 242 . . . . . . . 8 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ({ 0 }𝐶𝑈 → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7839, 77mpd 15 . . . . . . 7 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)
7978eqcomd 2826 . . . . . 6 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → 𝑈 = ((LSpan‘𝑊)‘{𝑥}))
8079ex 415 . . . . 5 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑥𝑈𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8180reximdva 3261 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈 → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8238, 81mpd 15 . . 3 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥}))
834adantr 483 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑊 ∈ LVec)
8423, 48, 1, 2islsat 36160 . . . 4 (𝑊 ∈ LVec → (𝑈𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8583, 84syl 17 . . 3 ((𝜑 ∧ { 0 }𝐶𝑈) → (𝑈𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8682, 85mpbird 259 . 2 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑈𝐴)
877, 86impbida 799 1 (𝜑 → (𝑈𝐴 ↔ { 0 }𝐶𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wex 1780  wcel 2114  wne 3006  wral 3125  wrex 3126  cdif 3909  wss 3912  wpss 3913  {csn 4541   class class class wbr 5040  cfv 6329  Basecbs 16459  0gc0g 16689  LModclmod 19607  LSubSpclss 19676  LSpanclspn 19716  LVecclvec 19847  LSAtomsclsa 36143  L clcv 36187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2792  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pow 5240  ax-pr 5304  ax-un 7437  ax-cnex 10569  ax-resscn 10570  ax-1cn 10571  ax-icn 10572  ax-addcl 10573  ax-addrcl 10574  ax-mulcl 10575  ax-mulrcl 10576  ax-mulcom 10577  ax-addass 10578  ax-mulass 10579  ax-distr 10580  ax-i2m1 10581  ax-1ne0 10582  ax-1rid 10583  ax-rnegex 10584  ax-rrecex 10585  ax-cnre 10586  ax-pre-lttri 10587  ax-pre-lttrn 10588  ax-pre-ltadd 10589  ax-pre-mulgt0 10590
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2891  df-nfc 2959  df-ne 3007  df-nel 3111  df-ral 3130  df-rex 3131  df-reu 3132  df-rmo 3133  df-rab 3134  df-v 3475  df-sbc 3752  df-csb 3860  df-dif 3915  df-un 3917  df-in 3919  df-ss 3928  df-pss 3930  df-nul 4268  df-if 4442  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4813  df-int 4851  df-iun 4895  df-br 5041  df-opab 5103  df-mpt 5121  df-tr 5147  df-id 5434  df-eprel 5439  df-po 5448  df-so 5449  df-fr 5488  df-we 5490  df-xp 5535  df-rel 5536  df-cnv 5537  df-co 5538  df-dm 5539  df-rn 5540  df-res 5541  df-ima 5542  df-pred 6122  df-ord 6168  df-on 6169  df-lim 6170  df-suc 6171  df-iota 6288  df-fun 6331  df-fn 6332  df-f 6333  df-f1 6334  df-fo 6335  df-f1o 6336  df-fv 6337  df-riota 7089  df-ov 7134  df-oprab 7135  df-mpo 7136  df-om 7557  df-1st 7665  df-2nd 7666  df-tpos 7868  df-wrecs 7923  df-recs 7984  df-rdg 8022  df-er 8265  df-en 8486  df-dom 8487  df-sdom 8488  df-pnf 10653  df-mnf 10654  df-xr 10655  df-ltxr 10656  df-le 10657  df-sub 10848  df-neg 10849  df-nn 11615  df-2 11677  df-3 11678  df-ndx 16462  df-slot 16463  df-base 16465  df-sets 16466  df-ress 16467  df-plusg 16554  df-mulr 16555  df-0g 16691  df-mgm 17828  df-sgrp 17877  df-mnd 17888  df-grp 18082  df-minusg 18083  df-sbg 18084  df-cmn 18884  df-abl 18885  df-mgp 19216  df-ur 19228  df-ring 19275  df-oppr 19349  df-dvdsr 19367  df-unit 19368  df-invr 19398  df-drng 19477  df-lmod 19609  df-lss 19677  df-lsp 19717  df-lvec 19848  df-lsatoms 36145  df-lcv 36188
This theorem is referenced by:  mapdcnvatN  38835  mapdat  38836
  Copyright terms: Public domain W3C validator