Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsat0cv Structured version   Visualization version   GIF version

Theorem lsat0cv 34921
Description: A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
lsat0cv.o 0 = (0g𝑊)
lsat0cv.s 𝑆 = (LSubSp‘𝑊)
lsat0cv.a 𝐴 = (LSAtoms‘𝑊)
lsat0cv.c 𝐶 = ( ⋖L𝑊)
lsat0cv.w (𝜑𝑊 ∈ LVec)
lsat0cv.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lsat0cv (𝜑 → (𝑈𝐴 ↔ { 0 }𝐶𝑈))

Proof of Theorem lsat0cv
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsat0cv.o . . 3 0 = (0g𝑊)
2 lsat0cv.a . . 3 𝐴 = (LSAtoms‘𝑊)
3 lsat0cv.c . . 3 𝐶 = ( ⋖L𝑊)
4 lsat0cv.w . . . 4 (𝜑𝑊 ∈ LVec)
54adantr 472 . . 3 ((𝜑𝑈𝐴) → 𝑊 ∈ LVec)
6 simpr 477 . . 3 ((𝜑𝑈𝐴) → 𝑈𝐴)
71, 2, 3, 5, 6lsatcv0 34919 . 2 ((𝜑𝑈𝐴) → { 0 }𝐶𝑈)
8 lsat0cv.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
9 lveclmod 19378 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
104, 9syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
1110adantr 472 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑊 ∈ LMod)
121, 8lsssn0 19217 . . . . . . . . 9 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
1310, 12syl 17 . . . . . . . 8 (𝜑 → { 0 } ∈ 𝑆)
1413adantr 472 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 } ∈ 𝑆)
15 lsat0cv.u . . . . . . . 8 (𝜑𝑈𝑆)
1615adantr 472 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑈𝑆)
17 simpr 477 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 }𝐶𝑈)
188, 3, 11, 14, 16, 17lcvpss 34912 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 } ⊊ 𝑈)
19 pssnel 4199 . . . . . 6 ({ 0 } ⊊ 𝑈 → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }))
2018, 19syl 17 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }))
2115ad2antrr 717 . . . . . . . . . . 11 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑈𝑆)
22 simprl 787 . . . . . . . . . . 11 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥𝑈)
23 eqid 2765 . . . . . . . . . . . 12 (Base‘𝑊) = (Base‘𝑊)
2423, 8lssel 19207 . . . . . . . . . . 11 ((𝑈𝑆𝑥𝑈) → 𝑥 ∈ (Base‘𝑊))
2521, 22, 24syl2anc 579 . . . . . . . . . 10 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥 ∈ (Base‘𝑊))
26 velsn 4350 . . . . . . . . . . . . . 14 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2726biimpri 219 . . . . . . . . . . . . 13 (𝑥 = 0𝑥 ∈ { 0 })
2827necon3bi 2963 . . . . . . . . . . . 12 𝑥 ∈ { 0 } → 𝑥0 )
2928adantl 473 . . . . . . . . . . 11 ((𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → 𝑥0 )
3029adantl 473 . . . . . . . . . 10 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥0 )
31 eldifsn 4472 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑥 ∈ (Base‘𝑊) ∧ 𝑥0 ))
3225, 30, 31sylanbrc 578 . . . . . . . . 9 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥 ∈ ((Base‘𝑊) ∖ { 0 }))
3332, 22jca 507 . . . . . . . 8 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈))
3433ex 401 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → ((𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈)))
3534eximdv 2012 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → ∃𝑥(𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈)))
36 df-rex 3061 . . . . . 6 (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈 ↔ ∃𝑥(𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈))
3735, 36syl6ibr 243 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈))
3820, 37mpd 15 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈)
39 simpllr 793 . . . . . . . 8 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → { 0 }𝐶𝑈)
408, 3, 4, 13, 15lcvbr2 34910 . . . . . . . . . . 11 (𝜑 → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4140adantr 472 . . . . . . . . . 10 ((𝜑 ∧ { 0 }𝐶𝑈) → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4241ad2antrr 717 . . . . . . . . 9 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4310ad2antrr 717 . . . . . . . . . . . . . . 15 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LMod)
4443ad2antrr 717 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑊 ∈ LMod)
45 eldifi 3894 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥 ∈ (Base‘𝑊))
4645adantl 473 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥 ∈ (Base‘𝑊))
4746ad2antrr 717 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥 ∈ (Base‘𝑊))
48 eqid 2765 . . . . . . . . . . . . . . . 16 (LSpan‘𝑊) = (LSpan‘𝑊)
4923, 8, 48lspsncl 19249 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆)
5044, 47, 49syl2anc 579 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆)
511, 8lss0ss 19218 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆) → { 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}))
5244, 50, 51syl2anc 579 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}))
53 eldifsni 4476 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥0 )
5453adantl 473 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥0 )
5554ad2antrr 717 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥0 )
5623, 1, 48lspsneq0 19284 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑥}) = { 0 } ↔ 𝑥 = 0 ))
5744, 47, 56syl2anc 579 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (((LSpan‘𝑊)‘{𝑥}) = { 0 } ↔ 𝑥 = 0 ))
5857necon3bid 2981 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (((LSpan‘𝑊)‘{𝑥}) ≠ { 0 } ↔ 𝑥0 ))
5955, 58mpbird 248 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ≠ { 0 })
6059necomd 2992 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ≠ ((LSpan‘𝑊)‘{𝑥}))
61 df-pss 3748 . . . . . . . . . . . . 13 ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ↔ ({ 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}) ∧ { 0 } ≠ ((LSpan‘𝑊)‘{𝑥})))
6252, 60, 61sylanbrc 578 . . . . . . . . . . . 12 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}))
6315ad2antrr 717 . . . . . . . . . . . . . 14 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑈𝑆)
6463ad2antrr 717 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑈𝑆)
65 simplr 785 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥𝑈)
668, 48, 44, 64, 65lspsnel5a 19268 . . . . . . . . . . . 12 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)
6762, 66jca 507 . . . . . . . . . . 11 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
68 psseq2 3856 . . . . . . . . . . . . . . 15 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → ({ 0 } ⊊ 𝑠 ↔ { 0 } ⊊ ((LSpan‘𝑊)‘{𝑥})))
69 sseq1 3786 . . . . . . . . . . . . . . 15 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
7068, 69anbi12d 624 . . . . . . . . . . . . . 14 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (({ 0 } ⊊ 𝑠𝑠𝑈) ↔ ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)))
71 eqeq1 2769 . . . . . . . . . . . . . 14 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠 = 𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7270, 71imbi12d 335 . . . . . . . . . . . . 13 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → ((({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7372rspcv 3457 . . . . . . . . . . . 12 (((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆 → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7450, 73syl 17 . . . . . . . . . . 11 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7567, 74mpid 44 . . . . . . . . . 10 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7675expimpd 445 . . . . . . . . 9 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → (({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈)) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7742, 76sylbid 231 . . . . . . . 8 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ({ 0 }𝐶𝑈 → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7839, 77mpd 15 . . . . . . 7 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)
7978eqcomd 2771 . . . . . 6 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → 𝑈 = ((LSpan‘𝑊)‘{𝑥}))
8079ex 401 . . . . 5 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑥𝑈𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8180reximdva 3163 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈 → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8238, 81mpd 15 . . 3 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥}))
834adantr 472 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑊 ∈ LVec)
8423, 48, 1, 2islsat 34879 . . . 4 (𝑊 ∈ LVec → (𝑈𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8583, 84syl 17 . . 3 ((𝜑 ∧ { 0 }𝐶𝑈) → (𝑈𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8682, 85mpbird 248 . 2 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑈𝐴)
877, 86impbida 835 1 (𝜑 → (𝑈𝐴 ↔ { 0 }𝐶𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wex 1874  wcel 2155  wne 2937  wral 3055  wrex 3056  cdif 3729  wss 3732  wpss 3733  {csn 4334   class class class wbr 4809  cfv 6068  Basecbs 16132  0gc0g 16368  LModclmod 19132  LSubSpclss 19201  LSpanclspn 19243  LVecclvec 19374  LSAtomsclsa 34862  L clcv 34906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-om 7264  df-1st 7366  df-2nd 7367  df-tpos 7555  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-0g 16370  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-grp 17694  df-minusg 17695  df-sbg 17696  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-oppr 18890  df-dvdsr 18908  df-unit 18909  df-invr 18939  df-drng 19018  df-lmod 19134  df-lss 19202  df-lsp 19244  df-lvec 19375  df-lsatoms 34864  df-lcv 34907
This theorem is referenced by:  mapdcnvatN  37554  mapdat  37555
  Copyright terms: Public domain W3C validator