Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lsat0cv Structured version   Visualization version   GIF version

Theorem lsat0cv 39015
Description: A subspace is an atom iff it covers the zero subspace. This could serve as an alternate definition of an atom. TODO: this is a quick-and-dirty proof that could probably be more efficient. (Contributed by NM, 14-Mar-2015.)
Hypotheses
Ref Expression
lsat0cv.o 0 = (0g𝑊)
lsat0cv.s 𝑆 = (LSubSp‘𝑊)
lsat0cv.a 𝐴 = (LSAtoms‘𝑊)
lsat0cv.c 𝐶 = ( ⋖L𝑊)
lsat0cv.w (𝜑𝑊 ∈ LVec)
lsat0cv.u (𝜑𝑈𝑆)
Assertion
Ref Expression
lsat0cv (𝜑 → (𝑈𝐴 ↔ { 0 }𝐶𝑈))

Proof of Theorem lsat0cv
Dummy variables 𝑥 𝑠 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lsat0cv.o . . 3 0 = (0g𝑊)
2 lsat0cv.a . . 3 𝐴 = (LSAtoms‘𝑊)
3 lsat0cv.c . . 3 𝐶 = ( ⋖L𝑊)
4 lsat0cv.w . . . 4 (𝜑𝑊 ∈ LVec)
54adantr 480 . . 3 ((𝜑𝑈𝐴) → 𝑊 ∈ LVec)
6 simpr 484 . . 3 ((𝜑𝑈𝐴) → 𝑈𝐴)
71, 2, 3, 5, 6lsatcv0 39013 . 2 ((𝜑𝑈𝐴) → { 0 }𝐶𝑈)
8 lsat0cv.s . . . . . . 7 𝑆 = (LSubSp‘𝑊)
9 lveclmod 21123 . . . . . . . . 9 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
104, 9syl 17 . . . . . . . 8 (𝜑𝑊 ∈ LMod)
1110adantr 480 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑊 ∈ LMod)
121, 8lsssn0 20964 . . . . . . . . 9 (𝑊 ∈ LMod → { 0 } ∈ 𝑆)
1310, 12syl 17 . . . . . . . 8 (𝜑 → { 0 } ∈ 𝑆)
1413adantr 480 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 } ∈ 𝑆)
15 lsat0cv.u . . . . . . . 8 (𝜑𝑈𝑆)
1615adantr 480 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑈𝑆)
17 simpr 484 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 }𝐶𝑈)
188, 3, 11, 14, 16, 17lcvpss 39006 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑈) → { 0 } ⊊ 𝑈)
19 pssnel 4477 . . . . . 6 ({ 0 } ⊊ 𝑈 → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }))
2018, 19syl 17 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }))
2115ad2antrr 726 . . . . . . . . . . 11 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑈𝑆)
22 simprl 771 . . . . . . . . . . 11 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥𝑈)
23 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑊) = (Base‘𝑊)
2423, 8lssel 20953 . . . . . . . . . . 11 ((𝑈𝑆𝑥𝑈) → 𝑥 ∈ (Base‘𝑊))
2521, 22, 24syl2anc 584 . . . . . . . . . 10 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥 ∈ (Base‘𝑊))
26 velsn 4647 . . . . . . . . . . . . . 14 (𝑥 ∈ { 0 } ↔ 𝑥 = 0 )
2726biimpri 228 . . . . . . . . . . . . 13 (𝑥 = 0𝑥 ∈ { 0 })
2827necon3bi 2965 . . . . . . . . . . . 12 𝑥 ∈ { 0 } → 𝑥0 )
2928adantl 481 . . . . . . . . . . 11 ((𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → 𝑥0 )
3029adantl 481 . . . . . . . . . 10 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥0 )
31 eldifsn 4791 . . . . . . . . . 10 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ↔ (𝑥 ∈ (Base‘𝑊) ∧ 𝑥0 ))
3225, 30, 31sylanbrc 583 . . . . . . . . 9 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → 𝑥 ∈ ((Base‘𝑊) ∖ { 0 }))
3332, 22jca 511 . . . . . . . 8 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ (𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 })) → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈))
3433ex 412 . . . . . . 7 ((𝜑 ∧ { 0 }𝐶𝑈) → ((𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈)))
3534eximdv 1915 . . . . . 6 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → ∃𝑥(𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈)))
36 df-rex 3069 . . . . . 6 (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈 ↔ ∃𝑥(𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) ∧ 𝑥𝑈))
3735, 36imbitrrdi 252 . . . . 5 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥(𝑥𝑈 ∧ ¬ 𝑥 ∈ { 0 }) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈))
3820, 37mpd 15 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈)
39 simpllr 776 . . . . . . . 8 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → { 0 }𝐶𝑈)
408, 3, 4, 13, 15lcvbr2 39004 . . . . . . . . . . 11 (𝜑 → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4140adantr 480 . . . . . . . . . 10 ((𝜑 ∧ { 0 }𝐶𝑈) → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4241ad2antrr 726 . . . . . . . . 9 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ({ 0 }𝐶𝑈 ↔ ({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈))))
4310ad2antrr 726 . . . . . . . . . . . . . . 15 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑊 ∈ LMod)
4443ad2antrr 726 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑊 ∈ LMod)
45 eldifi 4141 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥 ∈ (Base‘𝑊))
4645adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥 ∈ (Base‘𝑊))
4746ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥 ∈ (Base‘𝑊))
48 eqid 2735 . . . . . . . . . . . . . . . 16 (LSpan‘𝑊) = (LSpan‘𝑊)
4923, 8, 48lspsncl 20993 . . . . . . . . . . . . . . 15 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆)
5044, 47, 49syl2anc 584 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆)
511, 8lss0ss 20965 . . . . . . . . . . . . . 14 ((𝑊 ∈ LMod ∧ ((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆) → { 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}))
5244, 50, 51syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}))
53 eldifsni 4795 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ((Base‘𝑊) ∖ { 0 }) → 𝑥0 )
5453adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑥0 )
5554ad2antrr 726 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥0 )
5623, 1, 48lspsneq0 21028 . . . . . . . . . . . . . . . . 17 ((𝑊 ∈ LMod ∧ 𝑥 ∈ (Base‘𝑊)) → (((LSpan‘𝑊)‘{𝑥}) = { 0 } ↔ 𝑥 = 0 ))
5744, 47, 56syl2anc 584 . . . . . . . . . . . . . . . 16 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (((LSpan‘𝑊)‘{𝑥}) = { 0 } ↔ 𝑥 = 0 ))
5857necon3bid 2983 . . . . . . . . . . . . . . 15 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (((LSpan‘𝑊)‘{𝑥}) ≠ { 0 } ↔ 𝑥0 ))
5955, 58mpbird 257 . . . . . . . . . . . . . 14 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ≠ { 0 })
6059necomd 2994 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ≠ ((LSpan‘𝑊)‘{𝑥}))
61 df-pss 3983 . . . . . . . . . . . . 13 ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ↔ ({ 0 } ⊆ ((LSpan‘𝑊)‘{𝑥}) ∧ { 0 } ≠ ((LSpan‘𝑊)‘{𝑥})))
6252, 60, 61sylanbrc 583 . . . . . . . . . . . 12 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → { 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}))
6315ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → 𝑈𝑆)
6463ad2antrr 726 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑈𝑆)
65 simplr 769 . . . . . . . . . . . . 13 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → 𝑥𝑈)
668, 48, 44, 64, 65ellspsn5 21012 . . . . . . . . . . . 12 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)
6762, 66jca 511 . . . . . . . . . . 11 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
68 psseq2 4101 . . . . . . . . . . . . . . 15 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → ({ 0 } ⊊ 𝑠 ↔ { 0 } ⊊ ((LSpan‘𝑊)‘{𝑥})))
69 sseq1 4021 . . . . . . . . . . . . . . 15 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈))
7068, 69anbi12d 632 . . . . . . . . . . . . . 14 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (({ 0 } ⊊ 𝑠𝑠𝑈) ↔ ({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈)))
71 eqeq1 2739 . . . . . . . . . . . . . 14 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → (𝑠 = 𝑈 ↔ ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7270, 71imbi12d 344 . . . . . . . . . . . . 13 (𝑠 = ((LSpan‘𝑊)‘{𝑥}) → ((({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) ↔ (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7372rspcv 3618 . . . . . . . . . . . 12 (((LSpan‘𝑊)‘{𝑥}) ∈ 𝑆 → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7450, 73syl 17 . . . . . . . . . . 11 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → (({ 0 } ⊊ ((LSpan‘𝑊)‘{𝑥}) ∧ ((LSpan‘𝑊)‘{𝑥}) ⊆ 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)))
7567, 74mpid 44 . . . . . . . . . 10 (((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) ∧ { 0 } ⊊ 𝑈) → (∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7675expimpd 453 . . . . . . . . 9 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → (({ 0 } ⊊ 𝑈 ∧ ∀𝑠𝑆 (({ 0 } ⊊ 𝑠𝑠𝑈) → 𝑠 = 𝑈)) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7742, 76sylbid 240 . . . . . . . 8 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ({ 0 }𝐶𝑈 → ((LSpan‘𝑊)‘{𝑥}) = 𝑈))
7839, 77mpd 15 . . . . . . 7 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → ((LSpan‘𝑊)‘{𝑥}) = 𝑈)
7978eqcomd 2741 . . . . . 6 ((((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) ∧ 𝑥𝑈) → 𝑈 = ((LSpan‘𝑊)‘{𝑥}))
8079ex 412 . . . . 5 (((𝜑 ∧ { 0 }𝐶𝑈) ∧ 𝑥 ∈ ((Base‘𝑊) ∖ { 0 })) → (𝑥𝑈𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8180reximdva 3166 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → (∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑥𝑈 → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8238, 81mpd 15 . . 3 ((𝜑 ∧ { 0 }𝐶𝑈) → ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥}))
834adantr 480 . . . 4 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑊 ∈ LVec)
8423, 48, 1, 2islsat 38973 . . . 4 (𝑊 ∈ LVec → (𝑈𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8583, 84syl 17 . . 3 ((𝜑 ∧ { 0 }𝐶𝑈) → (𝑈𝐴 ↔ ∃𝑥 ∈ ((Base‘𝑊) ∖ { 0 })𝑈 = ((LSpan‘𝑊)‘{𝑥})))
8682, 85mpbird 257 . 2 ((𝜑 ∧ { 0 }𝐶𝑈) → 𝑈𝐴)
877, 86impbida 801 1 (𝜑 → (𝑈𝐴 ↔ { 0 }𝐶𝑈))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  wrex 3068  cdif 3960  wss 3963  wpss 3964  {csn 4631   class class class wbr 5148  cfv 6563  Basecbs 17245  0gc0g 17486  LModclmod 20875  LSubSpclss 20947  LSpanclspn 20987  LVecclvec 21119  LSAtomsclsa 38956  L clcv 39000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120  df-lsatoms 38958  df-lcv 39001
This theorem is referenced by:  mapdcnvatN  41649  mapdat  41650
  Copyright terms: Public domain W3C validator