MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssr Structured version   Visualization version   GIF version

Theorem infpssr 9887
Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infpssr ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴)

Proof of Theorem infpssr
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 4371 . . 3 (𝑋𝐴 → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋))
21adantr 484 . 2 ((𝑋𝐴𝑋𝐴) → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋))
3 eldif 3863 . . . 4 (𝑦 ∈ (𝐴𝑋) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝑋))
4 pssss 3996 . . . . . 6 (𝑋𝐴𝑋𝐴)
5 bren 8614 . . . . . . . 8 (𝑋𝐴 ↔ ∃𝑓 𝑓:𝑋1-1-onto𝐴)
6 simpr 488 . . . . . . . . . . . . 13 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑓:𝑋1-1-onto𝐴)
7 f1ofo 6646 . . . . . . . . . . . . 13 (𝑓:𝑋1-1-onto𝐴𝑓:𝑋onto𝐴)
8 forn 6614 . . . . . . . . . . . . 13 (𝑓:𝑋onto𝐴 → ran 𝑓 = 𝐴)
96, 7, 83syl 18 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → ran 𝑓 = 𝐴)
10 vex 3402 . . . . . . . . . . . . 13 𝑓 ∈ V
1110rnex 7668 . . . . . . . . . . . 12 ran 𝑓 ∈ V
129, 11eqeltrrdi 2840 . . . . . . . . . . 11 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝐴 ∈ V)
13 simplr 769 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑋𝐴)
14 simpll 767 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑦 ∈ (𝐴𝑋))
15 eqid 2736 . . . . . . . . . . . 12 (rec(𝑓, 𝑦) ↾ ω) = (rec(𝑓, 𝑦) ↾ ω)
1613, 6, 14, 15infpssrlem5 9886 . . . . . . . . . . 11 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → (𝐴 ∈ V → ω ≼ 𝐴))
1712, 16mpd 15 . . . . . . . . . 10 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → ω ≼ 𝐴)
1817ex 416 . . . . . . . . 9 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (𝑓:𝑋1-1-onto𝐴 → ω ≼ 𝐴))
1918exlimdv 1941 . . . . . . . 8 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (∃𝑓 𝑓:𝑋1-1-onto𝐴 → ω ≼ 𝐴))
205, 19syl5bi 245 . . . . . . 7 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (𝑋𝐴 → ω ≼ 𝐴))
2120ex 416 . . . . . 6 (𝑦 ∈ (𝐴𝑋) → (𝑋𝐴 → (𝑋𝐴 → ω ≼ 𝐴)))
224, 21syl5 34 . . . . 5 (𝑦 ∈ (𝐴𝑋) → (𝑋𝐴 → (𝑋𝐴 → ω ≼ 𝐴)))
2322impd 414 . . . 4 (𝑦 ∈ (𝐴𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
243, 23sylbir 238 . . 3 ((𝑦𝐴 ∧ ¬ 𝑦𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
2524exlimiv 1938 . 2 (∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
262, 25mpcom 38 1 ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2112  Vcvv 3398  cdif 3850  wss 3853  wpss 3854   class class class wbr 5039  ccnv 5535  ran crn 5537  cres 5538  ontowfo 6356  1-1-ontowf1o 6357  ωcom 7622  reccrdg 8123  cen 8601  cdom 8602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2018  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2708  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5307  ax-un 7501
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2728  df-clel 2809  df-nfc 2879  df-ne 2933  df-ral 3056  df-rex 3057  df-reu 3058  df-rab 3060  df-v 3400  df-sbc 3684  df-csb 3799  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-pss 3872  df-nul 4224  df-if 4426  df-pw 4501  df-sn 4528  df-pr 4530  df-tp 4532  df-op 4534  df-uni 4806  df-iun 4892  df-br 5040  df-opab 5102  df-mpt 5121  df-tr 5147  df-id 5440  df-eprel 5445  df-po 5453  df-so 5454  df-fr 5494  df-we 5496  df-xp 5542  df-rel 5543  df-cnv 5544  df-co 5545  df-dm 5546  df-rn 5547  df-res 5548  df-ima 5549  df-pred 6140  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6316  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-om 7623  df-wrecs 8025  df-recs 8086  df-rdg 8124  df-en 8605  df-dom 8606
This theorem is referenced by:  isfin4-2  9893
  Copyright terms: Public domain W3C validator