MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssr Structured version   Visualization version   GIF version

Theorem infpssr 9723
Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infpssr ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴)

Proof of Theorem infpssr
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 4381 . . 3 (𝑋𝐴 → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋))
21adantr 484 . 2 ((𝑋𝐴𝑋𝐴) → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋))
3 eldif 3894 . . . 4 (𝑦 ∈ (𝐴𝑋) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝑋))
4 pssss 4026 . . . . . 6 (𝑋𝐴𝑋𝐴)
5 bren 8505 . . . . . . . 8 (𝑋𝐴 ↔ ∃𝑓 𝑓:𝑋1-1-onto𝐴)
6 simpr 488 . . . . . . . . . . . . 13 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑓:𝑋1-1-onto𝐴)
7 f1ofo 6601 . . . . . . . . . . . . 13 (𝑓:𝑋1-1-onto𝐴𝑓:𝑋onto𝐴)
8 forn 6572 . . . . . . . . . . . . 13 (𝑓:𝑋onto𝐴 → ran 𝑓 = 𝐴)
96, 7, 83syl 18 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → ran 𝑓 = 𝐴)
10 vex 3447 . . . . . . . . . . . . 13 𝑓 ∈ V
1110rnex 7603 . . . . . . . . . . . 12 ran 𝑓 ∈ V
129, 11eqeltrrdi 2902 . . . . . . . . . . 11 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝐴 ∈ V)
13 simplr 768 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑋𝐴)
14 simpll 766 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑦 ∈ (𝐴𝑋))
15 eqid 2801 . . . . . . . . . . . 12 (rec(𝑓, 𝑦) ↾ ω) = (rec(𝑓, 𝑦) ↾ ω)
1613, 6, 14, 15infpssrlem5 9722 . . . . . . . . . . 11 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → (𝐴 ∈ V → ω ≼ 𝐴))
1712, 16mpd 15 . . . . . . . . . 10 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → ω ≼ 𝐴)
1817ex 416 . . . . . . . . 9 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (𝑓:𝑋1-1-onto𝐴 → ω ≼ 𝐴))
1918exlimdv 1934 . . . . . . . 8 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (∃𝑓 𝑓:𝑋1-1-onto𝐴 → ω ≼ 𝐴))
205, 19syl5bi 245 . . . . . . 7 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (𝑋𝐴 → ω ≼ 𝐴))
2120ex 416 . . . . . 6 (𝑦 ∈ (𝐴𝑋) → (𝑋𝐴 → (𝑋𝐴 → ω ≼ 𝐴)))
224, 21syl5 34 . . . . 5 (𝑦 ∈ (𝐴𝑋) → (𝑋𝐴 → (𝑋𝐴 → ω ≼ 𝐴)))
2322impd 414 . . . 4 (𝑦 ∈ (𝐴𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
243, 23sylbir 238 . . 3 ((𝑦𝐴 ∧ ¬ 𝑦𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
2524exlimiv 1931 . 2 (∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
262, 25mpcom 38 1 ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1538  wex 1781  wcel 2112  Vcvv 3444  cdif 3881  wss 3884  wpss 3885   class class class wbr 5033  ccnv 5522  ran crn 5524  cres 5525  ontowfo 6326  1-1-ontowf1o 6327  ωcom 7564  reccrdg 8032  cen 8493  cdom 8494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-om 7565  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-en 8497  df-dom 8498
This theorem is referenced by:  isfin4-2  9729
  Copyright terms: Public domain W3C validator