MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  infpssr Structured version   Visualization version   GIF version

Theorem infpssr 10268
Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.)
Assertion
Ref Expression
infpssr ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴)

Proof of Theorem infpssr
Dummy variables 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pssnel 4437 . . 3 (𝑋𝐴 → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋))
21adantr 480 . 2 ((𝑋𝐴𝑋𝐴) → ∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋))
3 eldif 3927 . . . 4 (𝑦 ∈ (𝐴𝑋) ↔ (𝑦𝐴 ∧ ¬ 𝑦𝑋))
4 pssss 4064 . . . . . 6 (𝑋𝐴𝑋𝐴)
5 bren 8931 . . . . . . . 8 (𝑋𝐴 ↔ ∃𝑓 𝑓:𝑋1-1-onto𝐴)
6 simpr 484 . . . . . . . . . . . . 13 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑓:𝑋1-1-onto𝐴)
7 f1ofo 6810 . . . . . . . . . . . . 13 (𝑓:𝑋1-1-onto𝐴𝑓:𝑋onto𝐴)
8 forn 6778 . . . . . . . . . . . . 13 (𝑓:𝑋onto𝐴 → ran 𝑓 = 𝐴)
96, 7, 83syl 18 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → ran 𝑓 = 𝐴)
10 vex 3454 . . . . . . . . . . . . 13 𝑓 ∈ V
1110rnex 7889 . . . . . . . . . . . 12 ran 𝑓 ∈ V
129, 11eqeltrrdi 2838 . . . . . . . . . . 11 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝐴 ∈ V)
13 simplr 768 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑋𝐴)
14 simpll 766 . . . . . . . . . . . 12 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → 𝑦 ∈ (𝐴𝑋))
15 eqid 2730 . . . . . . . . . . . 12 (rec(𝑓, 𝑦) ↾ ω) = (rec(𝑓, 𝑦) ↾ ω)
1613, 6, 14, 15infpssrlem5 10267 . . . . . . . . . . 11 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → (𝐴 ∈ V → ω ≼ 𝐴))
1712, 16mpd 15 . . . . . . . . . 10 (((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) ∧ 𝑓:𝑋1-1-onto𝐴) → ω ≼ 𝐴)
1817ex 412 . . . . . . . . 9 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (𝑓:𝑋1-1-onto𝐴 → ω ≼ 𝐴))
1918exlimdv 1933 . . . . . . . 8 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (∃𝑓 𝑓:𝑋1-1-onto𝐴 → ω ≼ 𝐴))
205, 19biimtrid 242 . . . . . . 7 ((𝑦 ∈ (𝐴𝑋) ∧ 𝑋𝐴) → (𝑋𝐴 → ω ≼ 𝐴))
2120ex 412 . . . . . 6 (𝑦 ∈ (𝐴𝑋) → (𝑋𝐴 → (𝑋𝐴 → ω ≼ 𝐴)))
224, 21syl5 34 . . . . 5 (𝑦 ∈ (𝐴𝑋) → (𝑋𝐴 → (𝑋𝐴 → ω ≼ 𝐴)))
2322impd 410 . . . 4 (𝑦 ∈ (𝐴𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
243, 23sylbir 235 . . 3 ((𝑦𝐴 ∧ ¬ 𝑦𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
2524exlimiv 1930 . 2 (∃𝑦(𝑦𝐴 ∧ ¬ 𝑦𝑋) → ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴))
262, 25mpcom 38 1 ((𝑋𝐴𝑋𝐴) → ω ≼ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3450  cdif 3914  wss 3917  wpss 3918   class class class wbr 5110  ccnv 5640  ran crn 5642  cres 5643  ontowfo 6512  1-1-ontowf1o 6513  ωcom 7845  reccrdg 8380  cen 8918  cdom 8919
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-en 8922  df-dom 8923
This theorem is referenced by:  isfin4-2  10274
  Copyright terms: Public domain W3C validator