![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpssr | Structured version Visualization version GIF version |
Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
infpssr | ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ω ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssnel 4470 | . . 3 ⊢ (𝑋 ⊊ 𝐴 → ∃𝑦(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋)) | |
2 | 1 | adantr 481 | . 2 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ∃𝑦(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋)) |
3 | eldif 3958 | . . . 4 ⊢ (𝑦 ∈ (𝐴 ∖ 𝑋) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋)) | |
4 | pssss 4095 | . . . . . 6 ⊢ (𝑋 ⊊ 𝐴 → 𝑋 ⊆ 𝐴) | |
5 | bren 8948 | . . . . . . . 8 ⊢ (𝑋 ≈ 𝐴 ↔ ∃𝑓 𝑓:𝑋–1-1-onto→𝐴) | |
6 | simpr 485 | . . . . . . . . . . . . 13 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → 𝑓:𝑋–1-1-onto→𝐴) | |
7 | f1ofo 6840 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑋–1-1-onto→𝐴 → 𝑓:𝑋–onto→𝐴) | |
8 | forn 6808 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑋–onto→𝐴 → ran 𝑓 = 𝐴) | |
9 | 6, 7, 8 | 3syl 18 | . . . . . . . . . . . 12 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → ran 𝑓 = 𝐴) |
10 | vex 3478 | . . . . . . . . . . . . 13 ⊢ 𝑓 ∈ V | |
11 | 10 | rnex 7902 | . . . . . . . . . . . 12 ⊢ ran 𝑓 ∈ V |
12 | 9, 11 | eqeltrrdi 2842 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → 𝐴 ∈ V) |
13 | simplr 767 | . . . . . . . . . . . 12 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → 𝑋 ⊆ 𝐴) | |
14 | simpll 765 | . . . . . . . . . . . 12 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → 𝑦 ∈ (𝐴 ∖ 𝑋)) | |
15 | eqid 2732 | . . . . . . . . . . . 12 ⊢ (rec(◡𝑓, 𝑦) ↾ ω) = (rec(◡𝑓, 𝑦) ↾ ω) | |
16 | 13, 6, 14, 15 | infpssrlem5 10301 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → (𝐴 ∈ V → ω ≼ 𝐴)) |
17 | 12, 16 | mpd 15 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → ω ≼ 𝐴) |
18 | 17 | ex 413 | . . . . . . . . 9 ⊢ ((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) → (𝑓:𝑋–1-1-onto→𝐴 → ω ≼ 𝐴)) |
19 | 18 | exlimdv 1936 | . . . . . . . 8 ⊢ ((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) → (∃𝑓 𝑓:𝑋–1-1-onto→𝐴 → ω ≼ 𝐴)) |
20 | 5, 19 | biimtrid 241 | . . . . . . 7 ⊢ ((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) → (𝑋 ≈ 𝐴 → ω ≼ 𝐴)) |
21 | 20 | ex 413 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴 ∖ 𝑋) → (𝑋 ⊆ 𝐴 → (𝑋 ≈ 𝐴 → ω ≼ 𝐴))) |
22 | 4, 21 | syl5 34 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 ∖ 𝑋) → (𝑋 ⊊ 𝐴 → (𝑋 ≈ 𝐴 → ω ≼ 𝐴))) |
23 | 22 | impd 411 | . . . 4 ⊢ (𝑦 ∈ (𝐴 ∖ 𝑋) → ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ω ≼ 𝐴)) |
24 | 3, 23 | sylbir 234 | . . 3 ⊢ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋) → ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ω ≼ 𝐴)) |
25 | 24 | exlimiv 1933 | . 2 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋) → ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ω ≼ 𝐴)) |
26 | 2, 25 | mpcom 38 | 1 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ω ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 Vcvv 3474 ∖ cdif 3945 ⊆ wss 3948 ⊊ wpss 3949 class class class wbr 5148 ◡ccnv 5675 ran crn 5677 ↾ cres 5678 –onto→wfo 6541 –1-1-onto→wf1o 6542 ωcom 7854 reccrdg 8408 ≈ cen 8935 ≼ cdom 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7411 df-om 7855 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-en 8939 df-dom 8940 |
This theorem is referenced by: isfin4-2 10308 |
Copyright terms: Public domain | W3C validator |