![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > infpssr | Structured version Visualization version GIF version |
Description: Dedekind infinity implies existence of a denumerable subset: take a single point witnessing the proper subset relation and iterate the embedding. (Contributed by Stefan O'Rear, 30-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.) |
Ref | Expression |
---|---|
infpssr | ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ω ≼ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssnel 4465 | . . 3 ⊢ (𝑋 ⊊ 𝐴 → ∃𝑦(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋)) | |
2 | 1 | adantr 480 | . 2 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ∃𝑦(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋)) |
3 | eldif 3953 | . . . 4 ⊢ (𝑦 ∈ (𝐴 ∖ 𝑋) ↔ (𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋)) | |
4 | pssss 4090 | . . . . . 6 ⊢ (𝑋 ⊊ 𝐴 → 𝑋 ⊆ 𝐴) | |
5 | bren 8948 | . . . . . . . 8 ⊢ (𝑋 ≈ 𝐴 ↔ ∃𝑓 𝑓:𝑋–1-1-onto→𝐴) | |
6 | simpr 484 | . . . . . . . . . . . . 13 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → 𝑓:𝑋–1-1-onto→𝐴) | |
7 | f1ofo 6833 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑋–1-1-onto→𝐴 → 𝑓:𝑋–onto→𝐴) | |
8 | forn 6801 | . . . . . . . . . . . . 13 ⊢ (𝑓:𝑋–onto→𝐴 → ran 𝑓 = 𝐴) | |
9 | 6, 7, 8 | 3syl 18 | . . . . . . . . . . . 12 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → ran 𝑓 = 𝐴) |
10 | vex 3472 | . . . . . . . . . . . . 13 ⊢ 𝑓 ∈ V | |
11 | 10 | rnex 7899 | . . . . . . . . . . . 12 ⊢ ran 𝑓 ∈ V |
12 | 9, 11 | eqeltrrdi 2836 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → 𝐴 ∈ V) |
13 | simplr 766 | . . . . . . . . . . . 12 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → 𝑋 ⊆ 𝐴) | |
14 | simpll 764 | . . . . . . . . . . . 12 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → 𝑦 ∈ (𝐴 ∖ 𝑋)) | |
15 | eqid 2726 | . . . . . . . . . . . 12 ⊢ (rec(◡𝑓, 𝑦) ↾ ω) = (rec(◡𝑓, 𝑦) ↾ ω) | |
16 | 13, 6, 14, 15 | infpssrlem5 10301 | . . . . . . . . . . 11 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → (𝐴 ∈ V → ω ≼ 𝐴)) |
17 | 12, 16 | mpd 15 | . . . . . . . . . 10 ⊢ (((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) ∧ 𝑓:𝑋–1-1-onto→𝐴) → ω ≼ 𝐴) |
18 | 17 | ex 412 | . . . . . . . . 9 ⊢ ((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) → (𝑓:𝑋–1-1-onto→𝐴 → ω ≼ 𝐴)) |
19 | 18 | exlimdv 1928 | . . . . . . . 8 ⊢ ((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) → (∃𝑓 𝑓:𝑋–1-1-onto→𝐴 → ω ≼ 𝐴)) |
20 | 5, 19 | biimtrid 241 | . . . . . . 7 ⊢ ((𝑦 ∈ (𝐴 ∖ 𝑋) ∧ 𝑋 ⊆ 𝐴) → (𝑋 ≈ 𝐴 → ω ≼ 𝐴)) |
21 | 20 | ex 412 | . . . . . 6 ⊢ (𝑦 ∈ (𝐴 ∖ 𝑋) → (𝑋 ⊆ 𝐴 → (𝑋 ≈ 𝐴 → ω ≼ 𝐴))) |
22 | 4, 21 | syl5 34 | . . . . 5 ⊢ (𝑦 ∈ (𝐴 ∖ 𝑋) → (𝑋 ⊊ 𝐴 → (𝑋 ≈ 𝐴 → ω ≼ 𝐴))) |
23 | 22 | impd 410 | . . . 4 ⊢ (𝑦 ∈ (𝐴 ∖ 𝑋) → ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ω ≼ 𝐴)) |
24 | 3, 23 | sylbir 234 | . . 3 ⊢ ((𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋) → ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ω ≼ 𝐴)) |
25 | 24 | exlimiv 1925 | . 2 ⊢ (∃𝑦(𝑦 ∈ 𝐴 ∧ ¬ 𝑦 ∈ 𝑋) → ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ω ≼ 𝐴)) |
26 | 2, 25 | mpcom 38 | 1 ⊢ ((𝑋 ⊊ 𝐴 ∧ 𝑋 ≈ 𝐴) → ω ≼ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3468 ∖ cdif 3940 ⊆ wss 3943 ⊊ wpss 3944 class class class wbr 5141 ◡ccnv 5668 ran crn 5670 ↾ cres 5671 –onto→wfo 6534 –1-1-onto→wf1o 6535 ωcom 7851 reccrdg 8407 ≈ cen 8935 ≼ cdom 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pr 5420 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7407 df-om 7852 df-2nd 7972 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-en 8939 df-dom 8940 |
This theorem is referenced by: isfin4-2 10308 |
Copyright terms: Public domain | W3C validator |