MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem1 Structured version   Visualization version   GIF version

Theorem ltexprlem1 11033
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem1 (𝐵P → (𝐴𝐵𝐶 ≠ ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem1
StepHypRef Expression
1 pssnel 4469 . . 3 (𝐴𝐵 → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝐴))
2 prnmadd 10994 . . . . . . . . 9 ((𝐵P𝑦𝐵) → ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵)
32anim2i 615 . . . . . . . 8 ((¬ 𝑦𝐴 ∧ (𝐵P𝑦𝐵)) → (¬ 𝑦𝐴 ∧ ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵))
4 19.42v 1955 . . . . . . . 8 (∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦𝐴 ∧ ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵))
53, 4sylibr 233 . . . . . . 7 ((¬ 𝑦𝐴 ∧ (𝐵P𝑦𝐵)) → ∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
65exp32 419 . . . . . 6 𝑦𝐴 → (𝐵P → (𝑦𝐵 → ∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))))
76com3l 89 . . . . 5 (𝐵P → (𝑦𝐵 → (¬ 𝑦𝐴 → ∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))))
87impd 409 . . . 4 (𝐵P → ((𝑦𝐵 ∧ ¬ 𝑦𝐴) → ∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))
98eximdv 1918 . . 3 (𝐵P → (∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝐴) → ∃𝑦𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))
101, 9syl5 34 . 2 (𝐵P → (𝐴𝐵 → ∃𝑦𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))
11 ltexprlem.1 . . . . 5 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
1211eqabri 2875 . . . 4 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
1312exbii 1848 . . 3 (∃𝑥 𝑥𝐶 ↔ ∃𝑥𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
14 n0 4345 . . 3 (𝐶 ≠ ∅ ↔ ∃𝑥 𝑥𝐶)
15 excom 2160 . . 3 (∃𝑦𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑥𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
1613, 14, 153bitr4i 302 . 2 (𝐶 ≠ ∅ ↔ ∃𝑦𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
1710, 16imbitrrdi 251 1 (𝐵P → (𝐴𝐵𝐶 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394   = wceq 1539  wex 1779  wcel 2104  {cab 2707  wne 2938  wpss 3948  c0 4321  (class class class)co 7411   +Q cplq 10852  Pcnp 10856
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7727
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-oadd 8472  df-omul 8473  df-er 8705  df-ni 10869  df-pli 10870  df-mi 10871  df-lti 10872  df-plpq 10905  df-mpq 10906  df-ltpq 10907  df-enq 10908  df-nq 10909  df-erq 10910  df-plq 10911  df-mq 10912  df-1nq 10913  df-ltnq 10915  df-np 10978
This theorem is referenced by:  ltexprlem5  11037
  Copyright terms: Public domain W3C validator