MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem1 Structured version   Visualization version   GIF version

Theorem ltexprlem1 11034
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem1 (𝐵P → (𝐴𝐵𝐶 ≠ ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem1
StepHypRef Expression
1 pssnel 4471 . . 3 (𝐴𝐵 → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝐴))
2 prnmadd 10995 . . . . . . . . 9 ((𝐵P𝑦𝐵) → ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵)
32anim2i 616 . . . . . . . 8 ((¬ 𝑦𝐴 ∧ (𝐵P𝑦𝐵)) → (¬ 𝑦𝐴 ∧ ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵))
4 19.42v 1956 . . . . . . . 8 (∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦𝐴 ∧ ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵))
53, 4sylibr 233 . . . . . . 7 ((¬ 𝑦𝐴 ∧ (𝐵P𝑦𝐵)) → ∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
65exp32 420 . . . . . 6 𝑦𝐴 → (𝐵P → (𝑦𝐵 → ∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))))
76com3l 89 . . . . 5 (𝐵P → (𝑦𝐵 → (¬ 𝑦𝐴 → ∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))))
87impd 410 . . . 4 (𝐵P → ((𝑦𝐵 ∧ ¬ 𝑦𝐴) → ∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))
98eximdv 1919 . . 3 (𝐵P → (∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝐴) → ∃𝑦𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))
101, 9syl5 34 . 2 (𝐵P → (𝐴𝐵 → ∃𝑦𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))
11 ltexprlem.1 . . . . 5 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
1211eqabri 2876 . . . 4 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
1312exbii 1849 . . 3 (∃𝑥 𝑥𝐶 ↔ ∃𝑥𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
14 n0 4347 . . 3 (𝐶 ≠ ∅ ↔ ∃𝑥 𝑥𝐶)
15 excom 2161 . . 3 (∃𝑦𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑥𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
1613, 14, 153bitr4i 302 . 2 (𝐶 ≠ ∅ ↔ ∃𝑦𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
1710, 16imbitrrdi 251 1 (𝐵P → (𝐴𝐵𝐶 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1780  wcel 2105  {cab 2708  wne 2939  wpss 3950  c0 4323  (class class class)co 7412   +Q cplq 10853  Pcnp 10857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7728
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-int 4952  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7859  df-1st 7978  df-2nd 7979  df-frecs 8269  df-wrecs 8300  df-recs 8374  df-rdg 8413  df-1o 8469  df-oadd 8473  df-omul 8474  df-er 8706  df-ni 10870  df-pli 10871  df-mi 10872  df-lti 10873  df-plpq 10906  df-mpq 10907  df-ltpq 10908  df-enq 10909  df-nq 10910  df-erq 10911  df-plq 10912  df-mq 10913  df-1nq 10914  df-ltnq 10916  df-np 10979
This theorem is referenced by:  ltexprlem5  11038
  Copyright terms: Public domain W3C validator