| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ltexprlem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
| Ref | Expression |
|---|---|
| ltexprlem1 | ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → 𝐶 ≠ ∅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pssnel 4437 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑦(𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)) | |
| 2 | prnmadd 10957 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ 𝑦 ∈ 𝐵) → ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵) | |
| 3 | 2 | anim2i 617 | . . . . . . . 8 ⊢ ((¬ 𝑦 ∈ 𝐴 ∧ (𝐵 ∈ P ∧ 𝑦 ∈ 𝐵)) → (¬ 𝑦 ∈ 𝐴 ∧ ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵)) |
| 4 | 19.42v 1953 | . . . . . . . 8 ⊢ (∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦 ∈ 𝐴 ∧ ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵)) | |
| 5 | 3, 4 | sylibr 234 | . . . . . . 7 ⊢ ((¬ 𝑦 ∈ 𝐴 ∧ (𝐵 ∈ P ∧ 𝑦 ∈ 𝐵)) → ∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
| 6 | 5 | exp32 420 | . . . . . 6 ⊢ (¬ 𝑦 ∈ 𝐴 → (𝐵 ∈ P → (𝑦 ∈ 𝐵 → ∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))) |
| 7 | 6 | com3l 89 | . . . . 5 ⊢ (𝐵 ∈ P → (𝑦 ∈ 𝐵 → (¬ 𝑦 ∈ 𝐴 → ∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))) |
| 8 | 7 | impd 410 | . . . 4 ⊢ (𝐵 ∈ P → ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴) → ∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))) |
| 9 | 8 | eximdv 1917 | . . 3 ⊢ (𝐵 ∈ P → (∃𝑦(𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴) → ∃𝑦∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))) |
| 10 | 1, 9 | syl5 34 | . 2 ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → ∃𝑦∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))) |
| 11 | ltexprlem.1 | . . . . 5 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
| 12 | 11 | eqabri 2872 | . . . 4 ⊢ (𝑥 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
| 13 | 12 | exbii 1848 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 ↔ ∃𝑥∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
| 14 | n0 4319 | . . 3 ⊢ (𝐶 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐶) | |
| 15 | excom 2163 | . . 3 ⊢ (∃𝑦∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑥∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) | |
| 16 | 13, 14, 15 | 3bitr4i 303 | . 2 ⊢ (𝐶 ≠ ∅ ↔ ∃𝑦∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
| 17 | 10, 16 | imbitrrdi 252 | 1 ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → 𝐶 ≠ ∅)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 {cab 2708 ≠ wne 2926 ⊊ wpss 3918 ∅c0 4299 (class class class)co 7390 +Q cplq 10815 Pcnp 10819 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-oadd 8441 df-omul 8442 df-er 8674 df-ni 10832 df-pli 10833 df-mi 10834 df-lti 10835 df-plpq 10868 df-mpq 10869 df-ltpq 10870 df-enq 10871 df-nq 10872 df-erq 10873 df-plq 10874 df-mq 10875 df-1nq 10876 df-ltnq 10878 df-np 10941 |
| This theorem is referenced by: ltexprlem5 11000 |
| Copyright terms: Public domain | W3C validator |