Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ltexprlem1 | Structured version Visualization version GIF version |
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ltexprlem.1 | ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} |
Ref | Expression |
---|---|
ltexprlem1 | ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → 𝐶 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pssnel 4401 | . . 3 ⊢ (𝐴 ⊊ 𝐵 → ∃𝑦(𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴)) | |
2 | prnmadd 10684 | . . . . . . . . 9 ⊢ ((𝐵 ∈ P ∧ 𝑦 ∈ 𝐵) → ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵) | |
3 | 2 | anim2i 616 | . . . . . . . 8 ⊢ ((¬ 𝑦 ∈ 𝐴 ∧ (𝐵 ∈ P ∧ 𝑦 ∈ 𝐵)) → (¬ 𝑦 ∈ 𝐴 ∧ ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵)) |
4 | 19.42v 1958 | . . . . . . . 8 ⊢ (∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦 ∈ 𝐴 ∧ ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵)) | |
5 | 3, 4 | sylibr 233 | . . . . . . 7 ⊢ ((¬ 𝑦 ∈ 𝐴 ∧ (𝐵 ∈ P ∧ 𝑦 ∈ 𝐵)) → ∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
6 | 5 | exp32 420 | . . . . . 6 ⊢ (¬ 𝑦 ∈ 𝐴 → (𝐵 ∈ P → (𝑦 ∈ 𝐵 → ∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))) |
7 | 6 | com3l 89 | . . . . 5 ⊢ (𝐵 ∈ P → (𝑦 ∈ 𝐵 → (¬ 𝑦 ∈ 𝐴 → ∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))) |
8 | 7 | impd 410 | . . . 4 ⊢ (𝐵 ∈ P → ((𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴) → ∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))) |
9 | 8 | eximdv 1921 | . . 3 ⊢ (𝐵 ∈ P → (∃𝑦(𝑦 ∈ 𝐵 ∧ ¬ 𝑦 ∈ 𝐴) → ∃𝑦∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))) |
10 | 1, 9 | syl5 34 | . 2 ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → ∃𝑦∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))) |
11 | ltexprlem.1 | . . . . 5 ⊢ 𝐶 = {𝑥 ∣ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)} | |
12 | 11 | abeq2i 2874 | . . . 4 ⊢ (𝑥 ∈ 𝐶 ↔ ∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
13 | 12 | exbii 1851 | . . 3 ⊢ (∃𝑥 𝑥 ∈ 𝐶 ↔ ∃𝑥∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
14 | n0 4277 | . . 3 ⊢ (𝐶 ≠ ∅ ↔ ∃𝑥 𝑥 ∈ 𝐶) | |
15 | excom 2164 | . . 3 ⊢ (∃𝑦∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑥∃𝑦(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) | |
16 | 13, 14, 15 | 3bitr4i 302 | . 2 ⊢ (𝐶 ≠ ∅ ↔ ∃𝑦∃𝑥(¬ 𝑦 ∈ 𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)) |
17 | 10, 16 | syl6ibr 251 | 1 ⊢ (𝐵 ∈ P → (𝐴 ⊊ 𝐵 → 𝐶 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 {cab 2715 ≠ wne 2942 ⊊ wpss 3884 ∅c0 4253 (class class class)co 7255 +Q cplq 10542 Pcnp 10546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-oadd 8271 df-omul 8272 df-er 8456 df-ni 10559 df-pli 10560 df-mi 10561 df-lti 10562 df-plpq 10595 df-mpq 10596 df-ltpq 10597 df-enq 10598 df-nq 10599 df-erq 10600 df-plq 10601 df-mq 10602 df-1nq 10603 df-ltnq 10605 df-np 10668 |
This theorem is referenced by: ltexprlem5 10727 |
Copyright terms: Public domain | W3C validator |