MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltexprlem1 Structured version   Visualization version   GIF version

Theorem ltexprlem1 10989
Description: Lemma for Proposition 9-3.5(iv) of [Gleason] p. 123. (Contributed by NM, 3-Apr-1996.) (New usage is discouraged.)
Hypothesis
Ref Expression
ltexprlem.1 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
Assertion
Ref Expression
ltexprlem1 (𝐵P → (𝐴𝐵𝐶 ≠ ∅))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶
Allowed substitution hint:   𝐶(𝑦)

Proof of Theorem ltexprlem1
StepHypRef Expression
1 pssnel 4434 . . 3 (𝐴𝐵 → ∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝐴))
2 prnmadd 10950 . . . . . . . . 9 ((𝐵P𝑦𝐵) → ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵)
32anim2i 617 . . . . . . . 8 ((¬ 𝑦𝐴 ∧ (𝐵P𝑦𝐵)) → (¬ 𝑦𝐴 ∧ ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵))
4 19.42v 1953 . . . . . . . 8 (∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ (¬ 𝑦𝐴 ∧ ∃𝑥(𝑦 +Q 𝑥) ∈ 𝐵))
53, 4sylibr 234 . . . . . . 7 ((¬ 𝑦𝐴 ∧ (𝐵P𝑦𝐵)) → ∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
65exp32 420 . . . . . 6 𝑦𝐴 → (𝐵P → (𝑦𝐵 → ∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))))
76com3l 89 . . . . 5 (𝐵P → (𝑦𝐵 → (¬ 𝑦𝐴 → ∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))))
87impd 410 . . . 4 (𝐵P → ((𝑦𝐵 ∧ ¬ 𝑦𝐴) → ∃𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))
98eximdv 1917 . . 3 (𝐵P → (∃𝑦(𝑦𝐵 ∧ ¬ 𝑦𝐴) → ∃𝑦𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))
101, 9syl5 34 . 2 (𝐵P → (𝐴𝐵 → ∃𝑦𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)))
11 ltexprlem.1 . . . . 5 𝐶 = {𝑥 ∣ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵)}
1211eqabri 2871 . . . 4 (𝑥𝐶 ↔ ∃𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
1312exbii 1848 . . 3 (∃𝑥 𝑥𝐶 ↔ ∃𝑥𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
14 n0 4316 . . 3 (𝐶 ≠ ∅ ↔ ∃𝑥 𝑥𝐶)
15 excom 2163 . . 3 (∃𝑦𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵) ↔ ∃𝑥𝑦𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
1613, 14, 153bitr4i 303 . 2 (𝐶 ≠ ∅ ↔ ∃𝑦𝑥𝑦𝐴 ∧ (𝑦 +Q 𝑥) ∈ 𝐵))
1710, 16imbitrrdi 252 1 (𝐵P → (𝐴𝐵𝐶 ≠ ∅))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2707  wne 2925  wpss 3915  c0 4296  (class class class)co 7387   +Q cplq 10808  Pcnp 10812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-omul 8439  df-er 8671  df-ni 10825  df-pli 10826  df-mi 10827  df-lti 10828  df-plpq 10861  df-mpq 10862  df-ltpq 10863  df-enq 10864  df-nq 10865  df-erq 10866  df-plq 10867  df-mq 10868  df-1nq 10869  df-ltnq 10871  df-np 10934
This theorem is referenced by:  ltexprlem5  10993
  Copyright terms: Public domain W3C validator