Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > php2 | Structured version Visualization version GIF version |
Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.) |
Ref | Expression |
---|---|
php2 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2839 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ ω ↔ 𝐴 ∈ ω)) | |
2 | psseq2 3996 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ⊊ 𝑥 ↔ 𝐵 ⊊ 𝐴)) | |
3 | 1, 2 | anbi12d 633 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) ↔ (𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴))) |
4 | breq2 5040 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ≺ 𝑥 ↔ 𝐵 ≺ 𝐴)) | |
5 | 3, 4 | imbi12d 348 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → 𝐵 ≺ 𝑥) ↔ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴))) |
6 | vex 3413 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | pssss 4003 | . . . . . 6 ⊢ (𝐵 ⊊ 𝑥 → 𝐵 ⊆ 𝑥) | |
8 | ssdomg 8586 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝐵 ⊆ 𝑥 → 𝐵 ≼ 𝑥)) | |
9 | 6, 7, 8 | mpsyl 68 | . . . . 5 ⊢ (𝐵 ⊊ 𝑥 → 𝐵 ≼ 𝑥) |
10 | 9 | adantl 485 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → 𝐵 ≼ 𝑥) |
11 | php 8736 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → ¬ 𝑥 ≈ 𝐵) | |
12 | ensym 8589 | . . . . 5 ⊢ (𝐵 ≈ 𝑥 → 𝑥 ≈ 𝐵) | |
13 | 11, 12 | nsyl 142 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → ¬ 𝐵 ≈ 𝑥) |
14 | brsdom 8563 | . . . 4 ⊢ (𝐵 ≺ 𝑥 ↔ (𝐵 ≼ 𝑥 ∧ ¬ 𝐵 ≈ 𝑥)) | |
15 | 10, 13, 14 | sylanbrc 586 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → 𝐵 ≺ 𝑥) |
16 | 5, 15 | vtoclg 3487 | . 2 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴)) |
17 | 16 | anabsi5 668 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 Vcvv 3409 ⊆ wss 3860 ⊊ wpss 3861 class class class wbr 5036 ωcom 7585 ≈ cen 8537 ≼ cdom 8538 ≺ csdm 8539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-br 5037 df-opab 5099 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-om 7586 df-er 8305 df-en 8541 df-dom 8542 df-sdom 8543 |
This theorem is referenced by: php4 8739 nndomog 8743 |
Copyright terms: Public domain | W3C validator |