MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php2 Structured version   Visualization version   GIF version

Theorem php2 8694
Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.)
Assertion
Ref Expression
php2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem php2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2904 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ ω ↔ 𝐴 ∈ ω))
2 psseq2 4068 . . . . 5 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
31, 2anbi12d 630 . . . 4 (𝑥 = 𝐴 → ((𝑥 ∈ ω ∧ 𝐵𝑥) ↔ (𝐴 ∈ ω ∧ 𝐵𝐴)))
4 breq2 5066 . . . 4 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
53, 4imbi12d 346 . . 3 (𝑥 = 𝐴 → (((𝑥 ∈ ω ∧ 𝐵𝑥) → 𝐵𝑥) ↔ ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)))
6 vex 3502 . . . . . 6 𝑥 ∈ V
7 pssss 4075 . . . . . 6 (𝐵𝑥𝐵𝑥)
8 ssdomg 8547 . . . . . 6 (𝑥 ∈ V → (𝐵𝑥𝐵𝑥))
96, 7, 8mpsyl 68 . . . . 5 (𝐵𝑥𝐵𝑥)
109adantl 482 . . . 4 ((𝑥 ∈ ω ∧ 𝐵𝑥) → 𝐵𝑥)
11 php 8693 . . . . 5 ((𝑥 ∈ ω ∧ 𝐵𝑥) → ¬ 𝑥𝐵)
12 ensym 8550 . . . . 5 (𝐵𝑥𝑥𝐵)
1311, 12nsyl 142 . . . 4 ((𝑥 ∈ ω ∧ 𝐵𝑥) → ¬ 𝐵𝑥)
14 brsdom 8524 . . . 4 (𝐵𝑥 ↔ (𝐵𝑥 ∧ ¬ 𝐵𝑥))
1510, 13, 14sylanbrc 583 . . 3 ((𝑥 ∈ ω ∧ 𝐵𝑥) → 𝐵𝑥)
165, 15vtoclg 3572 . 2 (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴))
1716anabsi5 665 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1530  wcel 2107  Vcvv 3499  wss 3939  wpss 3940   class class class wbr 5062  ωcom 7571  cen 8498  cdom 8499  csdm 8500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2797  ax-sep 5199  ax-nul 5206  ax-pow 5262  ax-pr 5325  ax-un 7454
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2619  df-eu 2651  df-clab 2804  df-cleq 2818  df-clel 2897  df-nfc 2967  df-ne 3021  df-ral 3147  df-rex 3148  df-rab 3151  df-v 3501  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4470  df-pw 4543  df-sn 4564  df-pr 4566  df-tp 4568  df-op 4570  df-uni 4837  df-br 5063  df-opab 5125  df-tr 5169  df-id 5458  df-eprel 5463  df-po 5472  df-so 5473  df-fr 5512  df-we 5514  df-xp 5559  df-rel 5560  df-cnv 5561  df-co 5562  df-dm 5563  df-rn 5564  df-res 5565  df-ima 5566  df-ord 6191  df-on 6192  df-lim 6193  df-suc 6194  df-iota 6311  df-fun 6353  df-fn 6354  df-f 6355  df-f1 6356  df-fo 6357  df-f1o 6358  df-fv 6359  df-om 7572  df-er 8282  df-en 8502  df-dom 8503  df-sdom 8504
This theorem is referenced by:  php4  8696  nndomo  8704  nndomog  39765
  Copyright terms: Public domain W3C validator