MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  php2 Structured version   Visualization version   GIF version

Theorem php2 8898
Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.)
Assertion
Ref Expression
php2 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)

Proof of Theorem php2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eleq1 2826 . . . . 5 (𝑥 = 𝐴 → (𝑥 ∈ ω ↔ 𝐴 ∈ ω))
2 psseq2 4019 . . . . 5 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
31, 2anbi12d 630 . . . 4 (𝑥 = 𝐴 → ((𝑥 ∈ ω ∧ 𝐵𝑥) ↔ (𝐴 ∈ ω ∧ 𝐵𝐴)))
4 breq2 5074 . . . 4 (𝑥 = 𝐴 → (𝐵𝑥𝐵𝐴))
53, 4imbi12d 344 . . 3 (𝑥 = 𝐴 → (((𝑥 ∈ ω ∧ 𝐵𝑥) → 𝐵𝑥) ↔ ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)))
6 vex 3426 . . . . . 6 𝑥 ∈ V
7 pssss 4026 . . . . . 6 (𝐵𝑥𝐵𝑥)
8 ssdomg 8741 . . . . . 6 (𝑥 ∈ V → (𝐵𝑥𝐵𝑥))
96, 7, 8mpsyl 68 . . . . 5 (𝐵𝑥𝐵𝑥)
109adantl 481 . . . 4 ((𝑥 ∈ ω ∧ 𝐵𝑥) → 𝐵𝑥)
11 php 8897 . . . . 5 ((𝑥 ∈ ω ∧ 𝐵𝑥) → ¬ 𝑥𝐵)
12 ensym 8744 . . . . 5 (𝐵𝑥𝑥𝐵)
1311, 12nsyl 140 . . . 4 ((𝑥 ∈ ω ∧ 𝐵𝑥) → ¬ 𝐵𝑥)
14 brsdom 8718 . . . 4 (𝐵𝑥 ↔ (𝐵𝑥 ∧ ¬ 𝐵𝑥))
1510, 13, 14sylanbrc 582 . . 3 ((𝑥 ∈ ω ∧ 𝐵𝑥) → 𝐵𝑥)
165, 15vtoclg 3495 . 2 (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴))
1716anabsi5 665 1 ((𝐴 ∈ ω ∧ 𝐵𝐴) → 𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  wpss 3884   class class class wbr 5070  ωcom 7687  cen 8688  cdom 8689  csdm 8690
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-om 7688  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694
This theorem is referenced by:  php4  8900  nndomog  8904
  Copyright terms: Public domain W3C validator