![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > php2 | Structured version Visualization version GIF version |
Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.) |
Ref | Expression |
---|---|
php2 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2866 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ ω ↔ 𝐴 ∈ ω)) | |
2 | psseq2 3892 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ⊊ 𝑥 ↔ 𝐵 ⊊ 𝐴)) | |
3 | 1, 2 | anbi12d 625 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) ↔ (𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴))) |
4 | breq2 4847 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ≺ 𝑥 ↔ 𝐵 ≺ 𝐴)) | |
5 | 3, 4 | imbi12d 336 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → 𝐵 ≺ 𝑥) ↔ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴))) |
6 | vex 3388 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | pssss 3899 | . . . . . 6 ⊢ (𝐵 ⊊ 𝑥 → 𝐵 ⊆ 𝑥) | |
8 | ssdomg 8241 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝐵 ⊆ 𝑥 → 𝐵 ≼ 𝑥)) | |
9 | 6, 7, 8 | mpsyl 68 | . . . . 5 ⊢ (𝐵 ⊊ 𝑥 → 𝐵 ≼ 𝑥) |
10 | 9 | adantl 474 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → 𝐵 ≼ 𝑥) |
11 | php 8386 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → ¬ 𝑥 ≈ 𝐵) | |
12 | ensym 8244 | . . . . 5 ⊢ (𝐵 ≈ 𝑥 → 𝑥 ≈ 𝐵) | |
13 | 11, 12 | nsyl 138 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → ¬ 𝐵 ≈ 𝑥) |
14 | brsdom 8218 | . . . 4 ⊢ (𝐵 ≺ 𝑥 ↔ (𝐵 ≼ 𝑥 ∧ ¬ 𝐵 ≈ 𝑥)) | |
15 | 10, 13, 14 | sylanbrc 579 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → 𝐵 ≺ 𝑥) |
16 | 5, 15 | vtoclg 3453 | . 2 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴)) |
17 | 16 | anabsi5 660 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 Vcvv 3385 ⊆ wss 3769 ⊊ wpss 3770 class class class wbr 4843 ωcom 7299 ≈ cen 8192 ≼ cdom 8193 ≺ csdm 8194 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-br 4844 df-opab 4906 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-om 7300 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 |
This theorem is referenced by: php4 8389 nndomo 8396 |
Copyright terms: Public domain | W3C validator |