Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > php2 | Structured version Visualization version GIF version |
Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.) |
Ref | Expression |
---|---|
php2 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2826 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝑥 ∈ ω ↔ 𝐴 ∈ ω)) | |
2 | psseq2 4019 | . . . . 5 ⊢ (𝑥 = 𝐴 → (𝐵 ⊊ 𝑥 ↔ 𝐵 ⊊ 𝐴)) | |
3 | 1, 2 | anbi12d 630 | . . . 4 ⊢ (𝑥 = 𝐴 → ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) ↔ (𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴))) |
4 | breq2 5074 | . . . 4 ⊢ (𝑥 = 𝐴 → (𝐵 ≺ 𝑥 ↔ 𝐵 ≺ 𝐴)) | |
5 | 3, 4 | imbi12d 344 | . . 3 ⊢ (𝑥 = 𝐴 → (((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → 𝐵 ≺ 𝑥) ↔ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴))) |
6 | vex 3426 | . . . . . 6 ⊢ 𝑥 ∈ V | |
7 | pssss 4026 | . . . . . 6 ⊢ (𝐵 ⊊ 𝑥 → 𝐵 ⊆ 𝑥) | |
8 | ssdomg 8741 | . . . . . 6 ⊢ (𝑥 ∈ V → (𝐵 ⊆ 𝑥 → 𝐵 ≼ 𝑥)) | |
9 | 6, 7, 8 | mpsyl 68 | . . . . 5 ⊢ (𝐵 ⊊ 𝑥 → 𝐵 ≼ 𝑥) |
10 | 9 | adantl 481 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → 𝐵 ≼ 𝑥) |
11 | php 8897 | . . . . 5 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → ¬ 𝑥 ≈ 𝐵) | |
12 | ensym 8744 | . . . . 5 ⊢ (𝐵 ≈ 𝑥 → 𝑥 ≈ 𝐵) | |
13 | 11, 12 | nsyl 140 | . . . 4 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → ¬ 𝐵 ≈ 𝑥) |
14 | brsdom 8718 | . . . 4 ⊢ (𝐵 ≺ 𝑥 ↔ (𝐵 ≼ 𝑥 ∧ ¬ 𝐵 ≈ 𝑥)) | |
15 | 10, 13, 14 | sylanbrc 582 | . . 3 ⊢ ((𝑥 ∈ ω ∧ 𝐵 ⊊ 𝑥) → 𝐵 ≺ 𝑥) |
16 | 5, 15 | vtoclg 3495 | . 2 ⊢ (𝐴 ∈ ω → ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴)) |
17 | 16 | anabsi5 665 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ⊊ wpss 3884 class class class wbr 5070 ωcom 7687 ≈ cen 8688 ≼ cdom 8689 ≺ csdm 8690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-om 7688 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 |
This theorem is referenced by: php4 8900 nndomog 8904 |
Copyright terms: Public domain | W3C validator |