![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > php2 | Structured version Visualization version GIF version |
Description: Corollary of Pigeonhole Principle. (Contributed by NM, 31-May-1998.) Avoid ax-pow 5359. (Revised by BTernaryTau, 20-Nov-2024.) |
Ref | Expression |
---|---|
php2 | ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnfi 9185 | . . 3 ⊢ (𝐴 ∈ ω → 𝐴 ∈ Fin) | |
2 | pssss 4091 | . . 3 ⊢ (𝐵 ⊊ 𝐴 → 𝐵 ⊆ 𝐴) | |
3 | ssdomfi 9217 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝐵 ⊆ 𝐴 → 𝐵 ≼ 𝐴)) | |
4 | 3 | imp 406 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ≼ 𝐴) |
5 | 1, 2, 4 | syl2an 595 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≼ 𝐴) |
6 | php 9228 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐴 ≈ 𝐵) | |
7 | ensymfib 9205 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝐴 ≈ 𝐵 ↔ 𝐵 ≈ 𝐴)) | |
8 | 7 | biimprd 247 | . . . . 5 ⊢ (𝐴 ∈ Fin → (𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵)) |
9 | 1, 8 | syl 17 | . . . 4 ⊢ (𝐴 ∈ ω → (𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵)) |
10 | 9 | adantr 480 | . . 3 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → (𝐵 ≈ 𝐴 → 𝐴 ≈ 𝐵)) |
11 | 6, 10 | mtod 197 | . 2 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → ¬ 𝐵 ≈ 𝐴) |
12 | brsdom 8989 | . 2 ⊢ (𝐵 ≺ 𝐴 ↔ (𝐵 ≼ 𝐴 ∧ ¬ 𝐵 ≈ 𝐴)) | |
13 | 5, 11, 12 | sylanbrc 582 | 1 ⊢ ((𝐴 ∈ ω ∧ 𝐵 ⊊ 𝐴) → 𝐵 ≺ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∈ wcel 2099 ⊆ wss 3945 ⊊ wpss 3946 class class class wbr 5142 ωcom 7864 ≈ cen 8954 ≼ cdom 8955 ≺ csdm 8956 Fincfn 8957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-om 7865 df-1o 8480 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 |
This theorem is referenced by: php3 9230 php4 9231 nndomog 9234 nndomogOLD 9244 |
Copyright terms: Public domain | W3C validator |