Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfun Structured version   Visualization version   GIF version

Theorem satfun 35398
Description: The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 29-Oct-2023.)
Assertion
Ref Expression
satfun ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))

Proof of Theorem satfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satff 35397 . . . . . 6 ((𝑀𝑉𝐸𝑊𝑥 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω))
213expa 1118 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω))
3 entric 10510 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥𝑦𝑦𝑥))
43adantl 481 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥𝑦𝑦𝑥))
5 nnsdomo 9182 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥𝑦))
65adantl 481 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥𝑦))
7 pm3.22 459 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 ∈ ω ∧ 𝑥 ∈ ω))
87anim2i 617 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → ((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)))
9 pssss 4061 . . . . . . . . . . . . 13 (𝑥𝑦𝑥𝑦)
10 eqid 2729 . . . . . . . . . . . . . . 15 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
1110satfsschain 35351 . . . . . . . . . . . . . 14 (((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)) → (𝑥𝑦 → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦)))
1211imp 406 . . . . . . . . . . . . 13 ((((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)) ∧ 𝑥𝑦) → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦))
138, 9, 12syl2an 596 . . . . . . . . . . . 12 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑥𝑦) → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦))
1413orcd 873 . . . . . . . . . . 11 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑥𝑦) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
1514ex 412 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
166, 15sylbid 240 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
17 nneneq 9170 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦))
1817adantl 481 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥 = 𝑦))
19 ssid 3969 . . . . . . . . . . . 12 ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑦)
20 fveq2 6858 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘𝑦))
2119, 20sseqtrrid 3990 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))
2221olcd 874 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
2318, 22biimtrdi 253 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
24 nnsdomo 9182 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝑥 ∈ ω) → (𝑦𝑥𝑦𝑥))
2524ancoms 458 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦𝑥𝑦𝑥))
2625adantl 481 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥𝑦𝑥))
2710satfsschain 35351 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
28 pssss 4061 . . . . . . . . . . . . 13 (𝑦𝑥𝑦𝑥)
2927, 28impel 505 . . . . . . . . . . . 12 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑦𝑥) → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))
3029olcd 874 . . . . . . . . . . 11 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑦𝑥) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
3130ex 412 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3226, 31sylbid 240 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3316, 23, 323jaod 1431 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → ((𝑥𝑦𝑥𝑦𝑦𝑥) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
344, 33mpd 15 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
3534expr 456 . . . . . 6 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → (𝑦 ∈ ω → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3635ralrimiv 3124 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
372, 36jca 511 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3837ralrimiva 3125 . . 3 ((𝑀𝑉𝐸𝑊) → ∀𝑥 ∈ ω (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
39 fvex 6871 . . . 4 ((𝑀 Sat 𝐸)‘𝑥) ∈ V
4020, 39fiun 7921 . . 3 (∀𝑥 ∈ ω (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))) → 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω))
4138, 40syl 17 . 2 ((𝑀𝑉𝐸𝑊) → 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω))
42 satom 35343 . . 3 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω) = 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥))
43 fmla 35368 . . . 4 (Fmla‘ω) = 𝑥 ∈ ω (Fmla‘𝑥)
4443a1i 11 . . 3 ((𝑀𝑉𝐸𝑊) → (Fmla‘ω) = 𝑥 ∈ ω (Fmla‘𝑥))
4542, 44feq12d 6676 . 2 ((𝑀𝑉𝐸𝑊) → (((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω) ↔ 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω)))
4641, 45mpbird 257 1 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1540  wcel 2109  wral 3044  wss 3914  wpss 3915  𝒫 cpw 4563   ciun 4955   class class class wbr 5107  wf 6507  cfv 6511  (class class class)co 7387  ωcom 7842  m cmap 8799  cen 8915  csdm 8917   Sat csat 35323  Fmlacfmla 35324
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-ac2 10416
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-er 8671  df-map 8801  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-card 9892  df-ac 10069  df-goel 35327  df-gona 35328  df-goal 35329  df-sat 35330  df-fmla 35332
This theorem is referenced by:  satfvel  35399  satefvfmla0  35405  satefvfmla1  35412
  Copyright terms: Public domain W3C validator