Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfun Structured version   Visualization version   GIF version

Theorem satfun 35447
Description: The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 29-Oct-2023.)
Assertion
Ref Expression
satfun ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))

Proof of Theorem satfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satff 35446 . . . . . 6 ((𝑀𝑉𝐸𝑊𝑥 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω))
213expa 1118 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω))
3 entric 10443 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥𝑦𝑦𝑥))
43adantl 481 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥𝑦𝑦𝑥))
5 nnsdomo 9122 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥𝑦))
65adantl 481 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥𝑦))
7 pm3.22 459 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 ∈ ω ∧ 𝑥 ∈ ω))
87anim2i 617 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → ((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)))
9 pssss 4043 . . . . . . . . . . . . 13 (𝑥𝑦𝑥𝑦)
10 eqid 2731 . . . . . . . . . . . . . . 15 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
1110satfsschain 35400 . . . . . . . . . . . . . 14 (((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)) → (𝑥𝑦 → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦)))
1211imp 406 . . . . . . . . . . . . 13 ((((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)) ∧ 𝑥𝑦) → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦))
138, 9, 12syl2an 596 . . . . . . . . . . . 12 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑥𝑦) → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦))
1413orcd 873 . . . . . . . . . . 11 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑥𝑦) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
1514ex 412 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
166, 15sylbid 240 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
17 nneneq 9110 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦))
1817adantl 481 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥 = 𝑦))
19 ssid 3952 . . . . . . . . . . . 12 ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑦)
20 fveq2 6817 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘𝑦))
2119, 20sseqtrrid 3973 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))
2221olcd 874 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
2318, 22biimtrdi 253 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
24 nnsdomo 9122 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝑥 ∈ ω) → (𝑦𝑥𝑦𝑥))
2524ancoms 458 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦𝑥𝑦𝑥))
2625adantl 481 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥𝑦𝑥))
2710satfsschain 35400 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
28 pssss 4043 . . . . . . . . . . . . 13 (𝑦𝑥𝑦𝑥)
2927, 28impel 505 . . . . . . . . . . . 12 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑦𝑥) → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))
3029olcd 874 . . . . . . . . . . 11 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑦𝑥) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
3130ex 412 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3226, 31sylbid 240 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3316, 23, 323jaod 1431 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → ((𝑥𝑦𝑥𝑦𝑦𝑥) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
344, 33mpd 15 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
3534expr 456 . . . . . 6 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → (𝑦 ∈ ω → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3635ralrimiv 3123 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
372, 36jca 511 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3837ralrimiva 3124 . . 3 ((𝑀𝑉𝐸𝑊) → ∀𝑥 ∈ ω (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
39 fvex 6830 . . . 4 ((𝑀 Sat 𝐸)‘𝑥) ∈ V
4020, 39fiun 7870 . . 3 (∀𝑥 ∈ ω (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))) → 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω))
4138, 40syl 17 . 2 ((𝑀𝑉𝐸𝑊) → 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω))
42 satom 35392 . . 3 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω) = 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥))
43 fmla 35417 . . . 4 (Fmla‘ω) = 𝑥 ∈ ω (Fmla‘𝑥)
4443a1i 11 . . 3 ((𝑀𝑉𝐸𝑊) → (Fmla‘ω) = 𝑥 ∈ ω (Fmla‘𝑥))
4542, 44feq12d 6634 . 2 ((𝑀𝑉𝐸𝑊) → (((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω) ↔ 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω)))
4641, 45mpbird 257 1 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2111  wral 3047  wss 3897  wpss 3898  𝒫 cpw 4545   ciun 4936   class class class wbr 5086  wf 6472  cfv 6476  (class class class)co 7341  ωcom 7791  m cmap 8745  cen 8861  csdm 8863   Sat csat 35372  Fmlacfmla 35373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-inf2 9526  ax-ac2 10349
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-int 4893  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-se 5565  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8617  df-map 8747  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-card 9827  df-ac 10002  df-goel 35376  df-gona 35377  df-goal 35378  df-sat 35379  df-fmla 35381
This theorem is referenced by:  satfvel  35448  satefvfmla0  35454  satefvfmla1  35461
  Copyright terms: Public domain W3C validator