| Step | Hyp | Ref
| Expression |
| 1 | | satff 35437 |
. . . . . 6
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊 ∧ 𝑥 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀 ↑m
ω)) |
| 2 | 1 | 3expa 1118 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑥 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀 ↑m
ω)) |
| 3 | | entric 10576 |
. . . . . . . . 9
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ≺ 𝑦 ∨ 𝑥 ≈ 𝑦 ∨ 𝑦 ≺ 𝑥)) |
| 4 | 3 | adantl 481 |
. . . . . . . 8
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ≺ 𝑦 ∨ 𝑥 ≈ 𝑦 ∨ 𝑦 ≺ 𝑥)) |
| 5 | | nnsdomo 9247 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ≺ 𝑦 ↔ 𝑥 ⊊ 𝑦)) |
| 6 | 5 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ≺ 𝑦 ↔ 𝑥 ⊊ 𝑦)) |
| 7 | | pm3.22 459 |
. . . . . . . . . . . . . 14
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 ∈ ω ∧ 𝑥 ∈
ω)) |
| 8 | 7 | anim2i 617 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω))) |
| 9 | | pssss 4078 |
. . . . . . . . . . . . 13
⊢ (𝑥 ⊊ 𝑦 → 𝑥 ⊆ 𝑦) |
| 10 | | eqid 2736 |
. . . . . . . . . . . . . . 15
⊢ (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸) |
| 11 | 10 | satfsschain 35391 |
. . . . . . . . . . . . . 14
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)) → (𝑥 ⊆ 𝑦 → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦))) |
| 12 | 11 | imp 406 |
. . . . . . . . . . . . 13
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)) ∧ 𝑥 ⊆ 𝑦) → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦)) |
| 13 | 8, 9, 12 | syl2an 596 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑥 ⊊ 𝑦) → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦)) |
| 14 | 13 | orcd 873 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑥 ⊊ 𝑦) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))) |
| 15 | 14 | ex 412 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ⊊ 𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))) |
| 16 | 6, 15 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ≺ 𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))) |
| 17 | | nneneq 9225 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥 ≈ 𝑦 ↔ 𝑥 = 𝑦)) |
| 18 | 17 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ≈ 𝑦 ↔ 𝑥 = 𝑦)) |
| 19 | | ssid 3986 |
. . . . . . . . . . . 12
⊢ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑦) |
| 20 | | fveq2 6881 |
. . . . . . . . . . . 12
⊢ (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘𝑦)) |
| 21 | 19, 20 | sseqtrrid 4007 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)) |
| 22 | 21 | olcd 874 |
. . . . . . . . . 10
⊢ (𝑥 = 𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))) |
| 23 | 18, 22 | biimtrdi 253 |
. . . . . . . . 9
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥 ≈ 𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))) |
| 24 | | nnsdomo 9247 |
. . . . . . . . . . . 12
⊢ ((𝑦 ∈ ω ∧ 𝑥 ∈ ω) → (𝑦 ≺ 𝑥 ↔ 𝑦 ⊊ 𝑥)) |
| 25 | 24 | ancoms 458 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 ≺ 𝑥 ↔ 𝑦 ⊊ 𝑥)) |
| 26 | 25 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦 ≺ 𝑥 ↔ 𝑦 ⊊ 𝑥)) |
| 27 | 10 | satfsschain 35391 |
. . . . . . . . . . . . 13
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦 ⊆ 𝑥 → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))) |
| 28 | | pssss 4078 |
. . . . . . . . . . . . 13
⊢ (𝑦 ⊊ 𝑥 → 𝑦 ⊆ 𝑥) |
| 29 | 27, 28 | impel 505 |
. . . . . . . . . . . 12
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑦 ⊊ 𝑥) → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)) |
| 30 | 29 | olcd 874 |
. . . . . . . . . . 11
⊢ ((((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑦 ⊊ 𝑥) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))) |
| 31 | 30 | ex 412 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦 ⊊ 𝑥 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))) |
| 32 | 26, 31 | sylbid 240 |
. . . . . . . . 9
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦 ≺ 𝑥 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))) |
| 33 | 16, 23, 32 | 3jaod 1431 |
. . . . . . . 8
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → ((𝑥 ≺ 𝑦 ∨ 𝑥 ≈ 𝑦 ∨ 𝑦 ≺ 𝑥) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))) |
| 34 | 4, 33 | mpd 15 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))) |
| 35 | 34 | expr 456 |
. . . . . 6
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑥 ∈ ω) → (𝑦 ∈ ω → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))) |
| 36 | 35 | ralrimiv 3132 |
. . . . 5
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑥 ∈ ω) → ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))) |
| 37 | 2, 36 | jca 511 |
. . . 4
⊢ (((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) ∧ 𝑥 ∈ ω) → (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀 ↑m ω) ∧
∀𝑦 ∈ ω
(((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))) |
| 38 | 37 | ralrimiva 3133 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ∀𝑥 ∈ ω (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀 ↑m ω) ∧
∀𝑦 ∈ ω
(((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))) |
| 39 | | fvex 6894 |
. . . 4
⊢ ((𝑀 Sat 𝐸)‘𝑥) ∈ V |
| 40 | 20, 39 | fiun 7946 |
. . 3
⊢
(∀𝑥 ∈
ω (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀 ↑m ω) ∧
∀𝑦 ∈ ω
(((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))) → ∪ 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥):∪ 𝑥 ∈ ω
(Fmla‘𝑥)⟶𝒫 (𝑀 ↑m
ω)) |
| 41 | 38, 40 | syl 17 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ∪
𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥):∪ 𝑥 ∈ ω
(Fmla‘𝑥)⟶𝒫 (𝑀 ↑m
ω)) |
| 42 | | satom 35383 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω) = ∪ 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥)) |
| 43 | | fmla 35408 |
. . . 4
⊢
(Fmla‘ω) = ∪ 𝑥 ∈ ω
(Fmla‘𝑥) |
| 44 | 43 | a1i 11 |
. . 3
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (Fmla‘ω) = ∪ 𝑥 ∈ ω (Fmla‘𝑥)) |
| 45 | 42, 44 | feq12d 6699 |
. 2
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → (((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫
(𝑀 ↑m ω) ↔
∪ 𝑥
∈ ω ((𝑀 Sat 𝐸)‘𝑥):∪ 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀 ↑m ω))) |
| 46 | 41, 45 | mpbird 257 |
1
⊢ ((𝑀 ∈ 𝑉 ∧ 𝐸 ∈ 𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫
(𝑀 ↑m
ω)) |