Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfun Structured version   Visualization version   GIF version

Theorem satfun 35527
Description: The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 29-Oct-2023.)
Assertion
Ref Expression
satfun ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))

Proof of Theorem satfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satff 35526 . . . . . 6 ((𝑀𝑉𝐸𝑊𝑥 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω))
213expa 1118 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω))
3 entric 10459 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥𝑦𝑦𝑥))
43adantl 481 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥𝑦𝑦𝑥))
5 nnsdomo 9138 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥𝑦))
65adantl 481 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥𝑦))
7 pm3.22 459 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 ∈ ω ∧ 𝑥 ∈ ω))
87anim2i 617 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → ((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)))
9 pssss 4047 . . . . . . . . . . . . 13 (𝑥𝑦𝑥𝑦)
10 eqid 2733 . . . . . . . . . . . . . . 15 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
1110satfsschain 35480 . . . . . . . . . . . . . 14 (((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)) → (𝑥𝑦 → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦)))
1211imp 406 . . . . . . . . . . . . 13 ((((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)) ∧ 𝑥𝑦) → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦))
138, 9, 12syl2an 596 . . . . . . . . . . . 12 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑥𝑦) → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦))
1413orcd 873 . . . . . . . . . . 11 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑥𝑦) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
1514ex 412 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
166, 15sylbid 240 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
17 nneneq 9126 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦))
1817adantl 481 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥 = 𝑦))
19 ssid 3953 . . . . . . . . . . . 12 ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑦)
20 fveq2 6831 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘𝑦))
2119, 20sseqtrrid 3974 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))
2221olcd 874 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
2318, 22biimtrdi 253 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
24 nnsdomo 9138 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝑥 ∈ ω) → (𝑦𝑥𝑦𝑥))
2524ancoms 458 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦𝑥𝑦𝑥))
2625adantl 481 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥𝑦𝑥))
2710satfsschain 35480 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
28 pssss 4047 . . . . . . . . . . . . 13 (𝑦𝑥𝑦𝑥)
2927, 28impel 505 . . . . . . . . . . . 12 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑦𝑥) → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))
3029olcd 874 . . . . . . . . . . 11 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑦𝑥) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
3130ex 412 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3226, 31sylbid 240 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3316, 23, 323jaod 1431 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → ((𝑥𝑦𝑥𝑦𝑦𝑥) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
344, 33mpd 15 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
3534expr 456 . . . . . 6 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → (𝑦 ∈ ω → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3635ralrimiv 3124 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
372, 36jca 511 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3837ralrimiva 3125 . . 3 ((𝑀𝑉𝐸𝑊) → ∀𝑥 ∈ ω (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
39 fvex 6844 . . . 4 ((𝑀 Sat 𝐸)‘𝑥) ∈ V
4020, 39fiun 7884 . . 3 (∀𝑥 ∈ ω (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))) → 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω))
4138, 40syl 17 . 2 ((𝑀𝑉𝐸𝑊) → 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω))
42 satom 35472 . . 3 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω) = 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥))
43 fmla 35497 . . . 4 (Fmla‘ω) = 𝑥 ∈ ω (Fmla‘𝑥)
4443a1i 11 . . 3 ((𝑀𝑉𝐸𝑊) → (Fmla‘ω) = 𝑥 ∈ ω (Fmla‘𝑥))
4542, 44feq12d 6647 . 2 ((𝑀𝑉𝐸𝑊) → (((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω) ↔ 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω)))
4641, 45mpbird 257 1 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3o 1085   = wceq 1541  wcel 2113  wral 3048  wss 3898  wpss 3899  𝒫 cpw 4551   ciun 4943   class class class wbr 5095  wf 6485  cfv 6489  (class class class)co 7355  ωcom 7805  m cmap 8759  cen 8876  csdm 8878   Sat csat 35452  Fmlacfmla 35453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-ac2 10365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-card 9843  df-ac 10018  df-goel 35456  df-gona 35457  df-goal 35458  df-sat 35459  df-fmla 35461
This theorem is referenced by:  satfvel  35528  satefvfmla0  35534  satefvfmla1  35541
  Copyright terms: Public domain W3C validator