Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  satfun Structured version   Visualization version   GIF version

Theorem satfun 35379
Description: The satisfaction predicate as function over wff codes in the model 𝑀 and the binary relation 𝐸 on 𝑀. (Contributed by AV, 29-Oct-2023.)
Assertion
Ref Expression
satfun ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))

Proof of Theorem satfun
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 satff 35378 . . . . . 6 ((𝑀𝑉𝐸𝑊𝑥 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω))
213expa 1118 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → ((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω))
3 entric 10626 . . . . . . . . 9 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥𝑦𝑦𝑥))
43adantl 481 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥𝑦𝑦𝑥))
5 nnsdomo 9297 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥𝑦))
65adantl 481 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥𝑦))
7 pm3.22 459 . . . . . . . . . . . . . 14 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 ∈ ω ∧ 𝑥 ∈ ω))
87anim2i 616 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → ((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)))
9 pssss 4121 . . . . . . . . . . . . 13 (𝑥𝑦𝑥𝑦)
10 eqid 2740 . . . . . . . . . . . . . . 15 (𝑀 Sat 𝐸) = (𝑀 Sat 𝐸)
1110satfsschain 35332 . . . . . . . . . . . . . 14 (((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)) → (𝑥𝑦 → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦)))
1211imp 406 . . . . . . . . . . . . 13 ((((𝑀𝑉𝐸𝑊) ∧ (𝑦 ∈ ω ∧ 𝑥 ∈ ω)) ∧ 𝑥𝑦) → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦))
138, 9, 12syl2an 595 . . . . . . . . . . . 12 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑥𝑦) → ((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦))
1413orcd 872 . . . . . . . . . . 11 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑥𝑦) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
1514ex 412 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
166, 15sylbid 240 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
17 nneneq 9272 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑥𝑦𝑥 = 𝑦))
1817adantl 481 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦𝑥 = 𝑦))
19 ssid 4031 . . . . . . . . . . . 12 ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑦)
20 fveq2 6920 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑥) = ((𝑀 Sat 𝐸)‘𝑦))
2119, 20sseqtrrid 4062 . . . . . . . . . . 11 (𝑥 = 𝑦 → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))
2221olcd 873 . . . . . . . . . 10 (𝑥 = 𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
2318, 22biimtrdi 253 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑥𝑦 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
24 nnsdomo 9297 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 𝑥 ∈ ω) → (𝑦𝑥𝑦𝑥))
2524ancoms 458 . . . . . . . . . . 11 ((𝑥 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦𝑥𝑦𝑥))
2625adantl 481 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥𝑦𝑥))
2710satfsschain 35332 . . . . . . . . . . . . 13 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
28 pssss 4121 . . . . . . . . . . . . 13 (𝑦𝑥𝑦𝑥)
2927, 28impel 505 . . . . . . . . . . . 12 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑦𝑥) → ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))
3029olcd 873 . . . . . . . . . . 11 ((((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) ∧ 𝑦𝑥) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
3130ex 412 . . . . . . . . . 10 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3226, 31sylbid 240 . . . . . . . . 9 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (𝑦𝑥 → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3316, 23, 323jaod 1429 . . . . . . . 8 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → ((𝑥𝑦𝑥𝑦𝑦𝑥) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
344, 33mpd 15 . . . . . . 7 (((𝑀𝑉𝐸𝑊) ∧ (𝑥 ∈ ω ∧ 𝑦 ∈ ω)) → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
3534expr 456 . . . . . 6 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → (𝑦 ∈ ω → (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3635ralrimiv 3151 . . . . 5 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥)))
372, 36jca 511 . . . 4 (((𝑀𝑉𝐸𝑊) ∧ 𝑥 ∈ ω) → (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
3837ralrimiva 3152 . . 3 ((𝑀𝑉𝐸𝑊) → ∀𝑥 ∈ ω (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))))
39 fvex 6933 . . . 4 ((𝑀 Sat 𝐸)‘𝑥) ∈ V
4020, 39fiun 7983 . . 3 (∀𝑥 ∈ ω (((𝑀 Sat 𝐸)‘𝑥):(Fmla‘𝑥)⟶𝒫 (𝑀m ω) ∧ ∀𝑦 ∈ ω (((𝑀 Sat 𝐸)‘𝑥) ⊆ ((𝑀 Sat 𝐸)‘𝑦) ∨ ((𝑀 Sat 𝐸)‘𝑦) ⊆ ((𝑀 Sat 𝐸)‘𝑥))) → 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω))
4138, 40syl 17 . 2 ((𝑀𝑉𝐸𝑊) → 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω))
42 satom 35324 . . 3 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω) = 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥))
43 fmla 35349 . . . 4 (Fmla‘ω) = 𝑥 ∈ ω (Fmla‘𝑥)
4443a1i 11 . . 3 ((𝑀𝑉𝐸𝑊) → (Fmla‘ω) = 𝑥 ∈ ω (Fmla‘𝑥))
4542, 44feq12d 6735 . 2 ((𝑀𝑉𝐸𝑊) → (((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω) ↔ 𝑥 ∈ ω ((𝑀 Sat 𝐸)‘𝑥): 𝑥 ∈ ω (Fmla‘𝑥)⟶𝒫 (𝑀m ω)))
4641, 45mpbird 257 1 ((𝑀𝑉𝐸𝑊) → ((𝑀 Sat 𝐸)‘ω):(Fmla‘ω)⟶𝒫 (𝑀m ω))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 846  w3o 1086   = wceq 1537  wcel 2108  wral 3067  wss 3976  wpss 3977  𝒫 cpw 4622   ciun 5015   class class class wbr 5166  wf 6569  cfv 6573  (class class class)co 7448  ωcom 7903  m cmap 8884  cen 9000  csdm 9002   Sat csat 35304  Fmlacfmla 35305
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-ac 10185  df-goel 35308  df-gona 35309  df-goal 35310  df-sat 35311  df-fmla 35313
This theorem is referenced by:  satfvel  35380  satefvfmla0  35386  satefvfmla1  35393
  Copyright terms: Public domain W3C validator