MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsdisj2 Structured version   Visualization version   GIF version

Theorem qsdisj2 8768
Description: A quotient set is a disjoint set. (Contributed by Mario Carneiro, 10-Dec-2016.)
Assertion
Ref Expression
qsdisj2 (𝑅 Er 𝑋Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥)
Distinct variable groups:   𝑥,𝐴   𝑥,𝑋   𝑥,𝑅

Proof of Theorem qsdisj2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpl 482 . . . 4 ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑅 Er 𝑋)
2 simprl 770 . . . 4 ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑥 ∈ (𝐴 / 𝑅))
3 simprr 772 . . . 4 ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑦 ∈ (𝐴 / 𝑅))
41, 2, 3qsdisj 8767 . . 3 ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → (𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
54ralrimivva 3180 . 2 (𝑅 Er 𝑋 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
6 id 22 . . 3 (𝑥 = 𝑦𝑥 = 𝑦)
76disjor 5089 . 2 (Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥 ↔ ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥𝑦) = ∅))
85, 7sylibr 234 1 (𝑅 Er 𝑋Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1540  wcel 2109  wral 3044  cin 3913  c0 4296  Disj wdisj 5074   Er wer 8668   / cqs 8670
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-disj 5075  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-er 8671  df-ec 8673  df-qs 8677
This theorem is referenced by:  qshash  15793
  Copyright terms: Public domain W3C validator