| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qsdisj2 | Structured version Visualization version GIF version | ||
| Description: A quotient set is a disjoint set. (Contributed by Mario Carneiro, 10-Dec-2016.) |
| Ref | Expression |
|---|---|
| qsdisj2 | ⊢ (𝑅 Er 𝑋 → Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . . . 4 ⊢ ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑅 Er 𝑋) | |
| 2 | simprl 770 | . . . 4 ⊢ ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑥 ∈ (𝐴 / 𝑅)) | |
| 3 | simprr 772 | . . . 4 ⊢ ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑦 ∈ (𝐴 / 𝑅)) | |
| 4 | 1, 2, 3 | qsdisj 8767 | . . 3 ⊢ ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| 5 | 4 | ralrimivva 3180 | . 2 ⊢ (𝑅 Er 𝑋 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| 6 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
| 7 | 6 | disjor 5089 | . 2 ⊢ (Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥 ↔ ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
| 8 | 5, 7 | sylibr 234 | 1 ⊢ (𝑅 Er 𝑋 → Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∩ cin 3913 ∅c0 4296 Disj wdisj 5074 Er wer 8668 / cqs 8670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-disj 5075 df-br 5108 df-opab 5170 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-er 8671 df-ec 8673 df-qs 8677 |
| This theorem is referenced by: qshash 15793 |
| Copyright terms: Public domain | W3C validator |