![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qsdisj2 | Structured version Visualization version GIF version |
Description: A quotient set is a disjoint set. (Contributed by Mario Carneiro, 10-Dec-2016.) |
Ref | Expression |
---|---|
qsdisj2 | ⊢ (𝑅 Er 𝑋 → Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 484 | . . . 4 ⊢ ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑅 Er 𝑋) | |
2 | simprl 770 | . . . 4 ⊢ ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑥 ∈ (𝐴 / 𝑅)) | |
3 | simprr 772 | . . . 4 ⊢ ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → 𝑦 ∈ (𝐴 / 𝑅)) | |
4 | 1, 2, 3 | qsdisj 8734 | . . 3 ⊢ ((𝑅 Er 𝑋 ∧ (𝑥 ∈ (𝐴 / 𝑅) ∧ 𝑦 ∈ (𝐴 / 𝑅))) → (𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
5 | 4 | ralrimivva 3198 | . 2 ⊢ (𝑅 Er 𝑋 → ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
6 | id 22 | . . 3 ⊢ (𝑥 = 𝑦 → 𝑥 = 𝑦) | |
7 | 6 | disjor 5086 | . 2 ⊢ (Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥 ↔ ∀𝑥 ∈ (𝐴 / 𝑅)∀𝑦 ∈ (𝐴 / 𝑅)(𝑥 = 𝑦 ∨ (𝑥 ∩ 𝑦) = ∅)) |
8 | 5, 7 | sylibr 233 | 1 ⊢ (𝑅 Er 𝑋 → Disj 𝑥 ∈ (𝐴 / 𝑅)𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∨ wo 846 = wceq 1542 ∈ wcel 2107 ∀wral 3065 ∩ cin 3910 ∅c0 4283 Disj wdisj 5071 Er wer 8646 / cqs 8648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2945 df-ral 3066 df-rex 3075 df-rmo 3354 df-rab 3409 df-v 3448 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-disj 5072 df-br 5107 df-opab 5169 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-er 8649 df-ec 8651 df-qs 8655 |
This theorem is referenced by: qshash 15713 |
Copyright terms: Public domain | W3C validator |