| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > qshash | Structured version Visualization version GIF version | ||
| Description: The cardinality of a set with an equivalence relation is the sum of the cardinalities of its equivalence classes. (Contributed by Mario Carneiro, 16-Jan-2015.) |
| Ref | Expression |
|---|---|
| qshash.1 | ⊢ (𝜑 → ∼ Er 𝐴) |
| qshash.2 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
| Ref | Expression |
|---|---|
| qshash | ⊢ (𝜑 → (♯‘𝐴) = Σ𝑥 ∈ (𝐴 / ∼ )(♯‘𝑥)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qshash.1 | . . . 4 ⊢ (𝜑 → ∼ Er 𝐴) | |
| 2 | qshash.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
| 3 | erex 8698 | . . . . 5 ⊢ ( ∼ Er 𝐴 → (𝐴 ∈ Fin → ∼ ∈ V)) | |
| 4 | 1, 2, 3 | sylc 65 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
| 5 | 1, 4 | uniqs2 8753 | . . 3 ⊢ (𝜑 → ∪ (𝐴 / ∼ ) = 𝐴) |
| 6 | 5 | fveq2d 6865 | . 2 ⊢ (𝜑 → (♯‘∪ (𝐴 / ∼ )) = (♯‘𝐴)) |
| 7 | pwfi 9275 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | |
| 8 | 2, 7 | sylib 218 | . . . 4 ⊢ (𝜑 → 𝒫 𝐴 ∈ Fin) |
| 9 | 1 | qsss 8752 | . . . 4 ⊢ (𝜑 → (𝐴 / ∼ ) ⊆ 𝒫 𝐴) |
| 10 | 8, 9 | ssfid 9219 | . . 3 ⊢ (𝜑 → (𝐴 / ∼ ) ∈ Fin) |
| 11 | elpwi 4573 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
| 12 | ssfi 9143 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
| 13 | 12 | ex 412 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝑥 ⊆ 𝐴 → 𝑥 ∈ Fin)) |
| 14 | 2, 11, 13 | syl2im 40 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ Fin)) |
| 15 | 14 | ssrdv 3955 | . . . 4 ⊢ (𝜑 → 𝒫 𝐴 ⊆ Fin) |
| 16 | 9, 15 | sstrd 3960 | . . 3 ⊢ (𝜑 → (𝐴 / ∼ ) ⊆ Fin) |
| 17 | qsdisj2 8771 | . . . 4 ⊢ ( ∼ Er 𝐴 → Disj 𝑥 ∈ (𝐴 / ∼ )𝑥) | |
| 18 | 1, 17 | syl 17 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ (𝐴 / ∼ )𝑥) |
| 19 | 10, 16, 18 | hashuni 15799 | . 2 ⊢ (𝜑 → (♯‘∪ (𝐴 / ∼ )) = Σ𝑥 ∈ (𝐴 / ∼ )(♯‘𝑥)) |
| 20 | 6, 19 | eqtr3d 2767 | 1 ⊢ (𝜑 → (♯‘𝐴) = Σ𝑥 ∈ (𝐴 / ∼ )(♯‘𝑥)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3450 ⊆ wss 3917 𝒫 cpw 4566 ∪ cuni 4874 Disj wdisj 5077 ‘cfv 6514 Er wer 8671 / cqs 8673 Fincfn 8921 ♯chash 14302 Σcsu 15659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-disj 5078 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-ec 8676 df-qs 8680 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-oi 9470 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-n0 12450 df-z 12537 df-uz 12801 df-rp 12959 df-fz 13476 df-fzo 13623 df-seq 13974 df-exp 14034 df-hash 14303 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-clim 15461 df-sum 15660 |
| This theorem is referenced by: lagsubg2 19133 sylow1lem3 19537 sylow2a 19556 hashclwwlkn0 30010 |
| Copyright terms: Public domain | W3C validator |