![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qshash | Structured version Visualization version GIF version |
Description: The cardinality of a set with an equivalence relation is the sum of the cardinalities of its equivalence classes. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
qshash.1 | ⊢ (𝜑 → ∼ Er 𝐴) |
qshash.2 | ⊢ (𝜑 → 𝐴 ∈ Fin) |
Ref | Expression |
---|---|
qshash | ⊢ (𝜑 → (♯‘𝐴) = Σ𝑥 ∈ (𝐴 / ∼ )(♯‘𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qshash.1 | . . . 4 ⊢ (𝜑 → ∼ Er 𝐴) | |
2 | qshash.2 | . . . . 5 ⊢ (𝜑 → 𝐴 ∈ Fin) | |
3 | erex 8679 | . . . . 5 ⊢ ( ∼ Er 𝐴 → (𝐴 ∈ Fin → ∼ ∈ V)) | |
4 | 1, 2, 3 | sylc 65 | . . . 4 ⊢ (𝜑 → ∼ ∈ V) |
5 | 1, 4 | uniqs2 8725 | . . 3 ⊢ (𝜑 → ∪ (𝐴 / ∼ ) = 𝐴) |
6 | 5 | fveq2d 6851 | . 2 ⊢ (𝜑 → (♯‘∪ (𝐴 / ∼ )) = (♯‘𝐴)) |
7 | pwfi 9129 | . . . . 5 ⊢ (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin) | |
8 | 2, 7 | sylib 217 | . . . 4 ⊢ (𝜑 → 𝒫 𝐴 ∈ Fin) |
9 | 1 | qsss 8724 | . . . 4 ⊢ (𝜑 → (𝐴 / ∼ ) ⊆ 𝒫 𝐴) |
10 | 8, 9 | ssfid 9218 | . . 3 ⊢ (𝜑 → (𝐴 / ∼ ) ∈ Fin) |
11 | elpwi 4572 | . . . . . 6 ⊢ (𝑥 ∈ 𝒫 𝐴 → 𝑥 ⊆ 𝐴) | |
12 | ssfi 9124 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝑥 ⊆ 𝐴) → 𝑥 ∈ Fin) | |
13 | 12 | ex 414 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (𝑥 ⊆ 𝐴 → 𝑥 ∈ Fin)) |
14 | 2, 11, 13 | syl2im 40 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝒫 𝐴 → 𝑥 ∈ Fin)) |
15 | 14 | ssrdv 3955 | . . . 4 ⊢ (𝜑 → 𝒫 𝐴 ⊆ Fin) |
16 | 9, 15 | sstrd 3959 | . . 3 ⊢ (𝜑 → (𝐴 / ∼ ) ⊆ Fin) |
17 | qsdisj2 8741 | . . . 4 ⊢ ( ∼ Er 𝐴 → Disj 𝑥 ∈ (𝐴 / ∼ )𝑥) | |
18 | 1, 17 | syl 17 | . . 3 ⊢ (𝜑 → Disj 𝑥 ∈ (𝐴 / ∼ )𝑥) |
19 | 10, 16, 18 | hashuni 15718 | . 2 ⊢ (𝜑 → (♯‘∪ (𝐴 / ∼ )) = Σ𝑥 ∈ (𝐴 / ∼ )(♯‘𝑥)) |
20 | 6, 19 | eqtr3d 2779 | 1 ⊢ (𝜑 → (♯‘𝐴) = Σ𝑥 ∈ (𝐴 / ∼ )(♯‘𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1542 ∈ wcel 2107 Vcvv 3448 ⊆ wss 3915 𝒫 cpw 4565 ∪ cuni 4870 Disj wdisj 5075 ‘cfv 6501 Er wer 8652 / cqs 8654 Fincfn 8890 ♯chash 14237 Σcsu 15577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5247 ax-sep 5261 ax-nul 5268 ax-pow 5325 ax-pr 5389 ax-un 7677 ax-inf2 9584 ax-cnex 11114 ax-resscn 11115 ax-1cn 11116 ax-icn 11117 ax-addcl 11118 ax-addrcl 11119 ax-mulcl 11120 ax-mulrcl 11121 ax-mulcom 11122 ax-addass 11123 ax-mulass 11124 ax-distr 11125 ax-i2m1 11126 ax-1ne0 11127 ax-1rid 11128 ax-rnegex 11129 ax-rrecex 11130 ax-cnre 11131 ax-pre-lttri 11132 ax-pre-lttrn 11133 ax-pre-ltadd 11134 ax-pre-mulgt0 11135 ax-pre-sup 11136 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3066 df-rex 3075 df-rmo 3356 df-reu 3357 df-rab 3411 df-v 3450 df-sbc 3745 df-csb 3861 df-dif 3918 df-un 3920 df-in 3922 df-ss 3932 df-pss 3934 df-nul 4288 df-if 4492 df-pw 4567 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4871 df-int 4913 df-iun 4961 df-disj 5076 df-br 5111 df-opab 5173 df-mpt 5194 df-tr 5228 df-id 5536 df-eprel 5542 df-po 5550 df-so 5551 df-fr 5593 df-se 5594 df-we 5595 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6258 df-ord 6325 df-on 6326 df-lim 6327 df-suc 6328 df-iota 6453 df-fun 6503 df-fn 6504 df-f 6505 df-f1 6506 df-fo 6507 df-f1o 6508 df-fv 6509 df-isom 6510 df-riota 7318 df-ov 7365 df-oprab 7366 df-mpo 7367 df-om 7808 df-1st 7926 df-2nd 7927 df-frecs 8217 df-wrecs 8248 df-recs 8322 df-rdg 8361 df-1o 8417 df-er 8655 df-ec 8657 df-qs 8661 df-en 8891 df-dom 8892 df-sdom 8893 df-fin 8894 df-sup 9385 df-oi 9453 df-card 9882 df-pnf 11198 df-mnf 11199 df-xr 11200 df-ltxr 11201 df-le 11202 df-sub 11394 df-neg 11395 df-div 11820 df-nn 12161 df-2 12223 df-3 12224 df-n0 12421 df-z 12507 df-uz 12771 df-rp 12923 df-fz 13432 df-fzo 13575 df-seq 13914 df-exp 13975 df-hash 14238 df-cj 14991 df-re 14992 df-im 14993 df-sqrt 15127 df-abs 15128 df-clim 15377 df-sum 15578 |
This theorem is referenced by: lagsubg2 18998 sylow1lem3 19389 sylow2a 19408 hashclwwlkn0 29060 |
Copyright terms: Public domain | W3C validator |