MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qshash Structured version   Visualization version   GIF version

Theorem qshash 15520
Description: The cardinality of a set with an equivalence relation is the sum of the cardinalities of its equivalence classes. (Contributed by Mario Carneiro, 16-Jan-2015.)
Hypotheses
Ref Expression
qshash.1 (𝜑 Er 𝐴)
qshash.2 (𝜑𝐴 ∈ Fin)
Assertion
Ref Expression
qshash (𝜑 → (♯‘𝐴) = Σ𝑥 ∈ (𝐴 / )(♯‘𝑥))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,

Proof of Theorem qshash
StepHypRef Expression
1 qshash.1 . . . 4 (𝜑 Er 𝐴)
2 qshash.2 . . . . 5 (𝜑𝐴 ∈ Fin)
3 erex 8496 . . . . 5 ( Er 𝐴 → (𝐴 ∈ Fin → ∈ V))
41, 2, 3sylc 65 . . . 4 (𝜑 ∈ V)
51, 4uniqs2 8542 . . 3 (𝜑 (𝐴 / ) = 𝐴)
65fveq2d 6772 . 2 (𝜑 → (♯‘ (𝐴 / )) = (♯‘𝐴))
7 pwfi 8926 . . . . 5 (𝐴 ∈ Fin ↔ 𝒫 𝐴 ∈ Fin)
82, 7sylib 217 . . . 4 (𝜑 → 𝒫 𝐴 ∈ Fin)
91qsss 8541 . . . 4 (𝜑 → (𝐴 / ) ⊆ 𝒫 𝐴)
108, 9ssfid 9003 . . 3 (𝜑 → (𝐴 / ) ∈ Fin)
11 elpwi 4547 . . . . . 6 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
12 ssfi 8921 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝑥𝐴) → 𝑥 ∈ Fin)
1312ex 412 . . . . . 6 (𝐴 ∈ Fin → (𝑥𝐴𝑥 ∈ Fin))
142, 11, 13syl2im 40 . . . . 5 (𝜑 → (𝑥 ∈ 𝒫 𝐴𝑥 ∈ Fin))
1514ssrdv 3931 . . . 4 (𝜑 → 𝒫 𝐴 ⊆ Fin)
169, 15sstrd 3935 . . 3 (𝜑 → (𝐴 / ) ⊆ Fin)
17 qsdisj2 8558 . . . 4 ( Er 𝐴Disj 𝑥 ∈ (𝐴 / )𝑥)
181, 17syl 17 . . 3 (𝜑Disj 𝑥 ∈ (𝐴 / )𝑥)
1910, 16, 18hashuni 15519 . 2 (𝜑 → (♯‘ (𝐴 / )) = Σ𝑥 ∈ (𝐴 / )(♯‘𝑥))
206, 19eqtr3d 2781 1 (𝜑 → (♯‘𝐴) = Σ𝑥 ∈ (𝐴 / )(♯‘𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2109  Vcvv 3430  wss 3891  𝒫 cpw 4538   cuni 4844  Disj wdisj 5043  cfv 6430   Er wer 8469   / cqs 8471  Fincfn 8707  chash 14025  Σcsu 15378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-inf2 9360  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931  ax-pre-mulgt0 10932  ax-pre-sup 10933
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rmo 3073  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-int 4885  df-iun 4931  df-disj 5044  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-se 5544  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-isom 6439  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-1o 8281  df-er 8472  df-ec 8474  df-qs 8478  df-en 8708  df-dom 8709  df-sdom 8710  df-fin 8711  df-sup 9162  df-oi 9230  df-card 9681  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-div 11616  df-nn 11957  df-2 12019  df-3 12020  df-n0 12217  df-z 12303  df-uz 12565  df-rp 12713  df-fz 13222  df-fzo 13365  df-seq 13703  df-exp 13764  df-hash 14026  df-cj 14791  df-re 14792  df-im 14793  df-sqrt 14927  df-abs 14928  df-clim 15178  df-sum 15379
This theorem is referenced by:  lagsubg2  18798  sylow1lem3  19186  sylow2a  19205  hashclwwlkn0  28417
  Copyright terms: Public domain W3C validator