Step | Hyp | Ref
| Expression |
1 | | lmss.4 |
. . . . . 6
⊢ (𝜑 → 𝐽 ∈ Top) |
2 | | toptopon2 22067 |
. . . . . 6
⊢ (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘∪ 𝐽)) |
3 | 1, 2 | sylib 217 |
. . . . 5
⊢ (𝜑 → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
4 | | lmcl 22448 |
. . . . 5
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ ∪ 𝐽) |
5 | 3, 4 | sylan 580 |
. . . 4
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝑃 ∈ ∪ 𝐽) |
6 | | lmfss 22447 |
. . . . . . 7
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ⊆ (ℂ × ∪ 𝐽)) |
7 | 3, 6 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → 𝐹 ⊆ (ℂ × ∪ 𝐽)) |
8 | | rnss 5848 |
. . . . . 6
⊢ (𝐹 ⊆ (ℂ × ∪ 𝐽)
→ ran 𝐹 ⊆ ran
(ℂ × ∪ 𝐽)) |
9 | 7, 8 | syl 17 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → ran 𝐹 ⊆ ran (ℂ × ∪ 𝐽)) |
10 | | rnxpss 6075 |
. . . . 5
⊢ ran
(ℂ × ∪ 𝐽) ⊆ ∪ 𝐽 |
11 | 9, 10 | sstrdi 3933 |
. . . 4
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → ran 𝐹 ⊆ ∪ 𝐽) |
12 | 5, 11 | jca 512 |
. . 3
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐽)𝑃) → (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) |
13 | 12 | ex 413 |
. 2
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 → (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽))) |
14 | | lmss.1 |
. . . . . . 7
⊢ 𝐾 = (𝐽 ↾t 𝑌) |
15 | | lmss.3 |
. . . . . . . 8
⊢ (𝜑 → 𝑌 ∈ 𝑉) |
16 | | resttopon2 22319 |
. . . . . . . 8
⊢ ((𝐽 ∈ (TopOn‘∪ 𝐽)
∧ 𝑌 ∈ 𝑉) → (𝐽 ↾t 𝑌) ∈ (TopOn‘(𝑌 ∩ ∪ 𝐽))) |
17 | 3, 15, 16 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐽 ↾t 𝑌) ∈ (TopOn‘(𝑌 ∩ ∪ 𝐽))) |
18 | 14, 17 | eqeltrid 2843 |
. . . . . 6
⊢ (𝜑 → 𝐾 ∈ (TopOn‘(𝑌 ∩ ∪ 𝐽))) |
19 | | lmcl 22448 |
. . . . . 6
⊢ ((𝐾 ∈ (TopOn‘(𝑌 ∩ ∪ 𝐽))
∧ 𝐹(⇝𝑡‘𝐾)𝑃) → 𝑃 ∈ (𝑌 ∩ ∪ 𝐽)) |
20 | 18, 19 | sylan 580 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → 𝑃 ∈ (𝑌 ∩ ∪ 𝐽)) |
21 | 20 | elin2d 4133 |
. . . 4
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → 𝑃 ∈ ∪ 𝐽) |
22 | | lmfss 22447 |
. . . . . . . 8
⊢ ((𝐾 ∈ (TopOn‘(𝑌 ∩ ∪ 𝐽))
∧ 𝐹(⇝𝑡‘𝐾)𝑃) → 𝐹 ⊆ (ℂ × (𝑌 ∩ ∪ 𝐽))) |
23 | 18, 22 | sylan 580 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → 𝐹 ⊆ (ℂ × (𝑌 ∩ ∪ 𝐽))) |
24 | | rnss 5848 |
. . . . . . 7
⊢ (𝐹 ⊆ (ℂ × (𝑌 ∩ ∪ 𝐽))
→ ran 𝐹 ⊆ ran
(ℂ × (𝑌 ∩
∪ 𝐽))) |
25 | 23, 24 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → ran 𝐹 ⊆ ran (ℂ × (𝑌 ∩ ∪ 𝐽))) |
26 | | rnxpss 6075 |
. . . . . 6
⊢ ran
(ℂ × (𝑌 ∩
∪ 𝐽)) ⊆ (𝑌 ∩ ∪ 𝐽) |
27 | 25, 26 | sstrdi 3933 |
. . . . 5
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → ran 𝐹 ⊆ (𝑌 ∩ ∪ 𝐽)) |
28 | | inss2 4163 |
. . . . 5
⊢ (𝑌 ∩ ∪ 𝐽)
⊆ ∪ 𝐽 |
29 | 27, 28 | sstrdi 3933 |
. . . 4
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → ran 𝐹 ⊆ ∪ 𝐽) |
30 | 21, 29 | jca 512 |
. . 3
⊢ ((𝜑 ∧ 𝐹(⇝𝑡‘𝐾)𝑃) → (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) |
31 | 30 | ex 413 |
. 2
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐾)𝑃 → (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽))) |
32 | | simprl 768 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝑃 ∈ ∪ 𝐽) |
33 | | lmss.5 |
. . . . . . . 8
⊢ (𝜑 → 𝑃 ∈ 𝑌) |
34 | 33 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝑃 ∈ 𝑌) |
35 | 34, 32 | elind 4128 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝑃 ∈ (𝑌 ∩ ∪ 𝐽)) |
36 | 32, 35 | 2thd 264 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝑃 ∈ ∪ 𝐽 ↔ 𝑃 ∈ (𝑌 ∩ ∪ 𝐽))) |
37 | 14 | eleq2i 2830 |
. . . . . . . . 9
⊢ (𝑣 ∈ 𝐾 ↔ 𝑣 ∈ (𝐽 ↾t 𝑌)) |
38 | 1 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐽 ∈ Top) |
39 | 15 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝑌 ∈ 𝑉) |
40 | | elrest 17138 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝑉) → (𝑣 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑣 = (𝑢 ∩ 𝑌))) |
41 | 38, 39, 40 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝑣 ∈ (𝐽 ↾t 𝑌) ↔ ∃𝑢 ∈ 𝐽 𝑣 = (𝑢 ∩ 𝑌))) |
42 | 41 | biimpa 477 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑣 ∈ (𝐽 ↾t 𝑌)) → ∃𝑢 ∈ 𝐽 𝑣 = (𝑢 ∩ 𝑌)) |
43 | 37, 42 | sylan2b 594 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑣 ∈ 𝐾) → ∃𝑢 ∈ 𝐽 𝑣 = (𝑢 ∩ 𝑌)) |
44 | | r19.29r 3185 |
. . . . . . . . . 10
⊢
((∃𝑢 ∈
𝐽 𝑣 = (𝑢 ∩ 𝑌) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) → ∃𝑢 ∈ 𝐽 (𝑣 = (𝑢 ∩ 𝑌) ∧ (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢))) |
45 | 34 | biantrud 532 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝑃 ∈ 𝑢 ↔ (𝑃 ∈ 𝑢 ∧ 𝑃 ∈ 𝑌))) |
46 | | elin 3903 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑃 ∈ (𝑢 ∩ 𝑌) ↔ (𝑃 ∈ 𝑢 ∧ 𝑃 ∈ 𝑌)) |
47 | 45, 46 | bitr4di 289 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝑃 ∈ 𝑢 ↔ 𝑃 ∈ (𝑢 ∩ 𝑌))) |
48 | | lmss.2 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ 𝑍 =
(ℤ≥‘𝑀) |
49 | 48 | uztrn2 12601 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → 𝑘 ∈ 𝑍) |
50 | | lmss.7 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → 𝐹:𝑍⟶𝑌) |
51 | 50 | adantr 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐹:𝑍⟶𝑌) |
52 | 51 | ffvelrnda 6961 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) ∈ 𝑌) |
53 | 52 | biantrud 532 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ 𝑢 ↔ ((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑌))) |
54 | | elin 3903 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌) ↔ ((𝐹‘𝑘) ∈ 𝑢 ∧ (𝐹‘𝑘) ∈ 𝑌)) |
55 | 53, 54 | bitr4di 289 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑘 ∈ 𝑍) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
56 | 49, 55 | sylan2 593 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ (𝑗 ∈ 𝑍 ∧ 𝑘 ∈ (ℤ≥‘𝑗))) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
57 | 56 | anassrs 468 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑗 ∈ 𝑍) ∧ 𝑘 ∈ (ℤ≥‘𝑗)) → ((𝐹‘𝑘) ∈ 𝑢 ↔ (𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
58 | 57 | ralbidva 3111 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ↔ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
59 | 58 | rexbidva 3225 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
60 | 47, 59 | imbi12d 345 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ↔ (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌)))) |
61 | 60 | adantr 481 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ↔ (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌)))) |
62 | 61 | biimpd 228 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌)))) |
63 | | eleq2 2827 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑢 ∩ 𝑌) → (𝑃 ∈ 𝑣 ↔ 𝑃 ∈ (𝑢 ∩ 𝑌))) |
64 | | eleq2 2827 |
. . . . . . . . . . . . . . . 16
⊢ (𝑣 = (𝑢 ∩ 𝑌) → ((𝐹‘𝑘) ∈ 𝑣 ↔ (𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
65 | 64 | rexralbidv 3230 |
. . . . . . . . . . . . . . 15
⊢ (𝑣 = (𝑢 ∩ 𝑌) → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣 ↔ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))) |
66 | 63, 65 | imbi12d 345 |
. . . . . . . . . . . . . 14
⊢ (𝑣 = (𝑢 ∩ 𝑌) → ((𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣) ↔ (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌)))) |
67 | 66 | imbi2d 341 |
. . . . . . . . . . . . 13
⊢ (𝑣 = (𝑢 ∩ 𝑌) → (((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣)) ↔ ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌))))) |
68 | 62, 67 | syl5ibrcom 246 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → (𝑣 = (𝑢 ∩ 𝑌) → ((𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣)))) |
69 | 68 | impd 411 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → ((𝑣 = (𝑢 ∩ 𝑌) ∧ (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
70 | 69 | rexlimdva 3213 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (∃𝑢 ∈ 𝐽 (𝑣 = (𝑢 ∩ 𝑌) ∧ (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
71 | 44, 70 | syl5 34 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → ((∃𝑢 ∈ 𝐽 𝑣 = (𝑢 ∩ 𝑌) ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
72 | 71 | expdimp 453 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ ∃𝑢 ∈ 𝐽 𝑣 = (𝑢 ∩ 𝑌)) → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
73 | 43, 72 | syldan 591 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑣 ∈ 𝐾) → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
74 | 73 | ralrimdva 3106 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) → ∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
75 | 38 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → 𝐽 ∈ Top) |
76 | 39 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → 𝑌 ∈ 𝑉) |
77 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → 𝑢 ∈ 𝐽) |
78 | | elrestr 17139 |
. . . . . . . . . . 11
⊢ ((𝐽 ∈ Top ∧ 𝑌 ∈ 𝑉 ∧ 𝑢 ∈ 𝐽) → (𝑢 ∩ 𝑌) ∈ (𝐽 ↾t 𝑌)) |
79 | 75, 76, 77, 78 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → (𝑢 ∩ 𝑌) ∈ (𝐽 ↾t 𝑌)) |
80 | 79, 14 | eleqtrrdi 2850 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → (𝑢 ∩ 𝑌) ∈ 𝐾) |
81 | 66 | rspcv 3557 |
. . . . . . . . 9
⊢ ((𝑢 ∩ 𝑌) ∈ 𝐾 → (∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣) → (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌)))) |
82 | 80, 81 | syl 17 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → (∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣) → (𝑃 ∈ (𝑢 ∩ 𝑌) → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ (𝑢 ∩ 𝑌)))) |
83 | 82, 61 | sylibrd 258 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑢 ∈ 𝐽) → (∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣) → (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢))) |
84 | 83 | ralrimdva 3106 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣) → ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢))) |
85 | 74, 84 | impbid 211 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢) ↔ ∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣))) |
86 | 36, 85 | anbi12d 631 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → ((𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)) ↔ (𝑃 ∈ (𝑌 ∩ ∪ 𝐽) ∧ ∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣)))) |
87 | 38, 2 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐽 ∈ (TopOn‘∪ 𝐽)) |
88 | | lmss.6 |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℤ) |
89 | 88 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝑀 ∈ ℤ) |
90 | 51 | ffnd 6601 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐹 Fn 𝑍) |
91 | | simprr 770 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → ran 𝐹 ⊆ ∪ 𝐽) |
92 | | df-f 6437 |
. . . . . 6
⊢ (𝐹:𝑍⟶∪ 𝐽 ↔ (𝐹 Fn 𝑍 ∧ ran 𝐹 ⊆ ∪ 𝐽)) |
93 | 90, 91, 92 | sylanbrc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐹:𝑍⟶∪ 𝐽) |
94 | | eqidd 2739 |
. . . . 5
⊢ (((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = (𝐹‘𝑘)) |
95 | 87, 48, 89, 93, 94 | lmbrf 22411 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ (𝑃 ∈ ∪ 𝐽 ∧ ∀𝑢 ∈ 𝐽 (𝑃 ∈ 𝑢 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑢)))) |
96 | 18 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐾 ∈ (TopOn‘(𝑌 ∩ ∪ 𝐽))) |
97 | 51 | frnd 6608 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → ran 𝐹 ⊆ 𝑌) |
98 | 97, 91 | ssind 4166 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → ran 𝐹 ⊆ (𝑌 ∩ ∪ 𝐽)) |
99 | | df-f 6437 |
. . . . . 6
⊢ (𝐹:𝑍⟶(𝑌 ∩ ∪ 𝐽) ↔ (𝐹 Fn 𝑍 ∧ ran 𝐹 ⊆ (𝑌 ∩ ∪ 𝐽))) |
100 | 90, 98, 99 | sylanbrc 583 |
. . . . 5
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → 𝐹:𝑍⟶(𝑌 ∩ ∪ 𝐽)) |
101 | 96, 48, 89, 100, 94 | lmbrf 22411 |
. . . 4
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝐹(⇝𝑡‘𝐾)𝑃 ↔ (𝑃 ∈ (𝑌 ∩ ∪ 𝐽) ∧ ∀𝑣 ∈ 𝐾 (𝑃 ∈ 𝑣 → ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ 𝑣)))) |
102 | 86, 95, 101 | 3bitr4d 311 |
. . 3
⊢ ((𝜑 ∧ (𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽)) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹(⇝𝑡‘𝐾)𝑃)) |
103 | 102 | ex 413 |
. 2
⊢ (𝜑 → ((𝑃 ∈ ∪ 𝐽 ∧ ran 𝐹 ⊆ ∪ 𝐽) → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹(⇝𝑡‘𝐾)𝑃))) |
104 | 13, 31, 103 | pm5.21ndd 381 |
1
⊢ (𝜑 → (𝐹(⇝𝑡‘𝐽)𝑃 ↔ 𝐹(⇝𝑡‘𝐾)𝑃)) |