Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumesum Structured version   Visualization version   GIF version

Theorem gsumesum 34095
Description: Relate a group sum on (ℝ*𝑠s (0[,]+∞)) to a finite extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
gsumesum.0 𝑘𝜑
gsumesum.1 (𝜑𝐴 ∈ Fin)
gsumesum.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
gsumesum (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = Σ*𝑘𝐴𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem gsumesum
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumesum.0 . . 3 𝑘𝜑
2 nfcv 2899 . . 3 𝑘𝐴
3 gsumesum.1 . . 3 (𝜑𝐴 ∈ Fin)
4 gsumesum.2 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
5 eqidd 2737 . . 3 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
61, 2, 3, 4, 5esumval 34082 . 2 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ))
7 xrltso 13162 . . . 4 < Or ℝ*
87a1i 11 . . 3 (𝜑 → < Or ℝ*)
9 iccssxr 13452 . . . 4 (0[,]+∞) ⊆ ℝ*
10 xrge0base 33011 . . . . 5 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
11 xrge0cmn 21381 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1211a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
134ex 412 . . . . . 6 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
141, 13ralrimi 3244 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
1510, 12, 3, 14gsummptcl 19953 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ (0[,]+∞))
169, 15sselid 3961 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*)
17 pwidg 4600 . . . . . . 7 (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴)
183, 17syl 17 . . . . . 6 (𝜑𝐴 ∈ 𝒫 𝐴)
1918, 3elind 4180 . . . . 5 (𝜑𝐴 ∈ (𝒫 𝐴 ∩ Fin))
20 eqidd 2737 . . . . 5 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
21 mpteq1 5214 . . . . . . 7 (𝑥 = 𝐴 → (𝑘𝑥𝐵) = (𝑘𝐴𝐵))
2221oveq2d 7426 . . . . . 6 (𝑥 = 𝐴 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
2322rspceeqv 3629 . . . . 5 ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
2419, 20, 23syl2anc 584 . . . 4 (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
25 eqid 2736 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
26 ovex 7443 . . . . 5 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ V
2725, 26elrnmpti 5947 . . . 4 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
2824, 27sylibr 234 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))))
29 simpr 484 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))))
30 mpteq1 5214 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑘𝑥𝐵) = (𝑘𝑎𝐵))
3130oveq2d 7426 . . . . . . . 8 (𝑥 = 𝑎 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3231cbvmptv 5230 . . . . . . 7 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
33 ovex 7443 . . . . . . 7 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V
3432, 33elrnmpti 5947 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3529, 34sylib 218 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3611a1i 11 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
37 inss2 4218 . . . . . . . . . . . 12 (𝒫 𝐴 ∩ Fin) ⊆ Fin
38 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
3937, 38sselid 3961 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin)
40 nfv 1914 . . . . . . . . . . . . 13 𝑘 𝑎 ∈ (𝒫 𝐴 ∩ Fin)
411, 40nfan 1899 . . . . . . . . . . . 12 𝑘(𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin))
42 simpll 766 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝜑)
43 inss1 4217 . . . . . . . . . . . . . . . . . 18 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
4443sseli 3959 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
4544elpwid 4589 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
4645ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎𝐴)
47 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝑎)
4846, 47sseldd 3964 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝐴)
4942, 48, 4syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝐵 ∈ (0[,]+∞))
5049ex 412 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑎𝐵 ∈ (0[,]+∞)))
5141, 50ralrimi 3244 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑎 𝐵 ∈ (0[,]+∞))
5210, 36, 39, 51gsummptcl 19953 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ (0[,]+∞))
539, 52sselid 3961 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ*)
54 diffi 9194 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴𝑎) ∈ Fin)
553, 54syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑎) ∈ Fin)
5655adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐴𝑎) ∈ Fin)
57 simpll 766 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝜑)
58 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝑘 ∈ (𝐴𝑎))
5958eldifad 3943 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝑘𝐴)
6057, 59, 4syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝐵 ∈ (0[,]+∞))
6160ex 412 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ (𝐴𝑎) → 𝐵 ∈ (0[,]+∞)))
6241, 61ralrimi 3244 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘 ∈ (𝐴𝑎)𝐵 ∈ (0[,]+∞))
6310, 36, 56, 62gsummptcl 19953 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞))
649, 63sselid 3961 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*)
65 elxrge0 13479 . . . . . . . . . . 11 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞) ↔ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ* ∧ 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
6665simprbi 496 . . . . . . . . . 10 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞) → 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
6763, 66syl 17 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
68 xraddge02 32739 . . . . . . . . . 10 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ* ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*) → (0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))))
6968imp 406 . . . . . . . . 9 (((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ* ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*) ∧ 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
7053, 64, 67, 69syl21anc 837 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
7170adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
72 simpll 766 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝜑)
7345adantl 481 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎𝐴)
74 xrge00 33012 . . . . . . . . . 10 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
75 xrge0plusg 33013 . . . . . . . . . 10 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
7611a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
773adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝐴 ∈ Fin)
78 eqid 2736 . . . . . . . . . . . 12 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
791, 4, 78fmptdf 7112 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
8079adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
8178fnmpt 6683 . . . . . . . . . . . . 13 (∀𝑘𝐴 𝐵 ∈ (0[,]+∞) → (𝑘𝐴𝐵) Fn 𝐴)
8214, 81syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴𝐵) Fn 𝐴)
83 c0ex 11234 . . . . . . . . . . . . 13 0 ∈ V
8483a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ V)
8582, 3, 84fndmfifsupp 9395 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵) finSupp 0)
8685adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑘𝐴𝐵) finSupp 0)
87 disjdif 4452 . . . . . . . . . . 11 (𝑎 ∩ (𝐴𝑎)) = ∅
8887a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑎 ∩ (𝐴𝑎)) = ∅)
89 undif 4462 . . . . . . . . . . . . 13 (𝑎𝐴 ↔ (𝑎 ∪ (𝐴𝑎)) = 𝐴)
9089biimpi 216 . . . . . . . . . . . 12 (𝑎𝐴 → (𝑎 ∪ (𝐴𝑎)) = 𝐴)
9190eqcomd 2742 . . . . . . . . . . 11 (𝑎𝐴𝐴 = (𝑎 ∪ (𝐴𝑎)))
9291adantl 481 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝐴 = (𝑎 ∪ (𝐴𝑎)))
9310, 74, 75, 76, 77, 80, 86, 88, 92gsumsplit 19914 . . . . . . . . 9 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎)))))
94 resmpt 6029 . . . . . . . . . . . 12 (𝑎𝐴 → ((𝑘𝐴𝐵) ↾ 𝑎) = (𝑘𝑎𝐵))
9594oveq2d 7426 . . . . . . . . . . 11 (𝑎𝐴 → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
9695adantl 481 . . . . . . . . . 10 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
97 difss 4116 . . . . . . . . . . . . 13 (𝐴𝑎) ⊆ 𝐴
98 resmpt 6029 . . . . . . . . . . . . 13 ((𝐴𝑎) ⊆ 𝐴 → ((𝑘𝐴𝐵) ↾ (𝐴𝑎)) = (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))
9997, 98ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝐴𝐵) ↾ (𝐴𝑎)) = (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)
10099oveq2i 7421 . . . . . . . . . . 11 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎))) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))
101100a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎))) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
10296, 101oveq12d 7428 . . . . . . . . 9 ((𝜑𝑎𝐴) → (((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎)))) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10393, 102eqtrd 2771 . . . . . . . 8 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10472, 73, 103syl2anc 584 . . . . . . 7 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10571, 104breqtrrd 5152 . . . . . 6 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
106105ralrimiva 3133 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
107 r19.29r 3104 . . . . . 6 ((∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
108 breq1 5127 . . . . . . . 8 (𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
109108biimpar 477 . . . . . . 7 ((𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
110109rexlimivw 3138 . . . . . 6 (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
111107, 110syl 17 . . . . 5 ((∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
11235, 106, 111syl2anc 584 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
11316adantr 480 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*)
11411a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
115 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
11637, 115sselid 3961 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
117 nfv 1914 . . . . . . . . . . . 12 𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin)
1181, 117nfan 1899 . . . . . . . . . . 11 𝑘(𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin))
119 simpll 766 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
12043sseli 3959 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
121120ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 𝐴)
122121elpwid 4589 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥𝐴)
123 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
124122, 123sseldd 3964 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
125119, 124, 4syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,]+∞))
126125ex 412 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵 ∈ (0[,]+∞)))
127118, 126ralrimi 3244 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑥 𝐵 ∈ (0[,]+∞))
12810, 114, 116, 127gsummptcl 19953 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ (0[,]+∞))
1299, 128sselid 3961 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
130129ralrimiva 3133 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
13125rnmptss 7118 . . . . . . 7 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
132130, 131syl 17 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
133132sselda 3963 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ∈ ℝ*)
134 xrltnle 11307 . . . . . 6 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*𝑦 ∈ ℝ*) → (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦 ↔ ¬ 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
135134con2bid 354 . . . . 5 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦))
136113, 133, 135syl2anc 584 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦))
137112, 136mpbid 232 . . 3 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦)
1388, 16, 28, 137supmax 9485 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
1396, 138eqtr2d 2772 1 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = Σ*𝑘𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3052  wrex 3061  Vcvv 3464  cdif 3928  cun 3929  cin 3930  wss 3931  c0 4313  𝒫 cpw 4580   class class class wbr 5124  cmpt 5206   Or wor 5565  ran crn 5660  cres 5661   Fn wfn 6531  wf 6532  (class class class)co 7410  Fincfn 8964   finSupp cfsupp 9378  supcsup 9457  0cc0 11134  +∞cpnf 11271  *cxr 11273   < clt 11274  cle 11275   +𝑒 cxad 13131  [,]cicc 13370  s cress 17256   Σg cgsu 17459  *𝑠cxrs 17519  CMndccmn 19766  Σ*cesum 34063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-xadd 13134  df-ioo 13371  df-ioc 13372  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-seq 14025  df-hash 14354  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-tset 17295  df-ple 17296  df-ds 17298  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-ordt 17520  df-xrs 17521  df-mre 17603  df-mrc 17604  df-acs 17606  df-ps 18581  df-tsr 18582  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-cntz 19305  df-cmn 19768  df-fbas 21317  df-fg 21318  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-ntr 22963  df-nei 23041  df-cn 23170  df-haus 23258  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-tsms 24070  df-esum 34064
This theorem is referenced by:  esumlub  34096
  Copyright terms: Public domain W3C validator