Step | Hyp | Ref
| Expression |
1 | | gsumesum.0 |
. . 3
⊢
Ⅎ𝑘𝜑 |
2 | | nfcv 2906 |
. . 3
⊢
Ⅎ𝑘𝐴 |
3 | | gsumesum.1 |
. . 3
⊢ (𝜑 → 𝐴 ∈ Fin) |
4 | | gsumesum.2 |
. . 3
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ (0[,]+∞)) |
5 | | eqidd 2739 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) |
6 | 1, 2, 3, 4, 5 | esumval 31914 |
. 2
⊢ (𝜑 → Σ*𝑘 ∈ 𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))), ℝ*, <
)) |
7 | | xrltso 12804 |
. . . 4
⊢ < Or
ℝ* |
8 | 7 | a1i 11 |
. . 3
⊢ (𝜑 → < Or
ℝ*) |
9 | | iccssxr 13091 |
. . . 4
⊢
(0[,]+∞) ⊆ ℝ* |
10 | | xrge0base 31196 |
. . . . 5
⊢
(0[,]+∞) = (Base‘(ℝ*𝑠
↾s (0[,]+∞))) |
11 | | xrge0cmn 20552 |
. . . . . 6
⊢
(ℝ*𝑠 ↾s
(0[,]+∞)) ∈ CMnd |
12 | 11 | a1i 11 |
. . . . 5
⊢ (𝜑 →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
13 | 4 | ex 412 |
. . . . . 6
⊢ (𝜑 → (𝑘 ∈ 𝐴 → 𝐵 ∈ (0[,]+∞))) |
14 | 1, 13 | ralrimi 3139 |
. . . . 5
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ (0[,]+∞)) |
15 | 10, 12, 3, 14 | gsummptcl 19483 |
. . . 4
⊢ (𝜑 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ (0[,]+∞)) |
16 | 9, 15 | sselid 3915 |
. . 3
⊢ (𝜑 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈
ℝ*) |
17 | | pwidg 4552 |
. . . . . . 7
⊢ (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴) |
18 | 3, 17 | syl 17 |
. . . . . 6
⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐴) |
19 | 18, 3 | elind 4124 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (𝒫 𝐴 ∩ Fin)) |
20 | | eqidd 2739 |
. . . . 5
⊢ (𝜑 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
21 | | mpteq1 5163 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → (𝑘 ∈ 𝑥 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵)) |
22 | 21 | oveq2d 7271 |
. . . . . 6
⊢ (𝑥 = 𝐴 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
23 | 22 | rspceeqv 3567 |
. . . . 5
⊢ ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) → ∃𝑥 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) |
24 | 19, 20, 23 | syl2anc 583 |
. . . 4
⊢ (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) |
25 | | eqid 2738 |
. . . . 5
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) |
26 | | ovex 7288 |
. . . . 5
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) ∈ V |
27 | 25, 26 | elrnmpti 5858 |
. . . 4
⊢
(((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) |
28 | 24, 27 | sylibr 233 |
. . 3
⊢ (𝜑 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) |
29 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) |
30 | | mpteq1 5163 |
. . . . . . . . 9
⊢ (𝑥 = 𝑎 → (𝑘 ∈ 𝑥 ↦ 𝐵) = (𝑘 ∈ 𝑎 ↦ 𝐵)) |
31 | 30 | oveq2d 7271 |
. . . . . . . 8
⊢ (𝑥 = 𝑎 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵))) |
32 | 31 | cbvmptv 5183 |
. . . . . . 7
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵))) |
33 | | ovex 7288 |
. . . . . . 7
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∈ V |
34 | 32, 33 | elrnmpti 5858 |
. . . . . 6
⊢ (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵))) |
35 | 29, 34 | sylib 217 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵))) |
36 | 11 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
37 | | inss2 4160 |
. . . . . . . . . . . 12
⊢
(𝒫 𝐴 ∩
Fin) ⊆ Fin |
38 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) |
39 | 37, 38 | sselid 3915 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin) |
40 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘 𝑎 ∈ (𝒫 𝐴 ∩ Fin) |
41 | 1, 40 | nfan 1903 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘(𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) |
42 | | simpll 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑎) → 𝜑) |
43 | | inss1 4159 |
. . . . . . . . . . . . . . . . . 18
⊢
(𝒫 𝐴 ∩
Fin) ⊆ 𝒫 𝐴 |
44 | 43 | sseli 3913 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴) |
45 | 44 | elpwid 4541 |
. . . . . . . . . . . . . . . 16
⊢ (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ⊆ 𝐴) |
46 | 45 | ad2antlr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑎) → 𝑎 ⊆ 𝐴) |
47 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑎) → 𝑘 ∈ 𝑎) |
48 | 46, 47 | sseldd 3918 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑎) → 𝑘 ∈ 𝐴) |
49 | 42, 48, 4 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑎) → 𝐵 ∈ (0[,]+∞)) |
50 | 49 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ 𝑎 → 𝐵 ∈ (0[,]+∞))) |
51 | 41, 50 | ralrimi 3139 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘 ∈ 𝑎 𝐵 ∈ (0[,]+∞)) |
52 | 10, 36, 39, 51 | gsummptcl 19483 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∈ (0[,]+∞)) |
53 | 9, 52 | sselid 3915 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∈
ℝ*) |
54 | | diffi 8979 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝑎) ∈ Fin) |
55 | 3, 54 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝐴 ∖ 𝑎) ∈ Fin) |
56 | 55 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐴 ∖ 𝑎) ∈ Fin) |
57 | | simpll 763 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴 ∖ 𝑎)) → 𝜑) |
58 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴 ∖ 𝑎)) → 𝑘 ∈ (𝐴 ∖ 𝑎)) |
59 | 58 | eldifad 3895 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴 ∖ 𝑎)) → 𝑘 ∈ 𝐴) |
60 | 57, 59, 4 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴 ∖ 𝑎)) → 𝐵 ∈ (0[,]+∞)) |
61 | 60 | ex 412 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ (𝐴 ∖ 𝑎) → 𝐵 ∈ (0[,]+∞))) |
62 | 41, 61 | ralrimi 3139 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘 ∈ (𝐴 ∖ 𝑎)𝐵 ∈ (0[,]+∞)) |
63 | 10, 36, 56, 62 | gsummptcl 19483 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈ (0[,]+∞)) |
64 | 9, 63 | sselid 3915 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈
ℝ*) |
65 | | elxrge0 13118 |
. . . . . . . . . . 11
⊢
(((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈ (0[,]+∞) ↔
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈ ℝ* ∧ 0 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
66 | 65 | simprbi 496 |
. . . . . . . . . 10
⊢
(((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈ (0[,]+∞) → 0 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵))) |
67 | 63, 66 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵))) |
68 | | xraddge02 30981 |
. . . . . . . . . 10
⊢
((((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∈ ℝ* ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈ ℝ*) → (0
≤ ((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵))))) |
69 | 68 | imp 406 |
. . . . . . . . 9
⊢
(((((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∈ ℝ* ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) ∈ ℝ*) ∧ 0 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵))) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
70 | 53, 64, 67, 69 | syl21anc 834 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
71 | 70 | adantlr 711 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
72 | | simpll 763 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝜑) |
73 | 45 | adantl 481 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ⊆ 𝐴) |
74 | | xrge00 31197 |
. . . . . . . . . 10
⊢ 0 =
(0g‘(ℝ*𝑠
↾s (0[,]+∞))) |
75 | | xrge0plusg 31198 |
. . . . . . . . . 10
⊢
+𝑒 =
(+g‘(ℝ*𝑠
↾s (0[,]+∞))) |
76 | 11 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
77 | 3 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) → 𝐴 ∈ Fin) |
78 | | eqid 2738 |
. . . . . . . . . . . 12
⊢ (𝑘 ∈ 𝐴 ↦ 𝐵) = (𝑘 ∈ 𝐴 ↦ 𝐵) |
79 | 1, 4, 78 | fmptdf 6973 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
80 | 79 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑘 ∈ 𝐴 ↦ 𝐵):𝐴⟶(0[,]+∞)) |
81 | 78 | fnmpt 6557 |
. . . . . . . . . . . . 13
⊢
(∀𝑘 ∈
𝐴 𝐵 ∈ (0[,]+∞) → (𝑘 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
82 | 14, 81 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) Fn 𝐴) |
83 | | c0ex 10900 |
. . . . . . . . . . . . 13
⊢ 0 ∈
V |
84 | 83 | a1i 11 |
. . . . . . . . . . . 12
⊢ (𝜑 → 0 ∈
V) |
85 | 82, 3, 84 | fndmfifsupp 9071 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
86 | 85 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑘 ∈ 𝐴 ↦ 𝐵) finSupp 0) |
87 | | disjdif 4402 |
. . . . . . . . . . 11
⊢ (𝑎 ∩ (𝐴 ∖ 𝑎)) = ∅ |
88 | 87 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) → (𝑎 ∩ (𝐴 ∖ 𝑎)) = ∅) |
89 | | undif 4412 |
. . . . . . . . . . . . 13
⊢ (𝑎 ⊆ 𝐴 ↔ (𝑎 ∪ (𝐴 ∖ 𝑎)) = 𝐴) |
90 | 89 | biimpi 215 |
. . . . . . . . . . . 12
⊢ (𝑎 ⊆ 𝐴 → (𝑎 ∪ (𝐴 ∖ 𝑎)) = 𝐴) |
91 | 90 | eqcomd 2744 |
. . . . . . . . . . 11
⊢ (𝑎 ⊆ 𝐴 → 𝐴 = (𝑎 ∪ (𝐴 ∖ 𝑎))) |
92 | 91 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) → 𝐴 = (𝑎 ∪ (𝐴 ∖ 𝑎))) |
93 | 10, 74, 75, 76, 77, 80, 86, 88, 92 | gsumsplit 19444 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑎)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∖ 𝑎))))) |
94 | | resmpt 5934 |
. . . . . . . . . . . 12
⊢ (𝑎 ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑎) = (𝑘 ∈ 𝑎 ↦ 𝐵)) |
95 | 94 | oveq2d 7271 |
. . . . . . . . . . 11
⊢ (𝑎 ⊆ 𝐴 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑎)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵))) |
96 | 95 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑎)) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵))) |
97 | | difss 4062 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∖ 𝑎) ⊆ 𝐴 |
98 | | resmpt 5934 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∖ 𝑎) ⊆ 𝐴 → ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∖ 𝑎)) = (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) |
99 | 97, 98 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∖ 𝑎)) = (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵) |
100 | 99 | oveq2i 7266 |
. . . . . . . . . . 11
⊢
((ℝ*𝑠 ↾s
(0[,]+∞)) Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∖ 𝑎))) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)) |
101 | 100 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∖ 𝑎))) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵))) |
102 | 96, 101 | oveq12d 7273 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) →
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ 𝑎)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg ((𝑘 ∈ 𝐴 ↦ 𝐵) ↾ (𝐴 ∖ 𝑎)))) =
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
103 | 93, 102 | eqtrd 2778 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑎 ⊆ 𝐴) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
104 | 72, 73, 103 | syl2anc 583 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) =
(((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) +𝑒
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ (𝐴 ∖ 𝑎) ↦ 𝐵)))) |
105 | 71, 104 | breqtrrd 5098 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
106 | 105 | ralrimiva 3107 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → ∀𝑎 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
107 | | r19.29r 3184 |
. . . . . 6
⊢
((∃𝑎 ∈
(𝒫 𝐴 ∩
Fin)𝑦 =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((ℝ*𝑠
↾s (0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
108 | | breq1 5073 |
. . . . . . . 8
⊢ (𝑦 =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) → (𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ↔
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
109 | 108 | biimpar 477 |
. . . . . . 7
⊢ ((𝑦 =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) → 𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
110 | 109 | rexlimivw 3210 |
. . . . . 6
⊢
(∃𝑎 ∈
(𝒫 𝐴 ∩
Fin)(𝑦 =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∧
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) → 𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
111 | 107, 110 | syl 17 |
. . . . 5
⊢
((∃𝑎 ∈
(𝒫 𝐴 ∩
Fin)𝑦 =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑎 ↦ 𝐵)) ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) → 𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
112 | 35, 106, 111 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → 𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
113 | 16 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈
ℝ*) |
114 | 11 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) →
(ℝ*𝑠 ↾s (0[,]+∞))
∈ CMnd) |
115 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) |
116 | 37, 115 | sselid 3915 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin) |
117 | | nfv 1918 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin) |
118 | 1, 117 | nfan 1903 |
. . . . . . . . . . 11
⊢
Ⅎ𝑘(𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) |
119 | | simpll 763 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝜑) |
120 | 43 | sseli 3913 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴) |
121 | 120 | ad2antlr 723 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝑥 ∈ 𝒫 𝐴) |
122 | 121 | elpwid 4541 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝑥 ⊆ 𝐴) |
123 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝑥) |
124 | 122, 123 | sseldd 3918 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝑘 ∈ 𝐴) |
125 | 119, 124,
4 | syl2anc 583 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ 𝑥) → 𝐵 ∈ (0[,]+∞)) |
126 | 125 | ex 412 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ 𝑥 → 𝐵 ∈ (0[,]+∞))) |
127 | 118, 126 | ralrimi 3139 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘 ∈ 𝑥 𝐵 ∈ (0[,]+∞)) |
128 | 10, 114, 116, 127 | gsummptcl 19483 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) ∈ (0[,]+∞)) |
129 | 9, 128 | sselid 3915 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ (𝒫 𝐴 ∩ Fin)) →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) ∈
ℝ*) |
130 | 129 | ralrimiva 3107 |
. . . . . . 7
⊢ (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) ∈
ℝ*) |
131 | 25 | rnmptss 6978 |
. . . . . . 7
⊢
(∀𝑥 ∈
(𝒫 𝐴 ∩
Fin)((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝑥 ↦ 𝐵)) ∈ ℝ* → ran
(𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) ⊆
ℝ*) |
132 | 130, 131 | syl 17 |
. . . . . 6
⊢ (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))) ⊆
ℝ*) |
133 | 132 | sselda 3917 |
. . . . 5
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → 𝑦 ∈ ℝ*) |
134 | | xrltnle 10973 |
. . . . . 6
⊢
((((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ* ∧ 𝑦 ∈ ℝ*)
→ (((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) < 𝑦 ↔ ¬ 𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)))) |
135 | 134 | con2bid 354 |
. . . . 5
⊢
((((ℝ*𝑠 ↾s
(0[,]+∞)) Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ∈ ℝ* ∧ 𝑦 ∈ ℝ*)
→ (𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ↔ ¬
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) < 𝑦)) |
136 | 113, 133,
135 | syl2anc 583 |
. . . 4
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → (𝑦 ≤
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) ↔ ¬
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) < 𝑦)) |
137 | 112, 136 | mpbid 231 |
. . 3
⊢ ((𝜑 ∧ 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵)))) → ¬
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) < 𝑦) |
138 | 8, 16, 28, 137 | supmax 9156 |
. 2
⊢ (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝑥 ↦ 𝐵))), ℝ*, < ) =
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵))) |
139 | 6, 138 | eqtr2d 2779 |
1
⊢ (𝜑 →
((ℝ*𝑠 ↾s (0[,]+∞))
Σg (𝑘 ∈ 𝐴 ↦ 𝐵)) = Σ*𝑘 ∈ 𝐴𝐵) |