Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumesum Structured version   Visualization version   GIF version

Theorem gsumesum 31320
Description: Relate a group sum on (ℝ*𝑠s (0[,]+∞)) to a finite extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
gsumesum.0 𝑘𝜑
gsumesum.1 (𝜑𝐴 ∈ Fin)
gsumesum.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
gsumesum (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = Σ*𝑘𝐴𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem gsumesum
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumesum.0 . . 3 𝑘𝜑
2 nfcv 2979 . . 3 𝑘𝐴
3 gsumesum.1 . . 3 (𝜑𝐴 ∈ Fin)
4 gsumesum.2 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
5 eqidd 2824 . . 3 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
61, 2, 3, 4, 5esumval 31307 . 2 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ))
7 xrltso 12537 . . . 4 < Or ℝ*
87a1i 11 . . 3 (𝜑 → < Or ℝ*)
9 iccssxr 12822 . . . 4 (0[,]+∞) ⊆ ℝ*
10 xrge0base 30674 . . . . 5 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
11 xrge0cmn 20589 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1211a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
134ex 415 . . . . . 6 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
141, 13ralrimi 3218 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
1510, 12, 3, 14gsummptcl 19089 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ (0[,]+∞))
169, 15sseldi 3967 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*)
17 pwidg 4563 . . . . . . 7 (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴)
183, 17syl 17 . . . . . 6 (𝜑𝐴 ∈ 𝒫 𝐴)
1918, 3elind 4173 . . . . 5 (𝜑𝐴 ∈ (𝒫 𝐴 ∩ Fin))
20 eqidd 2824 . . . . 5 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
21 mpteq1 5156 . . . . . . 7 (𝑥 = 𝐴 → (𝑘𝑥𝐵) = (𝑘𝐴𝐵))
2221oveq2d 7174 . . . . . 6 (𝑥 = 𝐴 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
2322rspceeqv 3640 . . . . 5 ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
2419, 20, 23syl2anc 586 . . . 4 (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
25 eqid 2823 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
26 ovex 7191 . . . . 5 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ V
2725, 26elrnmpti 5834 . . . 4 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
2824, 27sylibr 236 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))))
29 simpr 487 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))))
30 mpteq1 5156 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑘𝑥𝐵) = (𝑘𝑎𝐵))
3130oveq2d 7174 . . . . . . . 8 (𝑥 = 𝑎 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3231cbvmptv 5171 . . . . . . 7 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
33 ovex 7191 . . . . . . 7 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V
3432, 33elrnmpti 5834 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3529, 34sylib 220 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3611a1i 11 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
37 inss2 4208 . . . . . . . . . . . 12 (𝒫 𝐴 ∩ Fin) ⊆ Fin
38 simpr 487 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
3937, 38sseldi 3967 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin)
40 nfv 1915 . . . . . . . . . . . . 13 𝑘 𝑎 ∈ (𝒫 𝐴 ∩ Fin)
411, 40nfan 1900 . . . . . . . . . . . 12 𝑘(𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin))
42 simpll 765 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝜑)
43 inss1 4207 . . . . . . . . . . . . . . . . . 18 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
4443sseli 3965 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
4544elpwid 4552 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
4645ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎𝐴)
47 simpr 487 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝑎)
4846, 47sseldd 3970 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝐴)
4942, 48, 4syl2anc 586 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝐵 ∈ (0[,]+∞))
5049ex 415 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑎𝐵 ∈ (0[,]+∞)))
5141, 50ralrimi 3218 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑎 𝐵 ∈ (0[,]+∞))
5210, 36, 39, 51gsummptcl 19089 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ (0[,]+∞))
539, 52sseldi 3967 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ*)
54 diffi 8752 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴𝑎) ∈ Fin)
553, 54syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑎) ∈ Fin)
5655adantr 483 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐴𝑎) ∈ Fin)
57 simpll 765 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝜑)
58 simpr 487 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝑘 ∈ (𝐴𝑎))
5958eldifad 3950 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝑘𝐴)
6057, 59, 4syl2anc 586 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝐵 ∈ (0[,]+∞))
6160ex 415 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ (𝐴𝑎) → 𝐵 ∈ (0[,]+∞)))
6241, 61ralrimi 3218 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘 ∈ (𝐴𝑎)𝐵 ∈ (0[,]+∞))
6310, 36, 56, 62gsummptcl 19089 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞))
649, 63sseldi 3967 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*)
65 elxrge0 12848 . . . . . . . . . . 11 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞) ↔ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ* ∧ 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
6665simprbi 499 . . . . . . . . . 10 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞) → 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
6763, 66syl 17 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
68 xraddge02 30482 . . . . . . . . . 10 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ* ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*) → (0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))))
6968imp 409 . . . . . . . . 9 (((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ* ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*) ∧ 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
7053, 64, 67, 69syl21anc 835 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
7170adantlr 713 . . . . . . 7 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
72 simpll 765 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝜑)
7345adantl 484 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎𝐴)
74 xrge00 30675 . . . . . . . . . 10 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
75 xrge0plusg 30676 . . . . . . . . . 10 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
7611a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
773adantr 483 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝐴 ∈ Fin)
78 eqid 2823 . . . . . . . . . . . 12 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
791, 4, 78fmptdf 6883 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
8079adantr 483 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
8178fnmpt 6490 . . . . . . . . . . . . 13 (∀𝑘𝐴 𝐵 ∈ (0[,]+∞) → (𝑘𝐴𝐵) Fn 𝐴)
8214, 81syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴𝐵) Fn 𝐴)
83 c0ex 10637 . . . . . . . . . . . . 13 0 ∈ V
8483a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ V)
8582, 3, 84fndmfifsupp 8848 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵) finSupp 0)
8685adantr 483 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑘𝐴𝐵) finSupp 0)
87 disjdif 4423 . . . . . . . . . . 11 (𝑎 ∩ (𝐴𝑎)) = ∅
8887a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑎 ∩ (𝐴𝑎)) = ∅)
89 undif 4432 . . . . . . . . . . . . 13 (𝑎𝐴 ↔ (𝑎 ∪ (𝐴𝑎)) = 𝐴)
9089biimpi 218 . . . . . . . . . . . 12 (𝑎𝐴 → (𝑎 ∪ (𝐴𝑎)) = 𝐴)
9190eqcomd 2829 . . . . . . . . . . 11 (𝑎𝐴𝐴 = (𝑎 ∪ (𝐴𝑎)))
9291adantl 484 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝐴 = (𝑎 ∪ (𝐴𝑎)))
9310, 74, 75, 76, 77, 80, 86, 88, 92gsumsplit 19050 . . . . . . . . 9 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎)))))
94 resmpt 5907 . . . . . . . . . . . 12 (𝑎𝐴 → ((𝑘𝐴𝐵) ↾ 𝑎) = (𝑘𝑎𝐵))
9594oveq2d 7174 . . . . . . . . . . 11 (𝑎𝐴 → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
9695adantl 484 . . . . . . . . . 10 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
97 difss 4110 . . . . . . . . . . . . 13 (𝐴𝑎) ⊆ 𝐴
98 resmpt 5907 . . . . . . . . . . . . 13 ((𝐴𝑎) ⊆ 𝐴 → ((𝑘𝐴𝐵) ↾ (𝐴𝑎)) = (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))
9997, 98ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝐴𝐵) ↾ (𝐴𝑎)) = (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)
10099oveq2i 7169 . . . . . . . . . . 11 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎))) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))
101100a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎))) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
10296, 101oveq12d 7176 . . . . . . . . 9 ((𝜑𝑎𝐴) → (((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎)))) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10393, 102eqtrd 2858 . . . . . . . 8 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10472, 73, 103syl2anc 586 . . . . . . 7 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10571, 104breqtrrd 5096 . . . . . 6 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
106105ralrimiva 3184 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
107 r19.29r 3257 . . . . . 6 ((∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
108 breq1 5071 . . . . . . . 8 (𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
109108biimpar 480 . . . . . . 7 ((𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
110109rexlimivw 3284 . . . . . 6 (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
111107, 110syl 17 . . . . 5 ((∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
11235, 106, 111syl2anc 586 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
11316adantr 483 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*)
11411a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
115 simpr 487 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
11637, 115sseldi 3967 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
117 nfv 1915 . . . . . . . . . . . 12 𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin)
1181, 117nfan 1900 . . . . . . . . . . 11 𝑘(𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin))
119 simpll 765 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
12043sseli 3965 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
121120ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 𝐴)
122121elpwid 4552 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥𝐴)
123 simpr 487 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
124122, 123sseldd 3970 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
125119, 124, 4syl2anc 586 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,]+∞))
126125ex 415 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵 ∈ (0[,]+∞)))
127118, 126ralrimi 3218 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑥 𝐵 ∈ (0[,]+∞))
12810, 114, 116, 127gsummptcl 19089 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ (0[,]+∞))
1299, 128sseldi 3967 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
130129ralrimiva 3184 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
13125rnmptss 6888 . . . . . . 7 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
132130, 131syl 17 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
133132sselda 3969 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ∈ ℝ*)
134 xrltnle 10710 . . . . . 6 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*𝑦 ∈ ℝ*) → (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦 ↔ ¬ 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
135134con2bid 357 . . . . 5 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦))
136113, 133, 135syl2anc 586 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦))
137112, 136mpbid 234 . . 3 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦)
1388, 16, 28, 137supmax 8933 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
1396, 138eqtr2d 2859 1 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = Σ*𝑘𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wnf 1784  wcel 2114  wral 3140  wrex 3141  Vcvv 3496  cdif 3935  cun 3936  cin 3937  wss 3938  c0 4293  𝒫 cpw 4541   class class class wbr 5068  cmpt 5148   Or wor 5475  ran crn 5558  cres 5559   Fn wfn 6352  wf 6353  (class class class)co 7158  Fincfn 8511   finSupp cfsupp 8835  supcsup 8906  0cc0 10539  +∞cpnf 10674  *cxr 10676   < clt 10677  cle 10678   +𝑒 cxad 12508  [,]cicc 12744  s cress 16486   Σg cgsu 16716  *𝑠cxrs 16775  CMndccmn 18908  Σ*cesum 31288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-fi 8877  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-q 12352  df-xadd 12511  df-ioo 12745  df-ioc 12746  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-tset 16586  df-ple 16587  df-ds 16589  df-rest 16698  df-topn 16699  df-0g 16717  df-gsum 16718  df-topgen 16719  df-ordt 16776  df-xrs 16777  df-mre 16859  df-mrc 16860  df-acs 16862  df-ps 17812  df-tsr 17813  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-submnd 17959  df-cntz 18449  df-cmn 18910  df-fbas 20544  df-fg 20545  df-top 21504  df-topon 21521  df-topsp 21543  df-bases 21556  df-ntr 21630  df-nei 21708  df-cn 21837  df-haus 21925  df-fil 22456  df-fm 22548  df-flim 22549  df-flf 22550  df-tsms 22737  df-esum 31289
This theorem is referenced by:  esumlub  31321
  Copyright terms: Public domain W3C validator