Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gsumesum Structured version   Visualization version   GIF version

Theorem gsumesum 34040
Description: Relate a group sum on (ℝ*𝑠s (0[,]+∞)) to a finite extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017.) (Proof shortened by AV, 12-Dec-2019.)
Hypotheses
Ref Expression
gsumesum.0 𝑘𝜑
gsumesum.1 (𝜑𝐴 ∈ Fin)
gsumesum.2 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
Assertion
Ref Expression
gsumesum (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = Σ*𝑘𝐴𝐵)
Distinct variable group:   𝐴,𝑘
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem gsumesum
Dummy variables 𝑎 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumesum.0 . . 3 𝑘𝜑
2 nfcv 2903 . . 3 𝑘𝐴
3 gsumesum.1 . . 3 (𝜑𝐴 ∈ Fin)
4 gsumesum.2 . . 3 ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,]+∞))
5 eqidd 2736 . . 3 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
61, 2, 3, 4, 5esumval 34027 . 2 (𝜑 → Σ*𝑘𝐴𝐵 = sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ))
7 xrltso 13180 . . . 4 < Or ℝ*
87a1i 11 . . 3 (𝜑 → < Or ℝ*)
9 iccssxr 13467 . . . 4 (0[,]+∞) ⊆ ℝ*
10 xrge0base 32999 . . . . 5 (0[,]+∞) = (Base‘(ℝ*𝑠s (0[,]+∞)))
11 xrge0cmn 21444 . . . . . 6 (ℝ*𝑠s (0[,]+∞)) ∈ CMnd
1211a1i 11 . . . . 5 (𝜑 → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
134ex 412 . . . . . 6 (𝜑 → (𝑘𝐴𝐵 ∈ (0[,]+∞)))
141, 13ralrimi 3255 . . . . 5 (𝜑 → ∀𝑘𝐴 𝐵 ∈ (0[,]+∞))
1510, 12, 3, 14gsummptcl 20000 . . . 4 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ (0[,]+∞))
169, 15sselid 3993 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*)
17 pwidg 4625 . . . . . . 7 (𝐴 ∈ Fin → 𝐴 ∈ 𝒫 𝐴)
183, 17syl 17 . . . . . 6 (𝜑𝐴 ∈ 𝒫 𝐴)
1918, 3elind 4210 . . . . 5 (𝜑𝐴 ∈ (𝒫 𝐴 ∩ Fin))
20 eqidd 2736 . . . . 5 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
21 mpteq1 5241 . . . . . . 7 (𝑥 = 𝐴 → (𝑘𝑥𝐵) = (𝑘𝐴𝐵))
2221oveq2d 7447 . . . . . 6 (𝑥 = 𝐴 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
2322rspceeqv 3645 . . . . 5 ((𝐴 ∈ (𝒫 𝐴 ∩ Fin) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
2419, 20, 23syl2anc 584 . . . 4 (𝜑 → ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
25 eqid 2735 . . . . 5 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
26 ovex 7464 . . . . 5 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ V
2725, 26elrnmpti 5976 . . . 4 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))
2824, 27sylibr 234 . . 3 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))))
29 simpr 484 . . . . . 6 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))))
30 mpteq1 5241 . . . . . . . . 9 (𝑥 = 𝑎 → (𝑘𝑥𝐵) = (𝑘𝑎𝐵))
3130oveq2d 7447 . . . . . . . 8 (𝑥 = 𝑎 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3231cbvmptv 5261 . . . . . . 7 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) = (𝑎 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
33 ovex 7464 . . . . . . 7 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ V
3432, 33elrnmpti 5976 . . . . . 6 (𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ↔ ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3529, 34sylib 218 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
3611a1i 11 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
37 inss2 4246 . . . . . . . . . . . 12 (𝒫 𝐴 ∩ Fin) ⊆ Fin
38 simpr 484 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ (𝒫 𝐴 ∩ Fin))
3937, 38sselid 3993 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎 ∈ Fin)
40 nfv 1912 . . . . . . . . . . . . 13 𝑘 𝑎 ∈ (𝒫 𝐴 ∩ Fin)
411, 40nfan 1897 . . . . . . . . . . . 12 𝑘(𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin))
42 simpll 767 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝜑)
43 inss1 4245 . . . . . . . . . . . . . . . . . 18 (𝒫 𝐴 ∩ Fin) ⊆ 𝒫 𝐴
4443sseli 3991 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎 ∈ 𝒫 𝐴)
4544elpwid 4614 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (𝒫 𝐴 ∩ Fin) → 𝑎𝐴)
4645ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑎𝐴)
47 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝑎)
4846, 47sseldd 3996 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝑘𝐴)
4942, 48, 4syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑎) → 𝐵 ∈ (0[,]+∞))
5049ex 412 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑎𝐵 ∈ (0[,]+∞)))
5141, 50ralrimi 3255 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑎 𝐵 ∈ (0[,]+∞))
5210, 36, 39, 51gsummptcl 20000 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ (0[,]+∞))
539, 52sselid 3993 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ*)
54 diffi 9214 . . . . . . . . . . . . 13 (𝐴 ∈ Fin → (𝐴𝑎) ∈ Fin)
553, 54syl 17 . . . . . . . . . . . 12 (𝜑 → (𝐴𝑎) ∈ Fin)
5655adantr 480 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝐴𝑎) ∈ Fin)
57 simpll 767 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝜑)
58 simpr 484 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝑘 ∈ (𝐴𝑎))
5958eldifad 3975 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝑘𝐴)
6057, 59, 4syl2anc 584 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘 ∈ (𝐴𝑎)) → 𝐵 ∈ (0[,]+∞))
6160ex 412 . . . . . . . . . . . 12 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘 ∈ (𝐴𝑎) → 𝐵 ∈ (0[,]+∞)))
6241, 61ralrimi 3255 . . . . . . . . . . 11 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘 ∈ (𝐴𝑎)𝐵 ∈ (0[,]+∞))
6310, 36, 56, 62gsummptcl 20000 . . . . . . . . . 10 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞))
649, 63sselid 3993 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*)
65 elxrge0 13494 . . . . . . . . . . 11 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞) ↔ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ* ∧ 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
6665simprbi 496 . . . . . . . . . 10 (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ (0[,]+∞) → 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
6763, 66syl 17 . . . . . . . . 9 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
68 xraddge02 32767 . . . . . . . . . 10 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ* ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*) → (0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))))
6968imp 406 . . . . . . . . 9 (((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∈ ℝ* ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)) ∈ ℝ*) ∧ 0 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
7053, 64, 67, 69syl21anc 838 . . . . . . . 8 ((𝜑𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
7170adantlr 715 . . . . . . 7 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
72 simpll 767 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝜑)
7345adantl 481 . . . . . . . 8 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑎𝐴)
74 xrge00 33000 . . . . . . . . . 10 0 = (0g‘(ℝ*𝑠s (0[,]+∞)))
75 xrge0plusg 33001 . . . . . . . . . 10 +𝑒 = (+g‘(ℝ*𝑠s (0[,]+∞)))
7611a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
773adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝐴 ∈ Fin)
78 eqid 2735 . . . . . . . . . . . 12 (𝑘𝐴𝐵) = (𝑘𝐴𝐵)
791, 4, 78fmptdf 7137 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
8079adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑘𝐴𝐵):𝐴⟶(0[,]+∞))
8178fnmpt 6709 . . . . . . . . . . . . 13 (∀𝑘𝐴 𝐵 ∈ (0[,]+∞) → (𝑘𝐴𝐵) Fn 𝐴)
8214, 81syl 17 . . . . . . . . . . . 12 (𝜑 → (𝑘𝐴𝐵) Fn 𝐴)
83 c0ex 11253 . . . . . . . . . . . . 13 0 ∈ V
8483a1i 11 . . . . . . . . . . . 12 (𝜑 → 0 ∈ V)
8582, 3, 84fndmfifsupp 9416 . . . . . . . . . . 11 (𝜑 → (𝑘𝐴𝐵) finSupp 0)
8685adantr 480 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑘𝐴𝐵) finSupp 0)
87 disjdif 4478 . . . . . . . . . . 11 (𝑎 ∩ (𝐴𝑎)) = ∅
8887a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → (𝑎 ∩ (𝐴𝑎)) = ∅)
89 undif 4488 . . . . . . . . . . . . 13 (𝑎𝐴 ↔ (𝑎 ∪ (𝐴𝑎)) = 𝐴)
9089biimpi 216 . . . . . . . . . . . 12 (𝑎𝐴 → (𝑎 ∪ (𝐴𝑎)) = 𝐴)
9190eqcomd 2741 . . . . . . . . . . 11 (𝑎𝐴𝐴 = (𝑎 ∪ (𝐴𝑎)))
9291adantl 481 . . . . . . . . . 10 ((𝜑𝑎𝐴) → 𝐴 = (𝑎 ∪ (𝐴𝑎)))
9310, 74, 75, 76, 77, 80, 86, 88, 92gsumsplit 19961 . . . . . . . . 9 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎)))))
94 resmpt 6057 . . . . . . . . . . . 12 (𝑎𝐴 → ((𝑘𝐴𝐵) ↾ 𝑎) = (𝑘𝑎𝐵))
9594oveq2d 7447 . . . . . . . . . . 11 (𝑎𝐴 → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
9695adantl 481 . . . . . . . . . 10 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)))
97 difss 4146 . . . . . . . . . . . . 13 (𝐴𝑎) ⊆ 𝐴
98 resmpt 6057 . . . . . . . . . . . . 13 ((𝐴𝑎) ⊆ 𝐴 → ((𝑘𝐴𝐵) ↾ (𝐴𝑎)) = (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))
9997, 98ax-mp 5 . . . . . . . . . . . 12 ((𝑘𝐴𝐵) ↾ (𝐴𝑎)) = (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)
10099oveq2i 7442 . . . . . . . . . . 11 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎))) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))
101100a1i 11 . . . . . . . . . 10 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎))) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵)))
10296, 101oveq12d 7449 . . . . . . . . 9 ((𝜑𝑎𝐴) → (((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ 𝑎)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg ((𝑘𝐴𝐵) ↾ (𝐴𝑎)))) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10393, 102eqtrd 2775 . . . . . . . 8 ((𝜑𝑎𝐴) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10472, 73, 103syl2anc 584 . . . . . . 7 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) +𝑒 ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘 ∈ (𝐴𝑎) ↦ 𝐵))))
10571, 104breqtrrd 5176 . . . . . 6 (((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) ∧ 𝑎 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
106105ralrimiva 3144 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
107 r19.29r 3114 . . . . . 6 ((∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → ∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
108 breq1 5151 . . . . . . . 8 (𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
109108biimpar 477 . . . . . . 7 ((𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
110109rexlimivw 3149 . . . . . 6 (∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)(𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
111107, 110syl 17 . . . . 5 ((∃𝑎 ∈ (𝒫 𝐴 ∩ Fin)𝑦 = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ∧ ∀𝑎 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑎𝐵)) ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
11235, 106, 111syl2anc 584 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
11316adantr 480 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*)
11411a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (ℝ*𝑠s (0[,]+∞)) ∈ CMnd)
115 simpr 484 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ (𝒫 𝐴 ∩ Fin))
11637, 115sselid 3993 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → 𝑥 ∈ Fin)
117 nfv 1912 . . . . . . . . . . . 12 𝑘 𝑥 ∈ (𝒫 𝐴 ∩ Fin)
1181, 117nfan 1897 . . . . . . . . . . 11 𝑘(𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin))
119 simpll 767 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝜑)
12043sseli 3991 . . . . . . . . . . . . . . . 16 (𝑥 ∈ (𝒫 𝐴 ∩ Fin) → 𝑥 ∈ 𝒫 𝐴)
121120ad2antlr 727 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥 ∈ 𝒫 𝐴)
122121elpwid 4614 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑥𝐴)
123 simpr 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝑥)
124122, 123sseldd 3996 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝑘𝐴)
125119, 124, 4syl2anc 584 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) ∧ 𝑘𝑥) → 𝐵 ∈ (0[,]+∞))
126125ex 412 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → (𝑘𝑥𝐵 ∈ (0[,]+∞)))
127118, 126ralrimi 3255 . . . . . . . . . 10 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ∀𝑘𝑥 𝐵 ∈ (0[,]+∞))
12810, 114, 116, 127gsummptcl 20000 . . . . . . . . 9 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ (0[,]+∞))
1299, 128sselid 3993 . . . . . . . 8 ((𝜑𝑥 ∈ (𝒫 𝐴 ∩ Fin)) → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
130129ralrimiva 3144 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ*)
13125rnmptss 7143 . . . . . . 7 (∀𝑥 ∈ (𝒫 𝐴 ∩ Fin)((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)) ∈ ℝ* → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
132130, 131syl 17 . . . . . 6 (𝜑 → ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))) ⊆ ℝ*)
133132sselda 3995 . . . . 5 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → 𝑦 ∈ ℝ*)
134 xrltnle 11326 . . . . . 6 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*𝑦 ∈ ℝ*) → (((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦 ↔ ¬ 𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵))))
135134con2bid 354 . . . . 5 ((((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ∈ ℝ*𝑦 ∈ ℝ*) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦))
136113, 133, 135syl2anc 584 . . . 4 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → (𝑦 ≤ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) ↔ ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦))
137112, 136mpbid 232 . . 3 ((𝜑𝑦 ∈ ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵)))) → ¬ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) < 𝑦)
1388, 16, 28, 137supmax 9505 . 2 (𝜑 → sup(ran (𝑥 ∈ (𝒫 𝐴 ∩ Fin) ↦ ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝑥𝐵))), ℝ*, < ) = ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)))
1396, 138eqtr2d 2776 1 (𝜑 → ((ℝ*𝑠s (0[,]+∞)) Σg (𝑘𝐴𝐵)) = Σ*𝑘𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wnf 1780  wcel 2106  wral 3059  wrex 3068  Vcvv 3478  cdif 3960  cun 3961  cin 3962  wss 3963  c0 4339  𝒫 cpw 4605   class class class wbr 5148  cmpt 5231   Or wor 5596  ran crn 5690  cres 5691   Fn wfn 6558  wf 6559  (class class class)co 7431  Fincfn 8984   finSupp cfsupp 9399  supcsup 9478  0cc0 11153  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294   +𝑒 cxad 13150  [,]cicc 13387  s cress 17274   Σg cgsu 17487  *𝑠cxrs 17547  CMndccmn 19813  Σ*cesum 34008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-fi 9449  df-sup 9480  df-inf 9481  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-q 12989  df-xadd 13153  df-ioo 13388  df-ioc 13389  df-ico 13390  df-icc 13391  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-tset 17317  df-ple 17318  df-ds 17320  df-rest 17469  df-topn 17470  df-0g 17488  df-gsum 17489  df-topgen 17490  df-ordt 17548  df-xrs 17549  df-mre 17631  df-mrc 17632  df-acs 17634  df-ps 18624  df-tsr 18625  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-submnd 18810  df-cntz 19348  df-cmn 19815  df-fbas 21379  df-fg 21380  df-top 22916  df-topon 22933  df-topsp 22955  df-bases 22969  df-ntr 23044  df-nei 23122  df-cn 23251  df-haus 23339  df-fil 23870  df-fm 23962  df-flim 23963  df-flf 23964  df-tsms 24151  df-esum 34009
This theorem is referenced by:  esumlub  34041
  Copyright terms: Public domain W3C validator