MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsbas Structured version   Visualization version   GIF version

Theorem fclsbas 23172
Description: Cluster points in terms of filter bases. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsbas.f 𝐹 = (𝑋filGen𝐵)
Assertion
Ref Expression
fclsbas ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))))
Distinct variable groups:   𝐴,𝑜   𝑜,𝑠,𝐵   𝑜,𝐹   𝑜,𝐽   𝑜,𝑋
Allowed substitution hints:   𝐴(𝑠)   𝐹(𝑠)   𝐽(𝑠)   𝑋(𝑠)

Proof of Theorem fclsbas
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fclsbas.f . . . 4 𝐹 = (𝑋filGen𝐵)
2 fgcl 23029 . . . . 5 (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
32adantl 482 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
41, 3eqeltrid 2843 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → 𝐹 ∈ (Fil‘𝑋))
5 fclsopn 23165 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅))))
64, 5syldan 591 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅))))
7 ssfg 23023 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
87ad3antlr 728 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝐵 ⊆ (𝑋filGen𝐵))
98, 1sseqtrrdi 3972 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝐵𝐹)
10 ssralv 3987 . . . . . . . . 9 (𝐵𝐹 → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ → ∀𝑡𝐵 (𝑜𝑡) ≠ ∅))
119, 10syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ → ∀𝑡𝐵 (𝑜𝑡) ≠ ∅))
12 ineq2 4140 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑜𝑡) = (𝑜𝑠))
1312neeq1d 3003 . . . . . . . . 9 (𝑡 = 𝑠 → ((𝑜𝑡) ≠ ∅ ↔ (𝑜𝑠) ≠ ∅))
1413cbvralvw 3383 . . . . . . . 8 (∀𝑡𝐵 (𝑜𝑡) ≠ ∅ ↔ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅)
1511, 14syl6ib 250 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))
161eleq2i 2830 . . . . . . . . . . 11 (𝑡𝐹𝑡 ∈ (𝑋filGen𝐵))
17 elfg 23022 . . . . . . . . . . . 12 (𝐵 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑠𝐵 𝑠𝑡)))
1817ad3antlr 728 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑠𝐵 𝑠𝑡)))
1916, 18bitrid 282 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (𝑡𝐹 ↔ (𝑡𝑋 ∧ ∃𝑠𝐵 𝑠𝑡)))
2019simplbda 500 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) ∧ 𝑡𝐹) → ∃𝑠𝐵 𝑠𝑡)
21 r19.29r 3185 . . . . . . . . . . 11 ((∃𝑠𝐵 𝑠𝑡 ∧ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅) → ∃𝑠𝐵 (𝑠𝑡 ∧ (𝑜𝑠) ≠ ∅))
22 sslin 4168 . . . . . . . . . . . . 13 (𝑠𝑡 → (𝑜𝑠) ⊆ (𝑜𝑡))
23 ssn0 4334 . . . . . . . . . . . . 13 (((𝑜𝑠) ⊆ (𝑜𝑡) ∧ (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2422, 23sylan 580 . . . . . . . . . . . 12 ((𝑠𝑡 ∧ (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2524rexlimivw 3211 . . . . . . . . . . 11 (∃𝑠𝐵 (𝑠𝑡 ∧ (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2621, 25syl 17 . . . . . . . . . 10 ((∃𝑠𝐵 𝑠𝑡 ∧ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2726ex 413 . . . . . . . . 9 (∃𝑠𝐵 𝑠𝑡 → (∀𝑠𝐵 (𝑜𝑠) ≠ ∅ → (𝑜𝑡) ≠ ∅))
2820, 27syl 17 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) ∧ 𝑡𝐹) → (∀𝑠𝐵 (𝑜𝑠) ≠ ∅ → (𝑜𝑡) ≠ ∅))
2928ralrimdva 3106 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑠𝐵 (𝑜𝑠) ≠ ∅ → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅))
3015, 29impbid 211 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ ↔ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))
3130anassrs 468 . . . . 5 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑜𝐽) ∧ 𝐴𝑜) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ ↔ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))
3231pm5.74da 801 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → ((𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅) ↔ (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅)))
3332ralbidva 3111 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅)))
3433pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))))
356, 34bitrd 278 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  wrex 3065  cin 3886  wss 3887  c0 4256  cfv 6433  (class class class)co 7275  fBascfbas 20585  filGencfg 20586  TopOnctopon 22059  Filcfil 22996   fClus cfcls 23087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-fbas 20594  df-fg 20595  df-top 22043  df-topon 22060  df-cld 22170  df-ntr 22171  df-cls 22172  df-fil 22997  df-fcls 23092
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator