MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsbas Structured version   Visualization version   GIF version

Theorem fclsbas 23959
Description: Cluster points in terms of filter bases. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsbas.f 𝐹 = (𝑋filGen𝐵)
Assertion
Ref Expression
fclsbas ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))))
Distinct variable groups:   𝐴,𝑜   𝑜,𝑠,𝐵   𝑜,𝐹   𝑜,𝐽   𝑜,𝑋
Allowed substitution hints:   𝐴(𝑠)   𝐹(𝑠)   𝐽(𝑠)   𝑋(𝑠)

Proof of Theorem fclsbas
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fclsbas.f . . . 4 𝐹 = (𝑋filGen𝐵)
2 fgcl 23816 . . . . 5 (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
32adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
41, 3eqeltrid 2838 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → 𝐹 ∈ (Fil‘𝑋))
5 fclsopn 23952 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅))))
64, 5syldan 591 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅))))
7 ssfg 23810 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
87ad3antlr 731 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝐵 ⊆ (𝑋filGen𝐵))
98, 1sseqtrrdi 4000 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝐵𝐹)
10 ssralv 4027 . . . . . . . . 9 (𝐵𝐹 → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ → ∀𝑡𝐵 (𝑜𝑡) ≠ ∅))
119, 10syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ → ∀𝑡𝐵 (𝑜𝑡) ≠ ∅))
12 ineq2 4189 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑜𝑡) = (𝑜𝑠))
1312neeq1d 2991 . . . . . . . . 9 (𝑡 = 𝑠 → ((𝑜𝑡) ≠ ∅ ↔ (𝑜𝑠) ≠ ∅))
1413cbvralvw 3220 . . . . . . . 8 (∀𝑡𝐵 (𝑜𝑡) ≠ ∅ ↔ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅)
1511, 14imbitrdi 251 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))
161eleq2i 2826 . . . . . . . . . . 11 (𝑡𝐹𝑡 ∈ (𝑋filGen𝐵))
17 elfg 23809 . . . . . . . . . . . 12 (𝐵 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑠𝐵 𝑠𝑡)))
1817ad3antlr 731 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑠𝐵 𝑠𝑡)))
1916, 18bitrid 283 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (𝑡𝐹 ↔ (𝑡𝑋 ∧ ∃𝑠𝐵 𝑠𝑡)))
2019simplbda 499 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) ∧ 𝑡𝐹) → ∃𝑠𝐵 𝑠𝑡)
21 r19.29r 3103 . . . . . . . . . . 11 ((∃𝑠𝐵 𝑠𝑡 ∧ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅) → ∃𝑠𝐵 (𝑠𝑡 ∧ (𝑜𝑠) ≠ ∅))
22 sslin 4218 . . . . . . . . . . . . 13 (𝑠𝑡 → (𝑜𝑠) ⊆ (𝑜𝑡))
23 ssn0 4379 . . . . . . . . . . . . 13 (((𝑜𝑠) ⊆ (𝑜𝑡) ∧ (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2422, 23sylan 580 . . . . . . . . . . . 12 ((𝑠𝑡 ∧ (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2524rexlimivw 3137 . . . . . . . . . . 11 (∃𝑠𝐵 (𝑠𝑡 ∧ (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2621, 25syl 17 . . . . . . . . . 10 ((∃𝑠𝐵 𝑠𝑡 ∧ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2726ex 412 . . . . . . . . 9 (∃𝑠𝐵 𝑠𝑡 → (∀𝑠𝐵 (𝑜𝑠) ≠ ∅ → (𝑜𝑡) ≠ ∅))
2820, 27syl 17 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) ∧ 𝑡𝐹) → (∀𝑠𝐵 (𝑜𝑠) ≠ ∅ → (𝑜𝑡) ≠ ∅))
2928ralrimdva 3140 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑠𝐵 (𝑜𝑠) ≠ ∅ → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅))
3015, 29impbid 212 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ ↔ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))
3130anassrs 467 . . . . 5 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑜𝐽) ∧ 𝐴𝑜) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ ↔ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))
3231pm5.74da 803 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → ((𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅) ↔ (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅)))
3332ralbidva 3161 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅)))
3433pm5.32da 579 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))))
356, 34bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  cin 3925  wss 3926  c0 4308  cfv 6531  (class class class)co 7405  fBascfbas 21303  filGencfg 21304  TopOnctopon 22848  Filcfil 23783   fClus cfcls 23874
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-fbas 21312  df-fg 21313  df-top 22832  df-topon 22849  df-cld 22957  df-ntr 22958  df-cls 22959  df-fil 23784  df-fcls 23879
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator