MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fclsbas Structured version   Visualization version   GIF version

Theorem fclsbas 24050
Description: Cluster points in terms of filter bases. (Contributed by Jeff Hankins, 13-Nov-2009.) (Revised by Stefan O'Rear, 8-Aug-2015.)
Hypothesis
Ref Expression
fclsbas.f 𝐹 = (𝑋filGen𝐵)
Assertion
Ref Expression
fclsbas ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))))
Distinct variable groups:   𝐴,𝑜   𝑜,𝑠,𝐵   𝑜,𝐹   𝑜,𝐽   𝑜,𝑋
Allowed substitution hints:   𝐴(𝑠)   𝐹(𝑠)   𝐽(𝑠)   𝑋(𝑠)

Proof of Theorem fclsbas
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 fclsbas.f . . . 4 𝐹 = (𝑋filGen𝐵)
2 fgcl 23907 . . . . 5 (𝐵 ∈ (fBas‘𝑋) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
32adantl 481 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝑋filGen𝐵) ∈ (Fil‘𝑋))
41, 3eqeltrid 2848 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → 𝐹 ∈ (Fil‘𝑋))
5 fclsopn 24043 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅))))
64, 5syldan 590 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅))))
7 ssfg 23901 . . . . . . . . . . 11 (𝐵 ∈ (fBas‘𝑋) → 𝐵 ⊆ (𝑋filGen𝐵))
87ad3antlr 730 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝐵 ⊆ (𝑋filGen𝐵))
98, 1sseqtrrdi 4060 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → 𝐵𝐹)
10 ssralv 4077 . . . . . . . . 9 (𝐵𝐹 → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ → ∀𝑡𝐵 (𝑜𝑡) ≠ ∅))
119, 10syl 17 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ → ∀𝑡𝐵 (𝑜𝑡) ≠ ∅))
12 ineq2 4235 . . . . . . . . . 10 (𝑡 = 𝑠 → (𝑜𝑡) = (𝑜𝑠))
1312neeq1d 3006 . . . . . . . . 9 (𝑡 = 𝑠 → ((𝑜𝑡) ≠ ∅ ↔ (𝑜𝑠) ≠ ∅))
1413cbvralvw 3243 . . . . . . . 8 (∀𝑡𝐵 (𝑜𝑡) ≠ ∅ ↔ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅)
1511, 14imbitrdi 251 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))
161eleq2i 2836 . . . . . . . . . . 11 (𝑡𝐹𝑡 ∈ (𝑋filGen𝐵))
17 elfg 23900 . . . . . . . . . . . 12 (𝐵 ∈ (fBas‘𝑋) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑠𝐵 𝑠𝑡)))
1817ad3antlr 730 . . . . . . . . . . 11 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (𝑡 ∈ (𝑋filGen𝐵) ↔ (𝑡𝑋 ∧ ∃𝑠𝐵 𝑠𝑡)))
1916, 18bitrid 283 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (𝑡𝐹 ↔ (𝑡𝑋 ∧ ∃𝑠𝐵 𝑠𝑡)))
2019simplbda 499 . . . . . . . . 9 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) ∧ 𝑡𝐹) → ∃𝑠𝐵 𝑠𝑡)
21 r19.29r 3122 . . . . . . . . . . 11 ((∃𝑠𝐵 𝑠𝑡 ∧ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅) → ∃𝑠𝐵 (𝑠𝑡 ∧ (𝑜𝑠) ≠ ∅))
22 sslin 4264 . . . . . . . . . . . . 13 (𝑠𝑡 → (𝑜𝑠) ⊆ (𝑜𝑡))
23 ssn0 4427 . . . . . . . . . . . . 13 (((𝑜𝑠) ⊆ (𝑜𝑡) ∧ (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2422, 23sylan 579 . . . . . . . . . . . 12 ((𝑠𝑡 ∧ (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2524rexlimivw 3157 . . . . . . . . . . 11 (∃𝑠𝐵 (𝑠𝑡 ∧ (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2621, 25syl 17 . . . . . . . . . 10 ((∃𝑠𝐵 𝑠𝑡 ∧ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅) → (𝑜𝑡) ≠ ∅)
2726ex 412 . . . . . . . . 9 (∃𝑠𝐵 𝑠𝑡 → (∀𝑠𝐵 (𝑜𝑠) ≠ ∅ → (𝑜𝑡) ≠ ∅))
2820, 27syl 17 . . . . . . . 8 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) ∧ 𝑡𝐹) → (∀𝑠𝐵 (𝑜𝑠) ≠ ∅ → (𝑜𝑡) ≠ ∅))
2928ralrimdva 3160 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑠𝐵 (𝑜𝑠) ≠ ∅ → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅))
3015, 29impbid 212 . . . . . 6 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ (𝑜𝐽𝐴𝑜)) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ ↔ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))
3130anassrs 467 . . . . 5 (((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑜𝐽) ∧ 𝐴𝑜) → (∀𝑡𝐹 (𝑜𝑡) ≠ ∅ ↔ ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))
3231pm5.74da 803 . . . 4 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) ∧ 𝑜𝐽) → ((𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅) ↔ (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅)))
3332ralbidva 3182 . . 3 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) ∧ 𝐴𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅)))
3433pm5.32da 578 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑡𝐹 (𝑜𝑡) ≠ ∅)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))))
356, 34bitrd 279 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐵 ∈ (fBas‘𝑋)) → (𝐴 ∈ (𝐽 fClus 𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐵 (𝑜𝑠) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wral 3067  wrex 3076  cin 3975  wss 3976  c0 4352  cfv 6573  (class class class)co 7448  fBascfbas 21375  filGencfg 21376  TopOnctopon 22937  Filcfil 23874   fClus cfcls 23965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-fbas 21384  df-fg 21385  df-top 22921  df-topon 22938  df-cld 23048  df-ntr 23049  df-cls 23050  df-fil 23875  df-fcls 23970
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator