MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcf Structured version   Visualization version   GIF version

Theorem isfcf 22734
Description: The property of being a cluster point of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
isfcf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))))
Distinct variable groups:   𝐴,𝑜   𝑜,𝑠,𝐽   𝑜,𝐿,𝑠   𝑜,𝐹,𝑠   𝑜,𝑋,𝑠   𝑜,𝑌,𝑠
Allowed substitution hint:   𝐴(𝑠)

Proof of Theorem isfcf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fcfval 22733 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
21eleq2d 2837 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ 𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))))
3 simp1 1133 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4 toponmax 21626 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
5 filfbas 22548 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
6 id 22 . . . 4 (𝐹:𝑌𝑋𝐹:𝑌𝑋)
7 fmfil 22644 . . . 4 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
84, 5, 6, 7syl3an 1157 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
9 fclsopn 22714 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅))))
103, 8, 9syl2anc 587 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅))))
11 simpll1 1209 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝐽 ∈ (TopOn‘𝑋))
1211, 4syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝑋𝐽)
13 simpll2 1210 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝐿 ∈ (Fil‘𝑌))
1413, 5syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝐿 ∈ (fBas‘𝑌))
15 simpll3 1211 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝐹:𝑌𝑋)
16 simpl2 1189 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → 𝐿 ∈ (Fil‘𝑌))
17 fgfil 22575 . . . . . . . . . . . 12 (𝐿 ∈ (Fil‘𝑌) → (𝑌filGen𝐿) = 𝐿)
1816, 17syl 17 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (𝑌filGen𝐿) = 𝐿)
1918eleq2d 2837 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (𝑠 ∈ (𝑌filGen𝐿) ↔ 𝑠𝐿))
2019biimpar 481 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝑠 ∈ (𝑌filGen𝐿))
21 eqid 2758 . . . . . . . . . 10 (𝑌filGen𝐿) = (𝑌filGen𝐿)
2221imaelfm 22651 . . . . . . . . 9 (((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐿)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐿))
2312, 14, 15, 20, 22syl31anc 1370 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐿))
24 ineq2 4111 . . . . . . . . . 10 (𝑥 = (𝐹𝑠) → (𝑜𝑥) = (𝑜 ∩ (𝐹𝑠)))
2524neeq1d 3010 . . . . . . . . 9 (𝑥 = (𝐹𝑠) → ((𝑜𝑥) ≠ ∅ ↔ (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
2625rspcv 3536 . . . . . . . 8 ((𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐿) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅ → (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
2723, 26syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅ → (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
2827ralrimdva 3118 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅ → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
29 elfm 22647 . . . . . . . . . . 11 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
304, 5, 6, 29syl3an 1157 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
3130adantr 484 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
3231simplbda 503 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)
33 r19.29r 3182 . . . . . . . . . 10 ((∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥 ∧ ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → ∃𝑠𝐿 ((𝐹𝑠) ⊆ 𝑥 ∧ (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
34 sslin 4139 . . . . . . . . . . . 12 ((𝐹𝑠) ⊆ 𝑥 → (𝑜 ∩ (𝐹𝑠)) ⊆ (𝑜𝑥))
35 ssn0 4296 . . . . . . . . . . . 12 (((𝑜 ∩ (𝐹𝑠)) ⊆ (𝑜𝑥) ∧ (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝑜𝑥) ≠ ∅)
3634, 35sylan 583 . . . . . . . . . . 11 (((𝐹𝑠) ⊆ 𝑥 ∧ (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝑜𝑥) ≠ ∅)
3736rexlimivw 3206 . . . . . . . . . 10 (∃𝑠𝐿 ((𝐹𝑠) ⊆ 𝑥 ∧ (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝑜𝑥) ≠ ∅)
3833, 37syl 17 . . . . . . . . 9 ((∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥 ∧ ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝑜𝑥) ≠ ∅)
3938ex 416 . . . . . . . 8 (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥 → (∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅ → (𝑜𝑥) ≠ ∅))
4032, 39syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)) → (∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅ → (𝑜𝑥) ≠ ∅))
4140ralrimdva 3118 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅))
4228, 41impbid 215 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅ ↔ ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4342imbi2d 344 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → ((𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅) ↔ (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
4443ralbidva 3125 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
4544anbi2d 631 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))))
462, 10, 453bitrd 308 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wne 2951  wral 3070  wrex 3071  cin 3857  wss 3858  c0 4225  cima 5527  wf 6331  cfv 6335  (class class class)co 7150  fBascfbas 20154  filGencfg 20155  TopOnctopon 21610  Filcfil 22545   FilMap cfm 22633   fClus cfcls 22636   fClusf cfcf 22637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-nel 3056  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-int 4839  df-iun 4885  df-iin 4886  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-ov 7153  df-oprab 7154  df-mpo 7155  df-map 8418  df-fbas 20163  df-fg 20164  df-top 21594  df-topon 21611  df-cld 21719  df-ntr 21720  df-cls 21721  df-fil 22546  df-fm 22638  df-fcls 22641  df-fcf 22642
This theorem is referenced by:  fcfnei  22735
  Copyright terms: Public domain W3C validator