Step | Hyp | Ref
| Expression |
1 | | fcfval 23092 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))) |
2 | 1 | eleq2d 2824 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ 𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))) |
3 | | simp1 1134 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → 𝐽 ∈ (TopOn‘𝑋)) |
4 | | toponmax 21983 |
. . . 4
⊢ (𝐽 ∈ (TopOn‘𝑋) → 𝑋 ∈ 𝐽) |
5 | | filfbas 22907 |
. . . 4
⊢ (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌)) |
6 | | id 22 |
. . . 4
⊢ (𝐹:𝑌⟶𝑋 → 𝐹:𝑌⟶𝑋) |
7 | | fmfil 23003 |
. . . 4
⊢ ((𝑋 ∈ 𝐽 ∧ 𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) |
8 | 4, 5, 6, 7 | syl3an 1158 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) |
9 | | fclsopn 23073 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜 ∩ 𝑥) ≠ ∅)))) |
10 | 3, 8, 9 | syl2anc 583 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜 ∩ 𝑥) ≠ ∅)))) |
11 | | simpll1 1210 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑠 ∈ 𝐿) → 𝐽 ∈ (TopOn‘𝑋)) |
12 | 11, 4 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑠 ∈ 𝐿) → 𝑋 ∈ 𝐽) |
13 | | simpll2 1211 |
. . . . . . . . . 10
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑠 ∈ 𝐿) → 𝐿 ∈ (Fil‘𝑌)) |
14 | 13, 5 | syl 17 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑠 ∈ 𝐿) → 𝐿 ∈ (fBas‘𝑌)) |
15 | | simpll3 1212 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑠 ∈ 𝐿) → 𝐹:𝑌⟶𝑋) |
16 | | simpl2 1190 |
. . . . . . . . . . . 12
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) → 𝐿 ∈ (Fil‘𝑌)) |
17 | | fgfil 22934 |
. . . . . . . . . . . 12
⊢ (𝐿 ∈ (Fil‘𝑌) → (𝑌filGen𝐿) = 𝐿) |
18 | 16, 17 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑌filGen𝐿) = 𝐿) |
19 | 18 | eleq2d 2824 |
. . . . . . . . . 10
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑠 ∈ (𝑌filGen𝐿) ↔ 𝑠 ∈ 𝐿)) |
20 | 19 | biimpar 477 |
. . . . . . . . 9
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑠 ∈ 𝐿) → 𝑠 ∈ (𝑌filGen𝐿)) |
21 | | eqid 2738 |
. . . . . . . . . 10
⊢ (𝑌filGen𝐿) = (𝑌filGen𝐿) |
22 | 21 | imaelfm 23010 |
. . . . . . . . 9
⊢ (((𝑋 ∈ 𝐽 ∧ 𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐿)) → (𝐹 “ 𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐿)) |
23 | 12, 14, 15, 20, 22 | syl31anc 1371 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑠 ∈ 𝐿) → (𝐹 “ 𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐿)) |
24 | | ineq2 4137 |
. . . . . . . . . 10
⊢ (𝑥 = (𝐹 “ 𝑠) → (𝑜 ∩ 𝑥) = (𝑜 ∩ (𝐹 “ 𝑠))) |
25 | 24 | neeq1d 3002 |
. . . . . . . . 9
⊢ (𝑥 = (𝐹 “ 𝑠) → ((𝑜 ∩ 𝑥) ≠ ∅ ↔ (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
26 | 25 | rspcv 3547 |
. . . . . . . 8
⊢ ((𝐹 “ 𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐿) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜 ∩ 𝑥) ≠ ∅ → (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
27 | 23, 26 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑠 ∈ 𝐿) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜 ∩ 𝑥) ≠ ∅ → (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
28 | 27 | ralrimdva 3112 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜 ∩ 𝑥) ≠ ∅ → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
29 | | elfm 23006 |
. . . . . . . . . . 11
⊢ ((𝑋 ∈ 𝐽 ∧ 𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥))) |
30 | 4, 5, 6, 29 | syl3an 1158 |
. . . . . . . . . 10
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥))) |
31 | 30 | adantr 480 |
. . . . . . . . 9
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥 ⊆ 𝑋 ∧ ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥))) |
32 | 31 | simplbda 499 |
. . . . . . . 8
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)) → ∃𝑠 ∈ 𝐿 (𝐹 “ 𝑠) ⊆ 𝑥) |
33 | | r19.29r 3184 |
. . . . . . . . . 10
⊢
((∃𝑠 ∈
𝐿 (𝐹 “ 𝑠) ⊆ 𝑥 ∧ ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → ∃𝑠 ∈ 𝐿 ((𝐹 “ 𝑠) ⊆ 𝑥 ∧ (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
34 | | sslin 4165 |
. . . . . . . . . . . 12
⊢ ((𝐹 “ 𝑠) ⊆ 𝑥 → (𝑜 ∩ (𝐹 “ 𝑠)) ⊆ (𝑜 ∩ 𝑥)) |
35 | | ssn0 4331 |
. . . . . . . . . . . 12
⊢ (((𝑜 ∩ (𝐹 “ 𝑠)) ⊆ (𝑜 ∩ 𝑥) ∧ (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝑜 ∩ 𝑥) ≠ ∅) |
36 | 34, 35 | sylan 579 |
. . . . . . . . . . 11
⊢ (((𝐹 “ 𝑠) ⊆ 𝑥 ∧ (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝑜 ∩ 𝑥) ≠ ∅) |
37 | 36 | rexlimivw 3210 |
. . . . . . . . . 10
⊢
(∃𝑠 ∈
𝐿 ((𝐹 “ 𝑠) ⊆ 𝑥 ∧ (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝑜 ∩ 𝑥) ≠ ∅) |
38 | 33, 37 | syl 17 |
. . . . . . . . 9
⊢
((∃𝑠 ∈
𝐿 (𝐹 “ 𝑠) ⊆ 𝑥 ∧ ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅) → (𝑜 ∩ 𝑥) ≠ ∅) |
39 | 38 | ex 412 |
. . . . . . . 8
⊢
(∃𝑠 ∈
𝐿 (𝐹 “ 𝑠) ⊆ 𝑥 → (∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑜 ∩ 𝑥) ≠ ∅)) |
40 | 32, 39 | syl 17 |
. . . . . . 7
⊢ ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) ∧ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)) → (∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅ → (𝑜 ∩ 𝑥) ≠ ∅)) |
41 | 40 | ralrimdva 3112 |
. . . . . 6
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) → (∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅ → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜 ∩ 𝑥) ≠ ∅)) |
42 | 28, 41 | impbid 211 |
. . . . 5
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜 ∩ 𝑥) ≠ ∅ ↔ ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)) |
43 | 42 | imbi2d 340 |
. . . 4
⊢ (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) ∧ 𝑜 ∈ 𝐽) → ((𝐴 ∈ 𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜 ∩ 𝑥) ≠ ∅) ↔ (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
44 | 43 | ralbidva 3119 |
. . 3
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜 ∩ 𝑥) ≠ ∅) ↔ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅))) |
45 | 44 | anbi2d 628 |
. 2
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → ((𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜 ∩ 𝑥) ≠ ∅)) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)))) |
46 | 2, 10, 45 | 3bitrd 304 |
1
⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌⟶𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴 ∈ 𝑋 ∧ ∀𝑜 ∈ 𝐽 (𝐴 ∈ 𝑜 → ∀𝑠 ∈ 𝐿 (𝑜 ∩ (𝐹 “ 𝑠)) ≠ ∅)))) |