MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfcf Structured version   Visualization version   GIF version

Theorem isfcf 23928
Description: The property of being a cluster point of a function. (Contributed by Jeff Hankins, 24-Nov-2009.) (Revised by Stefan O'Rear, 9-Aug-2015.)
Assertion
Ref Expression
isfcf ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))))
Distinct variable groups:   𝐴,𝑜   𝑜,𝑠,𝐽   𝑜,𝐿,𝑠   𝑜,𝐹,𝑠   𝑜,𝑋,𝑠   𝑜,𝑌,𝑠
Allowed substitution hint:   𝐴(𝑠)

Proof of Theorem isfcf
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 fcfval 23927 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fClusf 𝐿)‘𝐹) = (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)))
21eleq2d 2815 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ 𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿))))
3 simp1 1136 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → 𝐽 ∈ (TopOn‘𝑋))
4 toponmax 22820 . . . 4 (𝐽 ∈ (TopOn‘𝑋) → 𝑋𝐽)
5 filfbas 23742 . . . 4 (𝐿 ∈ (Fil‘𝑌) → 𝐿 ∈ (fBas‘𝑌))
6 id 22 . . . 4 (𝐹:𝑌𝑋𝐹:𝑌𝑋)
7 fmfil 23838 . . . 4 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
84, 5, 6, 7syl3an 1160 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋))
9 fclsopn 23908 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ ((𝑋 FilMap 𝐹)‘𝐿) ∈ (Fil‘𝑋)) → (𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅))))
103, 8, 9syl2anc 584 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ (𝐽 fClus ((𝑋 FilMap 𝐹)‘𝐿)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅))))
11 simpll1 1213 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝐽 ∈ (TopOn‘𝑋))
1211, 4syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝑋𝐽)
13 simpll2 1214 . . . . . . . . . 10 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝐿 ∈ (Fil‘𝑌))
1413, 5syl 17 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝐿 ∈ (fBas‘𝑌))
15 simpll3 1215 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝐹:𝑌𝑋)
16 simpl2 1193 . . . . . . . . . . . 12 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → 𝐿 ∈ (Fil‘𝑌))
17 fgfil 23769 . . . . . . . . . . . 12 (𝐿 ∈ (Fil‘𝑌) → (𝑌filGen𝐿) = 𝐿)
1816, 17syl 17 . . . . . . . . . . 11 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (𝑌filGen𝐿) = 𝐿)
1918eleq2d 2815 . . . . . . . . . 10 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (𝑠 ∈ (𝑌filGen𝐿) ↔ 𝑠𝐿))
2019biimpar 477 . . . . . . . . 9 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → 𝑠 ∈ (𝑌filGen𝐿))
21 eqid 2730 . . . . . . . . . 10 (𝑌filGen𝐿) = (𝑌filGen𝐿)
2221imaelfm 23845 . . . . . . . . 9 (((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑠 ∈ (𝑌filGen𝐿)) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐿))
2312, 14, 15, 20, 22syl31anc 1375 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → (𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐿))
24 ineq2 4180 . . . . . . . . . 10 (𝑥 = (𝐹𝑠) → (𝑜𝑥) = (𝑜 ∩ (𝐹𝑠)))
2524neeq1d 2985 . . . . . . . . 9 (𝑥 = (𝐹𝑠) → ((𝑜𝑥) ≠ ∅ ↔ (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
2625rspcv 3587 . . . . . . . 8 ((𝐹𝑠) ∈ ((𝑋 FilMap 𝐹)‘𝐿) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅ → (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
2723, 26syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑠𝐿) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅ → (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
2827ralrimdva 3134 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅ → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
29 elfm 23841 . . . . . . . . . . 11 ((𝑋𝐽𝐿 ∈ (fBas‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
304, 5, 6, 29syl3an 1160 . . . . . . . . . 10 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
3130adantr 480 . . . . . . . . 9 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿) ↔ (𝑥𝑋 ∧ ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)))
3231simplbda 499 . . . . . . . 8 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)) → ∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥)
33 r19.29r 3097 . . . . . . . . . 10 ((∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥 ∧ ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → ∃𝑠𝐿 ((𝐹𝑠) ⊆ 𝑥 ∧ (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
34 sslin 4209 . . . . . . . . . . . 12 ((𝐹𝑠) ⊆ 𝑥 → (𝑜 ∩ (𝐹𝑠)) ⊆ (𝑜𝑥))
35 ssn0 4370 . . . . . . . . . . . 12 (((𝑜 ∩ (𝐹𝑠)) ⊆ (𝑜𝑥) ∧ (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝑜𝑥) ≠ ∅)
3634, 35sylan 580 . . . . . . . . . . 11 (((𝐹𝑠) ⊆ 𝑥 ∧ (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝑜𝑥) ≠ ∅)
3736rexlimivw 3131 . . . . . . . . . 10 (∃𝑠𝐿 ((𝐹𝑠) ⊆ 𝑥 ∧ (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝑜𝑥) ≠ ∅)
3833, 37syl 17 . . . . . . . . 9 ((∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥 ∧ ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅) → (𝑜𝑥) ≠ ∅)
3938ex 412 . . . . . . . 8 (∃𝑠𝐿 (𝐹𝑠) ⊆ 𝑥 → (∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅ → (𝑜𝑥) ≠ ∅))
4032, 39syl 17 . . . . . . 7 ((((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) ∧ 𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)) → (∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅ → (𝑜𝑥) ≠ ∅))
4140ralrimdva 3134 . . . . . 6 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅ → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅))
4228, 41impbid 212 . . . . 5 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → (∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅ ↔ ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))
4342imbi2d 340 . . . 4 (((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) ∧ 𝑜𝐽) → ((𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅) ↔ (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
4443ralbidva 3155 . . 3 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (∀𝑜𝐽 (𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅) ↔ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅)))
4544anbi2d 630 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑥 ∈ ((𝑋 FilMap 𝐹)‘𝐿)(𝑜𝑥) ≠ ∅)) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))))
462, 10, 453bitrd 305 1 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝐴 ∈ ((𝐽 fClusf 𝐿)‘𝐹) ↔ (𝐴𝑋 ∧ ∀𝑜𝐽 (𝐴𝑜 → ∀𝑠𝐿 (𝑜 ∩ (𝐹𝑠)) ≠ ∅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  cin 3916  wss 3917  c0 4299  cima 5644  wf 6510  cfv 6514  (class class class)co 7390  fBascfbas 21259  filGencfg 21260  TopOnctopon 22804  Filcfil 23739   FilMap cfm 23827   fClus cfcls 23830   fClusf cfcf 23831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-map 8804  df-fbas 21268  df-fg 21269  df-top 22788  df-topon 22805  df-cld 22913  df-ntr 22914  df-cls 22915  df-fil 23740  df-fm 23832  df-fcls 23835  df-fcf 23836
This theorem is referenced by:  fcfnei  23929
  Copyright terms: Public domain W3C validator