MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimuni Structured version   Visualization version   GIF version

Theorem rlimuni 15187
Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1 (𝜑𝐹:𝐴⟶ℂ)
rlimuni.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimuni.3 (𝜑𝐹𝑟 𝐵)
rlimuni.4 (𝜑𝐹𝑟 𝐶)
Assertion
Ref Expression
rlimuni (𝜑𝐵 = 𝐶)

Proof of Theorem rlimuni
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimuni.3 . . . . . . . . . . . 12 (𝜑𝐹𝑟 𝐵)
2 rlimcl 15140 . . . . . . . . . . . 12 (𝐹𝑟 𝐵𝐵 ∈ ℂ)
31, 2syl 17 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
43ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
5 rlimuni.4 . . . . . . . . . . . 12 (𝜑𝐹𝑟 𝐶)
6 rlimcl 15140 . . . . . . . . . . . 12 (𝐹𝑟 𝐶𝐶 ∈ ℂ)
75, 6syl 17 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
87ad2antrr 722 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
94, 8subcld 11262 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵𝐶) ∈ ℂ)
109abscld 15076 . . . . . . . 8 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (abs‘(𝐵𝐶)) ∈ ℝ)
1110ltnrd 11039 . . . . . . 7 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ¬ (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶)))
12 rlimuni.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
1312ffvelrnda 6943 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1413adantlr 711 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1514, 4abssubd 15093 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (abs‘((𝐹𝑘) − 𝐵)) = (abs‘(𝐵 − (𝐹𝑘))))
1615breq1d 5080 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ↔ (abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2)))
1716anbi1d 629 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) ↔ ((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
18 abs3lem 14978 . . . . . . . . . . 11 (((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐵𝐶)) ∈ ℝ)) → (((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
194, 8, 14, 10, 18syl22anc 835 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2017, 19sylbid 239 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2120imim2d 57 . . . . . . . 8 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → (𝑗𝑘 → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶)))))
2221impcomd 411 . . . . . . 7 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2311, 22mtod 197 . . . . . 6 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ¬ (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2423nrexdv 3197 . . . . 5 ((𝜑𝑗 ∈ ℝ) → ¬ ∃𝑘𝐴 (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
25 r19.29r 3184 . . . . 5 ((∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → ∃𝑘𝐴 (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2624, 25nsyl 140 . . . 4 ((𝜑𝑗 ∈ ℝ) → ¬ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2726nrexdv 3197 . . 3 (𝜑 → ¬ ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
28 rlimuni.2 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2912fdmd 6595 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
30 rlimss 15139 . . . . . . . . 9 (𝐹𝑟 𝐵 → dom 𝐹 ⊆ ℝ)
311, 30syl 17 . . . . . . . 8 (𝜑 → dom 𝐹 ⊆ ℝ)
3229, 31eqsstrrd 3956 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
33 ressxr 10950 . . . . . . 7 ℝ ⊆ ℝ*
3432, 33sstrdi 3929 . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
35 supxrunb1 12982 . . . . . 6 (𝐴 ⊆ ℝ* → (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ↔ sup(𝐴, ℝ*, < ) = +∞))
3634, 35syl 17 . . . . 5 (𝜑 → (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ↔ sup(𝐴, ℝ*, < ) = +∞))
3728, 36mpbird 256 . . . 4 (𝜑 → ∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘)
38 r19.29 3183 . . . . 5 ((∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
3938ex 412 . . . 4 (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))))
4037, 39syl 17 . . 3 (𝜑 → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))))
4127, 40mtod 197 . 2 (𝜑 → ¬ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
4212adantr 480 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹:𝐴⟶ℂ)
43 ffvelrn 6941 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
4443ralrimiva 3107 . . . . . . 7 (𝐹:𝐴⟶ℂ → ∀𝑘𝐴 (𝐹𝑘) ∈ ℂ)
4542, 44syl 17 . . . . . 6 ((𝜑𝐵𝐶) → ∀𝑘𝐴 (𝐹𝑘) ∈ ℂ)
463adantr 480 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵 ∈ ℂ)
477adantr 480 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐶 ∈ ℂ)
4846, 47subcld 11262 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵𝐶) ∈ ℂ)
49 simpr 484 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵𝐶)
5046, 47, 49subne0d 11271 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵𝐶) ≠ 0)
5148, 50absrpcld 15088 . . . . . . 7 ((𝜑𝐵𝐶) → (abs‘(𝐵𝐶)) ∈ ℝ+)
5251rphalfcld 12713 . . . . . 6 ((𝜑𝐵𝐶) → ((abs‘(𝐵𝐶)) / 2) ∈ ℝ+)
5342feqmptd 6819 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
541adantr 480 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹𝑟 𝐵)
5553, 54eqbrtrrd 5094 . . . . . 6 ((𝜑𝐵𝐶) → (𝑘𝐴 ↦ (𝐹𝑘)) ⇝𝑟 𝐵)
5645, 52, 55rlimi 15150 . . . . 5 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)))
575adantr 480 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹𝑟 𝐶)
5853, 57eqbrtrrd 5094 . . . . . 6 ((𝜑𝐵𝐶) → (𝑘𝐴 ↦ (𝐹𝑘)) ⇝𝑟 𝐶)
5945, 52, 58rlimi 15150 . . . . 5 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))
6032adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐴 ⊆ ℝ)
61 rexanre 14986 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6260, 61syl 17 . . . . 5 ((𝜑𝐵𝐶) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6356, 59, 62mpbir2and 709 . . . 4 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
6463ex 412 . . 3 (𝜑 → (𝐵𝐶 → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6564necon1bd 2960 . 2 (𝜑 → (¬ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → 𝐵 = 𝐶))
6641, 65mpd 15 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  wss 3883   class class class wbr 5070  cmpt 5153  dom cdm 5580  wf 6414  cfv 6418  (class class class)co 7255  supcsup 9129  cc 10800  cr 10801  +∞cpnf 10937  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  2c2 11958  abscabs 14873  𝑟 crli 15122
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-rp 12660  df-seq 13650  df-exp 13711  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-rlim 15126
This theorem is referenced by:  rlimdm  15188  rlimdmafv  44556  rlimdmafv2  44637
  Copyright terms: Public domain W3C validator