MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimuni Structured version   Visualization version   GIF version

Theorem rlimuni 14693
Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1 (𝜑𝐹:𝐴⟶ℂ)
rlimuni.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimuni.3 (𝜑𝐹𝑟 𝐵)
rlimuni.4 (𝜑𝐹𝑟 𝐶)
Assertion
Ref Expression
rlimuni (𝜑𝐵 = 𝐶)

Proof of Theorem rlimuni
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimuni.3 . . . . . . . . . . . 12 (𝜑𝐹𝑟 𝐵)
2 rlimcl 14646 . . . . . . . . . . . 12 (𝐹𝑟 𝐵𝐵 ∈ ℂ)
31, 2syl 17 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
43ad2antrr 716 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
5 rlimuni.4 . . . . . . . . . . . 12 (𝜑𝐹𝑟 𝐶)
6 rlimcl 14646 . . . . . . . . . . . 12 (𝐹𝑟 𝐶𝐶 ∈ ℂ)
75, 6syl 17 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
87ad2antrr 716 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
94, 8subcld 10736 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵𝐶) ∈ ℂ)
109abscld 14587 . . . . . . . 8 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (abs‘(𝐵𝐶)) ∈ ℝ)
1110ltnrd 10512 . . . . . . 7 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ¬ (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶)))
12 rlimuni.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
1312ffvelrnda 6625 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1413adantlr 705 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1514, 4abssubd 14604 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (abs‘((𝐹𝑘) − 𝐵)) = (abs‘(𝐵 − (𝐹𝑘))))
1615breq1d 4898 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ↔ (abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2)))
1716anbi1d 623 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) ↔ ((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
18 abs3lem 14489 . . . . . . . . . . 11 (((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐵𝐶)) ∈ ℝ)) → (((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
194, 8, 14, 10, 18syl22anc 829 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2017, 19sylbid 232 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2120imim2d 57 . . . . . . . 8 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → (𝑗𝑘 → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶)))))
2221impcomd 401 . . . . . . 7 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2311, 22mtod 190 . . . . . 6 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ¬ (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2423nrexdv 3182 . . . . 5 ((𝜑𝑗 ∈ ℝ) → ¬ ∃𝑘𝐴 (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
25 r19.29r 3259 . . . . 5 ((∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → ∃𝑘𝐴 (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2624, 25nsyl 138 . . . 4 ((𝜑𝑗 ∈ ℝ) → ¬ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2726nrexdv 3182 . . 3 (𝜑 → ¬ ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
28 rlimuni.2 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2912fdmd 6302 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
30 rlimss 14645 . . . . . . . . 9 (𝐹𝑟 𝐵 → dom 𝐹 ⊆ ℝ)
311, 30syl 17 . . . . . . . 8 (𝜑 → dom 𝐹 ⊆ ℝ)
3229, 31eqsstr3d 3859 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
33 ressxr 10422 . . . . . . 7 ℝ ⊆ ℝ*
3432, 33syl6ss 3833 . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
35 supxrunb1 12465 . . . . . 6 (𝐴 ⊆ ℝ* → (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ↔ sup(𝐴, ℝ*, < ) = +∞))
3634, 35syl 17 . . . . 5 (𝜑 → (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ↔ sup(𝐴, ℝ*, < ) = +∞))
3728, 36mpbird 249 . . . 4 (𝜑 → ∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘)
38 r19.29 3258 . . . . 5 ((∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
3938ex 403 . . . 4 (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))))
4037, 39syl 17 . . 3 (𝜑 → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))))
4127, 40mtod 190 . 2 (𝜑 → ¬ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
4212adantr 474 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹:𝐴⟶ℂ)
43 ffvelrn 6623 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
4443ralrimiva 3148 . . . . . . 7 (𝐹:𝐴⟶ℂ → ∀𝑘𝐴 (𝐹𝑘) ∈ ℂ)
4542, 44syl 17 . . . . . 6 ((𝜑𝐵𝐶) → ∀𝑘𝐴 (𝐹𝑘) ∈ ℂ)
463adantr 474 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵 ∈ ℂ)
477adantr 474 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐶 ∈ ℂ)
4846, 47subcld 10736 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵𝐶) ∈ ℂ)
49 simpr 479 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵𝐶)
5046, 47, 49subne0d 10745 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵𝐶) ≠ 0)
5148, 50absrpcld 14599 . . . . . . 7 ((𝜑𝐵𝐶) → (abs‘(𝐵𝐶)) ∈ ℝ+)
5251rphalfcld 12197 . . . . . 6 ((𝜑𝐵𝐶) → ((abs‘(𝐵𝐶)) / 2) ∈ ℝ+)
5342feqmptd 6511 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
541adantr 474 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹𝑟 𝐵)
5553, 54eqbrtrrd 4912 . . . . . 6 ((𝜑𝐵𝐶) → (𝑘𝐴 ↦ (𝐹𝑘)) ⇝𝑟 𝐵)
5645, 52, 55rlimi 14656 . . . . 5 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)))
575adantr 474 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹𝑟 𝐶)
5853, 57eqbrtrrd 4912 . . . . . 6 ((𝜑𝐵𝐶) → (𝑘𝐴 ↦ (𝐹𝑘)) ⇝𝑟 𝐶)
5945, 52, 58rlimi 14656 . . . . 5 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))
6032adantr 474 . . . . . 6 ((𝜑𝐵𝐶) → 𝐴 ⊆ ℝ)
61 rexanre 14497 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6260, 61syl 17 . . . . 5 ((𝜑𝐵𝐶) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6356, 59, 62mpbir2and 703 . . . 4 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
6463ex 403 . . 3 (𝜑 → (𝐵𝐶 → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6564necon1bd 2987 . 2 (𝜑 → (¬ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → 𝐵 = 𝐶))
6641, 65mpd 15 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 386   = wceq 1601  wcel 2107  wne 2969  wral 3090  wrex 3091  wss 3792   class class class wbr 4888  cmpt 4967  dom cdm 5357  wf 6133  cfv 6137  (class class class)co 6924  supcsup 8636  cc 10272  cr 10273  +∞cpnf 10410  *cxr 10412   < clt 10413  cle 10414  cmin 10608   / cdiv 11034  2c2 11434  abscabs 14385  𝑟 crli 14628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-iun 4757  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-om 7346  df-2nd 7448  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-er 8028  df-pm 8145  df-en 8244  df-dom 8245  df-sdom 8246  df-sup 8638  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11035  df-nn 11379  df-2 11442  df-3 11443  df-n0 11647  df-z 11733  df-uz 11997  df-rp 12142  df-seq 13124  df-exp 13183  df-cj 14250  df-re 14251  df-im 14252  df-sqrt 14386  df-abs 14387  df-rlim 14632
This theorem is referenced by:  rlimdm  14694  rlimdmafv  42228  rlimdmafv2  42309
  Copyright terms: Public domain W3C validator