MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimuni Structured version   Visualization version   GIF version

Theorem rlimuni 15583
Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1 (𝜑𝐹:𝐴⟶ℂ)
rlimuni.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimuni.3 (𝜑𝐹𝑟 𝐵)
rlimuni.4 (𝜑𝐹𝑟 𝐶)
Assertion
Ref Expression
rlimuni (𝜑𝐵 = 𝐶)

Proof of Theorem rlimuni
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimuni.3 . . . . . . . . . . . 12 (𝜑𝐹𝑟 𝐵)
2 rlimcl 15536 . . . . . . . . . . . 12 (𝐹𝑟 𝐵𝐵 ∈ ℂ)
31, 2syl 17 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
43ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
5 rlimuni.4 . . . . . . . . . . . 12 (𝜑𝐹𝑟 𝐶)
6 rlimcl 15536 . . . . . . . . . . . 12 (𝐹𝑟 𝐶𝐶 ∈ ℂ)
75, 6syl 17 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
87ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
94, 8subcld 11618 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵𝐶) ∈ ℂ)
109abscld 15472 . . . . . . . 8 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (abs‘(𝐵𝐶)) ∈ ℝ)
1110ltnrd 11393 . . . . . . 7 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ¬ (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶)))
12 rlimuni.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
1312ffvelcdmda 7104 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1413adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1514, 4abssubd 15489 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (abs‘((𝐹𝑘) − 𝐵)) = (abs‘(𝐵 − (𝐹𝑘))))
1615breq1d 5158 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ↔ (abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2)))
1716anbi1d 631 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) ↔ ((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
18 abs3lem 15374 . . . . . . . . . . 11 (((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐵𝐶)) ∈ ℝ)) → (((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
194, 8, 14, 10, 18syl22anc 839 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2017, 19sylbid 240 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2120imim2d 57 . . . . . . . 8 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → (𝑗𝑘 → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶)))))
2221impcomd 411 . . . . . . 7 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2311, 22mtod 198 . . . . . 6 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ¬ (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2423nrexdv 3147 . . . . 5 ((𝜑𝑗 ∈ ℝ) → ¬ ∃𝑘𝐴 (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
25 r19.29r 3114 . . . . 5 ((∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → ∃𝑘𝐴 (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2624, 25nsyl 140 . . . 4 ((𝜑𝑗 ∈ ℝ) → ¬ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2726nrexdv 3147 . . 3 (𝜑 → ¬ ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
28 rlimuni.2 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2912fdmd 6747 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
30 rlimss 15535 . . . . . . . . 9 (𝐹𝑟 𝐵 → dom 𝐹 ⊆ ℝ)
311, 30syl 17 . . . . . . . 8 (𝜑 → dom 𝐹 ⊆ ℝ)
3229, 31eqsstrrd 4035 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
33 ressxr 11303 . . . . . . 7 ℝ ⊆ ℝ*
3432, 33sstrdi 4008 . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
35 supxrunb1 13358 . . . . . 6 (𝐴 ⊆ ℝ* → (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ↔ sup(𝐴, ℝ*, < ) = +∞))
3634, 35syl 17 . . . . 5 (𝜑 → (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ↔ sup(𝐴, ℝ*, < ) = +∞))
3728, 36mpbird 257 . . . 4 (𝜑 → ∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘)
38 r19.29 3112 . . . . 5 ((∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
3938ex 412 . . . 4 (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))))
4037, 39syl 17 . . 3 (𝜑 → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))))
4127, 40mtod 198 . 2 (𝜑 → ¬ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
4212adantr 480 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹:𝐴⟶ℂ)
43 ffvelcdm 7101 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
4443ralrimiva 3144 . . . . . . 7 (𝐹:𝐴⟶ℂ → ∀𝑘𝐴 (𝐹𝑘) ∈ ℂ)
4542, 44syl 17 . . . . . 6 ((𝜑𝐵𝐶) → ∀𝑘𝐴 (𝐹𝑘) ∈ ℂ)
463adantr 480 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵 ∈ ℂ)
477adantr 480 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐶 ∈ ℂ)
4846, 47subcld 11618 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵𝐶) ∈ ℂ)
49 simpr 484 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵𝐶)
5046, 47, 49subne0d 11627 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵𝐶) ≠ 0)
5148, 50absrpcld 15484 . . . . . . 7 ((𝜑𝐵𝐶) → (abs‘(𝐵𝐶)) ∈ ℝ+)
5251rphalfcld 13087 . . . . . 6 ((𝜑𝐵𝐶) → ((abs‘(𝐵𝐶)) / 2) ∈ ℝ+)
5342feqmptd 6977 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
541adantr 480 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹𝑟 𝐵)
5553, 54eqbrtrrd 5172 . . . . . 6 ((𝜑𝐵𝐶) → (𝑘𝐴 ↦ (𝐹𝑘)) ⇝𝑟 𝐵)
5645, 52, 55rlimi 15546 . . . . 5 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)))
575adantr 480 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹𝑟 𝐶)
5853, 57eqbrtrrd 5172 . . . . . 6 ((𝜑𝐵𝐶) → (𝑘𝐴 ↦ (𝐹𝑘)) ⇝𝑟 𝐶)
5945, 52, 58rlimi 15546 . . . . 5 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))
6032adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐴 ⊆ ℝ)
61 rexanre 15382 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6260, 61syl 17 . . . . 5 ((𝜑𝐵𝐶) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6356, 59, 62mpbir2and 713 . . . 4 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
6463ex 412 . . 3 (𝜑 → (𝐵𝐶 → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6564necon1bd 2956 . 2 (𝜑 → (¬ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → 𝐵 = 𝐶))
6641, 65mpd 15 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  wss 3963   class class class wbr 5148  cmpt 5231  dom cdm 5689  wf 6559  cfv 6563  (class class class)co 7431  supcsup 9478  cc 11151  cr 11152  +∞cpnf 11290  *cxr 11292   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  abscabs 15270  𝑟 crli 15518
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-pm 8868  df-en 8985  df-dom 8986  df-sdom 8987  df-sup 9480  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-rlim 15522
This theorem is referenced by:  rlimdm  15584  rlimdmafv  47127  rlimdmafv2  47208
  Copyright terms: Public domain W3C validator