MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rlimuni Structured version   Visualization version   GIF version

Theorem rlimuni 15586
Description: A real function whose domain is unbounded above converges to at most one limit. (Contributed by Mario Carneiro, 8-May-2016.)
Hypotheses
Ref Expression
rlimuni.1 (𝜑𝐹:𝐴⟶ℂ)
rlimuni.2 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
rlimuni.3 (𝜑𝐹𝑟 𝐵)
rlimuni.4 (𝜑𝐹𝑟 𝐶)
Assertion
Ref Expression
rlimuni (𝜑𝐵 = 𝐶)

Proof of Theorem rlimuni
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlimuni.3 . . . . . . . . . . . 12 (𝜑𝐹𝑟 𝐵)
2 rlimcl 15539 . . . . . . . . . . . 12 (𝐹𝑟 𝐵𝐵 ∈ ℂ)
31, 2syl 17 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℂ)
43ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐵 ∈ ℂ)
5 rlimuni.4 . . . . . . . . . . . 12 (𝜑𝐹𝑟 𝐶)
6 rlimcl 15539 . . . . . . . . . . . 12 (𝐹𝑟 𝐶𝐶 ∈ ℂ)
75, 6syl 17 . . . . . . . . . . 11 (𝜑𝐶 ∈ ℂ)
87ad2antrr 726 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → 𝐶 ∈ ℂ)
94, 8subcld 11620 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (𝐵𝐶) ∈ ℂ)
109abscld 15475 . . . . . . . 8 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (abs‘(𝐵𝐶)) ∈ ℝ)
1110ltnrd 11395 . . . . . . 7 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ¬ (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶)))
12 rlimuni.1 . . . . . . . . . . . . . . 15 (𝜑𝐹:𝐴⟶ℂ)
1312ffvelcdmda 7104 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1413adantlr 715 . . . . . . . . . . . . 13 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
1514, 4abssubd 15492 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (abs‘((𝐹𝑘) − 𝐵)) = (abs‘(𝐵 − (𝐹𝑘))))
1615breq1d 5153 . . . . . . . . . . 11 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ↔ (abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2)))
1716anbi1d 631 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) ↔ ((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
18 abs3lem 15377 . . . . . . . . . . 11 (((𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ) ∧ ((𝐹𝑘) ∈ ℂ ∧ (abs‘(𝐵𝐶)) ∈ ℝ)) → (((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
194, 8, 14, 10, 18syl22anc 839 . . . . . . . . . 10 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘(𝐵 − (𝐹𝑘))) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2017, 19sylbid 240 . . . . . . . . 9 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → (((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2120imim2d 57 . . . . . . . 8 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → (𝑗𝑘 → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶)))))
2221impcomd 411 . . . . . . 7 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ((𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → (abs‘(𝐵𝐶)) < (abs‘(𝐵𝐶))))
2311, 22mtod 198 . . . . . 6 (((𝜑𝑗 ∈ ℝ) ∧ 𝑘𝐴) → ¬ (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2423nrexdv 3149 . . . . 5 ((𝜑𝑗 ∈ ℝ) → ¬ ∃𝑘𝐴 (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
25 r19.29r 3116 . . . . 5 ((∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → ∃𝑘𝐴 (𝑗𝑘 ∧ (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2624, 25nsyl 140 . . . 4 ((𝜑𝑗 ∈ ℝ) → ¬ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
2726nrexdv 3149 . . 3 (𝜑 → ¬ ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
28 rlimuni.2 . . . . 5 (𝜑 → sup(𝐴, ℝ*, < ) = +∞)
2912fdmd 6746 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐴)
30 rlimss 15538 . . . . . . . . 9 (𝐹𝑟 𝐵 → dom 𝐹 ⊆ ℝ)
311, 30syl 17 . . . . . . . 8 (𝜑 → dom 𝐹 ⊆ ℝ)
3229, 31eqsstrrd 4019 . . . . . . 7 (𝜑𝐴 ⊆ ℝ)
33 ressxr 11305 . . . . . . 7 ℝ ⊆ ℝ*
3432, 33sstrdi 3996 . . . . . 6 (𝜑𝐴 ⊆ ℝ*)
35 supxrunb1 13361 . . . . . 6 (𝐴 ⊆ ℝ* → (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ↔ sup(𝐴, ℝ*, < ) = +∞))
3634, 35syl 17 . . . . 5 (𝜑 → (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ↔ sup(𝐴, ℝ*, < ) = +∞))
3728, 36mpbird 257 . . . 4 (𝜑 → ∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘)
38 r19.29 3114 . . . . 5 ((∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
3938ex 412 . . . 4 (∀𝑗 ∈ ℝ ∃𝑘𝐴 𝑗𝑘 → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))))
4037, 39syl 17 . . 3 (𝜑 → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → ∃𝑗 ∈ ℝ (∃𝑘𝐴 𝑗𝑘 ∧ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))))
4127, 40mtod 198 . 2 (𝜑 → ¬ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
4212adantr 480 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹:𝐴⟶ℂ)
43 ffvelcdm 7101 . . . . . . . 8 ((𝐹:𝐴⟶ℂ ∧ 𝑘𝐴) → (𝐹𝑘) ∈ ℂ)
4443ralrimiva 3146 . . . . . . 7 (𝐹:𝐴⟶ℂ → ∀𝑘𝐴 (𝐹𝑘) ∈ ℂ)
4542, 44syl 17 . . . . . 6 ((𝜑𝐵𝐶) → ∀𝑘𝐴 (𝐹𝑘) ∈ ℂ)
463adantr 480 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵 ∈ ℂ)
477adantr 480 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐶 ∈ ℂ)
4846, 47subcld 11620 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵𝐶) ∈ ℂ)
49 simpr 484 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵𝐶)
5046, 47, 49subne0d 11629 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵𝐶) ≠ 0)
5148, 50absrpcld 15487 . . . . . . 7 ((𝜑𝐵𝐶) → (abs‘(𝐵𝐶)) ∈ ℝ+)
5251rphalfcld 13089 . . . . . 6 ((𝜑𝐵𝐶) → ((abs‘(𝐵𝐶)) / 2) ∈ ℝ+)
5342feqmptd 6977 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹 = (𝑘𝐴 ↦ (𝐹𝑘)))
541adantr 480 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹𝑟 𝐵)
5553, 54eqbrtrrd 5167 . . . . . 6 ((𝜑𝐵𝐶) → (𝑘𝐴 ↦ (𝐹𝑘)) ⇝𝑟 𝐵)
5645, 52, 55rlimi 15549 . . . . 5 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)))
575adantr 480 . . . . . . 7 ((𝜑𝐵𝐶) → 𝐹𝑟 𝐶)
5853, 57eqbrtrrd 5167 . . . . . 6 ((𝜑𝐵𝐶) → (𝑘𝐴 ↦ (𝐹𝑘)) ⇝𝑟 𝐶)
5945, 52, 58rlimi 15549 . . . . 5 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))
6032adantr 480 . . . . . 6 ((𝜑𝐵𝐶) → 𝐴 ⊆ ℝ)
61 rexanre 15385 . . . . . 6 (𝐴 ⊆ ℝ → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6260, 61syl 17 . . . . 5 ((𝜑𝐵𝐶) → (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) ↔ (∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2)) ∧ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6356, 59, 62mpbir2and 713 . . . 4 ((𝜑𝐵𝐶) → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))))
6463ex 412 . . 3 (𝜑 → (𝐵𝐶 → ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2)))))
6564necon1bd 2958 . 2 (𝜑 → (¬ ∃𝑗 ∈ ℝ ∀𝑘𝐴 (𝑗𝑘 → ((abs‘((𝐹𝑘) − 𝐵)) < ((abs‘(𝐵𝐶)) / 2) ∧ (abs‘((𝐹𝑘) − 𝐶)) < ((abs‘(𝐵𝐶)) / 2))) → 𝐵 = 𝐶))
6641, 65mpd 15 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  wss 3951   class class class wbr 5143  cmpt 5225  dom cdm 5685  wf 6557  cfv 6561  (class class class)co 7431  supcsup 9480  cc 11153  cr 11154  +∞cpnf 11292  *cxr 11294   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  2c2 12321  abscabs 15273  𝑟 crli 15521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-pm 8869  df-en 8986  df-dom 8987  df-sdom 8988  df-sup 9482  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-z 12614  df-uz 12879  df-rp 13035  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-rlim 15525
This theorem is referenced by:  rlimdm  15587  rlimdmafv  47189  rlimdmafv2  47270
  Copyright terms: Public domain W3C validator