MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinv Structured version   Visualization version   GIF version

Theorem isinv 17771
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
invfval.s 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
isinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))

Proof of Theorem isinv
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . . 5 (𝜑𝑋𝐵)
5 invfval.y . . . . 5 (𝜑𝑌𝐵)
6 invfval.s . . . . 5 𝑆 = (Sect‘𝐶)
71, 2, 3, 4, 5, 6invfval 17770 . . . 4 (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)))
87breqd 5163 . . 3 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐹((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋))𝐺))
9 brin 5204 . . 3 (𝐹((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋))𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐹(𝑌𝑆𝑋)𝐺))
108, 9bitrdi 286 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐹(𝑌𝑆𝑋)𝐺)))
11 eqid 2725 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
12 eqid 2725 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
13 eqid 2725 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
141, 11, 12, 13, 6, 3, 5, 4sectss 17763 . . . . 5 (𝜑 → (𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)))
15 relxp 5699 . . . . 5 Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))
16 relss 5786 . . . . 5 ((𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑆𝑋)))
1714, 15, 16mpisyl 21 . . . 4 (𝜑 → Rel (𝑌𝑆𝑋))
18 relbrcnvg 6114 . . . 4 (Rel (𝑌𝑆𝑋) → (𝐹(𝑌𝑆𝑋)𝐺𝐺(𝑌𝑆𝑋)𝐹))
1917, 18syl 17 . . 3 (𝜑 → (𝐹(𝑌𝑆𝑋)𝐺𝐺(𝑌𝑆𝑋)𝐹))
2019anbi2d 628 . 2 (𝜑 → ((𝐹(𝑋𝑆𝑌)𝐺𝐹(𝑌𝑆𝑋)𝐺) ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
2110, 20bitrd 278 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wcel 2098  cin 3945  wss 3946   class class class wbr 5152   × cxp 5679  ccnv 5680  Rel wrel 5686  cfv 6553  (class class class)co 7423  Basecbs 17208  Hom chom 17272  compcco 17273  Catccat 17672  Idccid 17673  Sectcsect 17755  Invcinv 17756
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5289  ax-sep 5303  ax-nul 5310  ax-pow 5368  ax-pr 5432  ax-un 7745
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-nul 4325  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5579  df-xp 5687  df-rel 5688  df-cnv 5689  df-co 5690  df-dm 5691  df-rn 5692  df-res 5693  df-ima 5694  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7426  df-oprab 7427  df-mpo 7428  df-1st 8002  df-2nd 8003  df-sect 17758  df-inv 17759
This theorem is referenced by:  invsym  17773  invfun  17775  invco  17782  inveq  17785  monsect  17794  invid  17798  invcoisoid  17803  isocoinvid  17804  funcinv  17887  fthinv  17943  fucinv  17993  invfuc  17994  2initoinv  18027  2termoinv  18034  setcinv  18107  catcisolem  18127  catciso  18128  rngcinv  20610  ringcinv  20644  rngcinvALTV  47590  ringcinvALTV  47624  thincinv  48317
  Copyright terms: Public domain W3C validator