![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isinv | Structured version Visualization version GIF version |
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
invfval.s | ⊢ 𝑆 = (Sect‘𝐶) |
Ref | Expression |
---|---|
isinv | ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
4 | invfval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
5 | invfval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
6 | invfval.s | . . . . 5 ⊢ 𝑆 = (Sect‘𝐶) | |
7 | 1, 2, 3, 4, 5, 6 | invfval 17822 | . . . 4 ⊢ (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) |
8 | 7 | breqd 5177 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))𝐺)) |
9 | brin 5218 | . . 3 ⊢ (𝐹((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐹◡(𝑌𝑆𝑋)𝐺)) | |
10 | 8, 9 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐹◡(𝑌𝑆𝑋)𝐺))) |
11 | eqid 2740 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
12 | eqid 2740 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
13 | eqid 2740 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
14 | 1, 11, 12, 13, 6, 3, 5, 4 | sectss 17815 | . . . . 5 ⊢ (𝜑 → (𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))) |
15 | relxp 5718 | . . . . 5 ⊢ Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) | |
16 | relss 5805 | . . . . 5 ⊢ ((𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑆𝑋))) | |
17 | 14, 15, 16 | mpisyl 21 | . . . 4 ⊢ (𝜑 → Rel (𝑌𝑆𝑋)) |
18 | relbrcnvg 6137 | . . . 4 ⊢ (Rel (𝑌𝑆𝑋) → (𝐹◡(𝑌𝑆𝑋)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) | |
19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹◡(𝑌𝑆𝑋)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) |
20 | 19 | anbi2d 629 | . 2 ⊢ (𝜑 → ((𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐹◡(𝑌𝑆𝑋)𝐺) ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
21 | 10, 20 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∩ cin 3975 ⊆ wss 3976 class class class wbr 5166 × cxp 5698 ◡ccnv 5699 Rel wrel 5705 ‘cfv 6575 (class class class)co 7450 Basecbs 17260 Hom chom 17324 compcco 17325 Catccat 17724 Idccid 17725 Sectcsect 17807 Invcinv 17808 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7772 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6527 df-fun 6577 df-fn 6578 df-f 6579 df-f1 6580 df-fo 6581 df-f1o 6582 df-fv 6583 df-ov 7453 df-oprab 7454 df-mpo 7455 df-1st 8032 df-2nd 8033 df-sect 17810 df-inv 17811 |
This theorem is referenced by: invsym 17825 invfun 17827 invco 17834 inveq 17837 monsect 17846 invid 17850 invcoisoid 17855 isocoinvid 17856 funcinv 17939 fthinv 17995 fucinv 18045 invfuc 18046 2initoinv 18079 2termoinv 18086 setcinv 18159 catcisolem 18179 catciso 18180 rngcinv 20661 ringcinv 20695 rngcinvALTV 48001 ringcinvALTV 48035 thincinv 48732 |
Copyright terms: Public domain | W3C validator |