| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isinv | Structured version Visualization version GIF version | ||
| Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| invfval.s | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| isinv | ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invfval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | invfval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | invfval.s | . . . . 5 ⊢ 𝑆 = (Sect‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | invfval 17684 | . . . 4 ⊢ (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) |
| 8 | 7 | breqd 5106 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))𝐺)) |
| 9 | brin 5147 | . . 3 ⊢ (𝐹((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐹◡(𝑌𝑆𝑋)𝐺)) | |
| 10 | 8, 9 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐹◡(𝑌𝑆𝑋)𝐺))) |
| 11 | eqid 2729 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 12 | eqid 2729 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 13 | eqid 2729 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 14 | 1, 11, 12, 13, 6, 3, 5, 4 | sectss 17677 | . . . . 5 ⊢ (𝜑 → (𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))) |
| 15 | relxp 5641 | . . . . 5 ⊢ Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) | |
| 16 | relss 5729 | . . . . 5 ⊢ ((𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑆𝑋))) | |
| 17 | 14, 15, 16 | mpisyl 21 | . . . 4 ⊢ (𝜑 → Rel (𝑌𝑆𝑋)) |
| 18 | relbrcnvg 6060 | . . . 4 ⊢ (Rel (𝑌𝑆𝑋) → (𝐹◡(𝑌𝑆𝑋)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹◡(𝑌𝑆𝑋)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) |
| 20 | 19 | anbi2d 630 | . 2 ⊢ (𝜑 → ((𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐹◡(𝑌𝑆𝑋)𝐺) ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
| 21 | 10, 20 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∩ cin 3904 ⊆ wss 3905 class class class wbr 5095 × cxp 5621 ◡ccnv 5622 Rel wrel 5628 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Hom chom 17190 compcco 17191 Catccat 17588 Idccid 17589 Sectcsect 17669 Invcinv 17670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-sect 17672 df-inv 17673 |
| This theorem is referenced by: invsym 17687 invfun 17689 invco 17696 inveq 17699 monsect 17708 invid 17712 invcoisoid 17717 isocoinvid 17718 funcinv 17798 fthinv 17853 fucinv 17901 invfuc 17902 2initoinv 17935 2termoinv 17942 setcinv 18015 catcisolem 18035 catciso 18036 rngcinv 20540 ringcinv 20574 rngcinvALTV 48264 ringcinvALTV 48298 isinv2 49015 thincinv 49458 |
| Copyright terms: Public domain | W3C validator |