![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isinv | Structured version Visualization version GIF version |
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
Ref | Expression |
---|---|
invfval.b | β’ π΅ = (BaseβπΆ) |
invfval.n | β’ π = (InvβπΆ) |
invfval.c | β’ (π β πΆ β Cat) |
invfval.x | β’ (π β π β π΅) |
invfval.y | β’ (π β π β π΅) |
invfval.s | β’ π = (SectβπΆ) |
Ref | Expression |
---|---|
isinv | β’ (π β (πΉ(πππ)πΊ β (πΉ(πππ)πΊ β§ πΊ(πππ)πΉ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invfval.b | . . . . 5 β’ π΅ = (BaseβπΆ) | |
2 | invfval.n | . . . . 5 β’ π = (InvβπΆ) | |
3 | invfval.c | . . . . 5 β’ (π β πΆ β Cat) | |
4 | invfval.x | . . . . 5 β’ (π β π β π΅) | |
5 | invfval.y | . . . . 5 β’ (π β π β π΅) | |
6 | invfval.s | . . . . 5 β’ π = (SectβπΆ) | |
7 | 1, 2, 3, 4, 5, 6 | invfval 17702 | . . . 4 β’ (π β (πππ) = ((πππ) β© β‘(πππ))) |
8 | 7 | breqd 5158 | . . 3 β’ (π β (πΉ(πππ)πΊ β πΉ((πππ) β© β‘(πππ))πΊ)) |
9 | brin 5199 | . . 3 β’ (πΉ((πππ) β© β‘(πππ))πΊ β (πΉ(πππ)πΊ β§ πΉβ‘(πππ)πΊ)) | |
10 | 8, 9 | bitrdi 286 | . 2 β’ (π β (πΉ(πππ)πΊ β (πΉ(πππ)πΊ β§ πΉβ‘(πππ)πΊ))) |
11 | eqid 2732 | . . . . . 6 β’ (Hom βπΆ) = (Hom βπΆ) | |
12 | eqid 2732 | . . . . . 6 β’ (compβπΆ) = (compβπΆ) | |
13 | eqid 2732 | . . . . . 6 β’ (IdβπΆ) = (IdβπΆ) | |
14 | 1, 11, 12, 13, 6, 3, 5, 4 | sectss 17695 | . . . . 5 β’ (π β (πππ) β ((π(Hom βπΆ)π) Γ (π(Hom βπΆ)π))) |
15 | relxp 5693 | . . . . 5 β’ Rel ((π(Hom βπΆ)π) Γ (π(Hom βπΆ)π)) | |
16 | relss 5779 | . . . . 5 β’ ((πππ) β ((π(Hom βπΆ)π) Γ (π(Hom βπΆ)π)) β (Rel ((π(Hom βπΆ)π) Γ (π(Hom βπΆ)π)) β Rel (πππ))) | |
17 | 14, 15, 16 | mpisyl 21 | . . . 4 β’ (π β Rel (πππ)) |
18 | relbrcnvg 6101 | . . . 4 β’ (Rel (πππ) β (πΉβ‘(πππ)πΊ β πΊ(πππ)πΉ)) | |
19 | 17, 18 | syl 17 | . . 3 β’ (π β (πΉβ‘(πππ)πΊ β πΊ(πππ)πΉ)) |
20 | 19 | anbi2d 629 | . 2 β’ (π β ((πΉ(πππ)πΊ β§ πΉβ‘(πππ)πΊ) β (πΉ(πππ)πΊ β§ πΊ(πππ)πΉ))) |
21 | 10, 20 | bitrd 278 | 1 β’ (π β (πΉ(πππ)πΊ β (πΉ(πππ)πΊ β§ πΊ(πππ)πΉ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 396 = wceq 1541 β wcel 2106 β© cin 3946 β wss 3947 class class class wbr 5147 Γ cxp 5673 β‘ccnv 5674 Rel wrel 5680 βcfv 6540 (class class class)co 7405 Basecbs 17140 Hom chom 17204 compcco 17205 Catccat 17604 Idccid 17605 Sectcsect 17687 Invcinv 17688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7408 df-oprab 7409 df-mpo 7410 df-1st 7971 df-2nd 7972 df-sect 17690 df-inv 17691 |
This theorem is referenced by: invsym 17705 invfun 17707 invco 17714 inveq 17717 monsect 17726 invid 17730 invcoisoid 17735 isocoinvid 17736 funcinv 17819 fthinv 17873 fucinv 17922 invfuc 17923 2initoinv 17956 2termoinv 17963 setcinv 18036 catcisolem 18056 catciso 18057 rngcinv 46832 rngcinvALTV 46844 ringcinv 46883 ringcinvALTV 46907 thincinv 47632 |
Copyright terms: Public domain | W3C validator |