MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinv Structured version   Visualization version   GIF version

Theorem isinv 17775
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
invfval.s 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
isinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))

Proof of Theorem isinv
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . . 5 (𝜑𝑋𝐵)
5 invfval.y . . . . 5 (𝜑𝑌𝐵)
6 invfval.s . . . . 5 𝑆 = (Sect‘𝐶)
71, 2, 3, 4, 5, 6invfval 17774 . . . 4 (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)))
87breqd 5134 . . 3 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐹((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋))𝐺))
9 brin 5175 . . 3 (𝐹((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋))𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐹(𝑌𝑆𝑋)𝐺))
108, 9bitrdi 287 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐹(𝑌𝑆𝑋)𝐺)))
11 eqid 2734 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
12 eqid 2734 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
13 eqid 2734 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
141, 11, 12, 13, 6, 3, 5, 4sectss 17767 . . . . 5 (𝜑 → (𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)))
15 relxp 5683 . . . . 5 Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))
16 relss 5771 . . . . 5 ((𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑆𝑋)))
1714, 15, 16mpisyl 21 . . . 4 (𝜑 → Rel (𝑌𝑆𝑋))
18 relbrcnvg 6103 . . . 4 (Rel (𝑌𝑆𝑋) → (𝐹(𝑌𝑆𝑋)𝐺𝐺(𝑌𝑆𝑋)𝐹))
1917, 18syl 17 . . 3 (𝜑 → (𝐹(𝑌𝑆𝑋)𝐺𝐺(𝑌𝑆𝑋)𝐹))
2019anbi2d 630 . 2 (𝜑 → ((𝐹(𝑋𝑆𝑌)𝐺𝐹(𝑌𝑆𝑋)𝐺) ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
2110, 20bitrd 279 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  cin 3930  wss 3931   class class class wbr 5123   × cxp 5663  ccnv 5664  Rel wrel 5670  cfv 6541  (class class class)co 7413  Basecbs 17229  Hom chom 17284  compcco 17285  Catccat 17678  Idccid 17679  Sectcsect 17759  Invcinv 17760
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5259  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-reu 3364  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-iun 4973  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-ov 7416  df-oprab 7417  df-mpo 7418  df-1st 7996  df-2nd 7997  df-sect 17762  df-inv 17763
This theorem is referenced by:  invsym  17777  invfun  17779  invco  17786  inveq  17789  monsect  17798  invid  17802  invcoisoid  17807  isocoinvid  17808  funcinv  17889  fthinv  17944  fucinv  17992  invfuc  17993  2initoinv  18026  2termoinv  18033  setcinv  18106  catcisolem  18126  catciso  18127  rngcinv  20605  ringcinv  20639  rngcinvALTV  48150  ringcinvALTV  48184  thincinv  49094
  Copyright terms: Public domain W3C validator