| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > isinv | Structured version Visualization version GIF version | ||
| Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.) |
| Ref | Expression |
|---|---|
| invfval.b | ⊢ 𝐵 = (Base‘𝐶) |
| invfval.n | ⊢ 𝑁 = (Inv‘𝐶) |
| invfval.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| invfval.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| invfval.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
| invfval.s | ⊢ 𝑆 = (Sect‘𝐶) |
| Ref | Expression |
|---|---|
| isinv | ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | invfval.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐶) | |
| 2 | invfval.n | . . . . 5 ⊢ 𝑁 = (Inv‘𝐶) | |
| 3 | invfval.c | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 4 | invfval.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
| 5 | invfval.y | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
| 6 | invfval.s | . . . . 5 ⊢ 𝑆 = (Sect‘𝐶) | |
| 7 | 1, 2, 3, 4, 5, 6 | invfval 17774 | . . . 4 ⊢ (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))) |
| 8 | 7 | breqd 5134 | . . 3 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ 𝐹((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))𝐺)) |
| 9 | brin 5175 | . . 3 ⊢ (𝐹((𝑋𝑆𝑌) ∩ ◡(𝑌𝑆𝑋))𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐹◡(𝑌𝑆𝑋)𝐺)) | |
| 10 | 8, 9 | bitrdi 287 | . 2 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐹◡(𝑌𝑆𝑋)𝐺))) |
| 11 | eqid 2734 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 12 | eqid 2734 | . . . . . 6 ⊢ (comp‘𝐶) = (comp‘𝐶) | |
| 13 | eqid 2734 | . . . . . 6 ⊢ (Id‘𝐶) = (Id‘𝐶) | |
| 14 | 1, 11, 12, 13, 6, 3, 5, 4 | sectss 17767 | . . . . 5 ⊢ (𝜑 → (𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))) |
| 15 | relxp 5683 | . . . . 5 ⊢ Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) | |
| 16 | relss 5771 | . . . . 5 ⊢ ((𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑆𝑋))) | |
| 17 | 14, 15, 16 | mpisyl 21 | . . . 4 ⊢ (𝜑 → Rel (𝑌𝑆𝑋)) |
| 18 | relbrcnvg 6103 | . . . 4 ⊢ (Rel (𝑌𝑆𝑋) → (𝐹◡(𝑌𝑆𝑋)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) | |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝜑 → (𝐹◡(𝑌𝑆𝑋)𝐺 ↔ 𝐺(𝑌𝑆𝑋)𝐹)) |
| 20 | 19 | anbi2d 630 | . 2 ⊢ (𝜑 → ((𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐹◡(𝑌𝑆𝑋)𝐺) ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
| 21 | 10, 20 | bitrd 279 | 1 ⊢ (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺 ∧ 𝐺(𝑌𝑆𝑋)𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5123 × cxp 5663 ◡ccnv 5664 Rel wrel 5670 ‘cfv 6541 (class class class)co 7413 Basecbs 17229 Hom chom 17284 compcco 17285 Catccat 17678 Idccid 17679 Sectcsect 17759 Invcinv 17760 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5259 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7996 df-2nd 7997 df-sect 17762 df-inv 17763 |
| This theorem is referenced by: invsym 17777 invfun 17779 invco 17786 inveq 17789 monsect 17798 invid 17802 invcoisoid 17807 isocoinvid 17808 funcinv 17889 fthinv 17944 fucinv 17992 invfuc 17993 2initoinv 18026 2termoinv 18033 setcinv 18106 catcisolem 18126 catciso 18127 rngcinv 20605 ringcinv 20639 rngcinvALTV 48150 ringcinvALTV 48184 thincinv 49094 |
| Copyright terms: Public domain | W3C validator |