MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isinv Structured version   Visualization version   GIF version

Theorem isinv 17675
Description: Value of the inverse relation. (Contributed by Mario Carneiro, 2-Jan-2017.)
Hypotheses
Ref Expression
invfval.b 𝐵 = (Base‘𝐶)
invfval.n 𝑁 = (Inv‘𝐶)
invfval.c (𝜑𝐶 ∈ Cat)
invfval.x (𝜑𝑋𝐵)
invfval.y (𝜑𝑌𝐵)
invfval.s 𝑆 = (Sect‘𝐶)
Assertion
Ref Expression
isinv (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))

Proof of Theorem isinv
StepHypRef Expression
1 invfval.b . . . . 5 𝐵 = (Base‘𝐶)
2 invfval.n . . . . 5 𝑁 = (Inv‘𝐶)
3 invfval.c . . . . 5 (𝜑𝐶 ∈ Cat)
4 invfval.x . . . . 5 (𝜑𝑋𝐵)
5 invfval.y . . . . 5 (𝜑𝑌𝐵)
6 invfval.s . . . . 5 𝑆 = (Sect‘𝐶)
71, 2, 3, 4, 5, 6invfval 17674 . . . 4 (𝜑 → (𝑋𝑁𝑌) = ((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋)))
87breqd 5106 . . 3 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺𝐹((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋))𝐺))
9 brin 5147 . . 3 (𝐹((𝑋𝑆𝑌) ∩ (𝑌𝑆𝑋))𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐹(𝑌𝑆𝑋)𝐺))
108, 9bitrdi 287 . 2 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐹(𝑌𝑆𝑋)𝐺)))
11 eqid 2733 . . . . . 6 (Hom ‘𝐶) = (Hom ‘𝐶)
12 eqid 2733 . . . . . 6 (comp‘𝐶) = (comp‘𝐶)
13 eqid 2733 . . . . . 6 (Id‘𝐶) = (Id‘𝐶)
141, 11, 12, 13, 6, 3, 5, 4sectss 17667 . . . . 5 (𝜑 → (𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)))
15 relxp 5639 . . . . 5 Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌))
16 relss 5728 . . . . 5 ((𝑌𝑆𝑋) ⊆ ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → (Rel ((𝑌(Hom ‘𝐶)𝑋) × (𝑋(Hom ‘𝐶)𝑌)) → Rel (𝑌𝑆𝑋)))
1714, 15, 16mpisyl 21 . . . 4 (𝜑 → Rel (𝑌𝑆𝑋))
18 relbrcnvg 6061 . . . 4 (Rel (𝑌𝑆𝑋) → (𝐹(𝑌𝑆𝑋)𝐺𝐺(𝑌𝑆𝑋)𝐹))
1917, 18syl 17 . . 3 (𝜑 → (𝐹(𝑌𝑆𝑋)𝐺𝐺(𝑌𝑆𝑋)𝐹))
2019anbi2d 630 . 2 (𝜑 → ((𝐹(𝑋𝑆𝑌)𝐺𝐹(𝑌𝑆𝑋)𝐺) ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
2110, 20bitrd 279 1 (𝜑 → (𝐹(𝑋𝑁𝑌)𝐺 ↔ (𝐹(𝑋𝑆𝑌)𝐺𝐺(𝑌𝑆𝑋)𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  cin 3897  wss 3898   class class class wbr 5095   × cxp 5619  ccnv 5620  Rel wrel 5626  cfv 6489  (class class class)co 7355  Basecbs 17127  Hom chom 17179  compcco 17180  Catccat 17578  Idccid 17579  Sectcsect 17659  Invcinv 17660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-ov 7358  df-oprab 7359  df-mpo 7360  df-1st 7930  df-2nd 7931  df-sect 17662  df-inv 17663
This theorem is referenced by:  invsym  17677  invfun  17679  invco  17686  inveq  17689  monsect  17698  invid  17702  invcoisoid  17707  isocoinvid  17708  funcinv  17788  fthinv  17843  fucinv  17891  invfuc  17892  2initoinv  17925  2termoinv  17932  setcinv  18005  catcisolem  18025  catciso  18026  rngcinv  20561  ringcinv  20595  rngcinvALTV  48438  ringcinvALTV  48472  isinv2  49187  thincinv  49630
  Copyright terms: Public domain W3C validator