Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimrel Structured version   Visualization version   GIF version

Theorem xlimrel 45835
Description: The limit on extended reals is a relation. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Assertion
Ref Expression
xlimrel Rel ~~>*

Proof of Theorem xlimrel
StepHypRef Expression
1 lmrel 23238 . 2 Rel (⇝𝑡‘(ordTop‘ ≤ ))
2 df-xlim 45834 . . 3 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
32releqi 5787 . 2 (Rel ~~>* ↔ Rel (⇝𝑡‘(ordTop‘ ≤ )))
41, 3mpbir 231 1 Rel ~~>*
Colors of variables: wff setvar class
Syntax hints:  Rel wrel 5690  cfv 6561  cle 11296  ordTopcordt 17544  𝑡clm 23234  ~~>*clsxlim 45833
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fv 6569  df-lm 23237  df-xlim 45834
This theorem is referenced by:  dmclimxlim  45866  xlimresdm  45874
  Copyright terms: Public domain W3C validator