Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xlimrel Structured version   Visualization version   GIF version

Theorem xlimrel 45857
Description: The limit on extended reals is a relation. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
Assertion
Ref Expression
xlimrel Rel ~~>*

Proof of Theorem xlimrel
StepHypRef Expression
1 lmrel 23143 . 2 Rel (⇝𝑡‘(ordTop‘ ≤ ))
2 df-xlim 45856 . . 3 ~~>* = (⇝𝑡‘(ordTop‘ ≤ ))
32releqi 5718 . 2 (Rel ~~>* ↔ Rel (⇝𝑡‘(ordTop‘ ≤ )))
41, 3mpbir 231 1 Rel ~~>*
Colors of variables: wff setvar class
Syntax hints:  Rel wrel 5621  cfv 6481  cle 11144  ordTopcordt 17400  𝑡clm 23139  ~~>*clsxlim 45855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fv 6489  df-lm 23142  df-xlim 45856
This theorem is referenced by:  dmclimxlim  45888  xlimresdm  45896
  Copyright terms: Public domain W3C validator