| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > oyoncl | Structured version Visualization version GIF version | ||
| Description: The opposite Yoneda embedding is a functor from oppCat‘𝐶 to the functor category 𝐶 → SetCat. (Contributed by Mario Carneiro, 26-Jan-2017.) |
| Ref | Expression |
|---|---|
| oyoncl.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| oyoncl.y | ⊢ 𝑌 = (Yon‘𝑂) |
| oyoncl.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
| oyoncl.s | ⊢ 𝑆 = (SetCat‘𝑈) |
| oyoncl.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| oyoncl.h | ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) |
| oyoncl.q | ⊢ 𝑄 = (𝐶 FuncCat 𝑆) |
| Ref | Expression |
|---|---|
| oyoncl | ⊢ (𝜑 → 𝑌 ∈ (𝑂 Func 𝑄)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oyoncl.y | . . 3 ⊢ 𝑌 = (Yon‘𝑂) | |
| 2 | oyoncl.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
| 3 | oyoncl.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 4 | 3 | oppccat 17628 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
| 5 | 2, 4 | syl 17 | . . 3 ⊢ (𝜑 → 𝑂 ∈ Cat) |
| 6 | eqid 2731 | . . 3 ⊢ (oppCat‘𝑂) = (oppCat‘𝑂) | |
| 7 | oyoncl.s | . . 3 ⊢ 𝑆 = (SetCat‘𝑈) | |
| 8 | eqid 2731 | . . 3 ⊢ ((oppCat‘𝑂) FuncCat 𝑆) = ((oppCat‘𝑂) FuncCat 𝑆) | |
| 9 | oyoncl.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 10 | eqid 2731 | . . . . . . 7 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
| 11 | 3, 10 | oppchomf 17626 | . . . . . 6 ⊢ tpos (Homf ‘𝐶) = (Homf ‘𝑂) |
| 12 | 11 | rneqi 5876 | . . . . 5 ⊢ ran tpos (Homf ‘𝐶) = ran (Homf ‘𝑂) |
| 13 | relxp 5632 | . . . . . . 7 ⊢ Rel ((Base‘𝐶) × (Base‘𝐶)) | |
| 14 | eqid 2731 | . . . . . . . . . 10 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 15 | 10, 14 | homffn 17599 | . . . . . . . . 9 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
| 16 | 15 | fndmi 6585 | . . . . . . . 8 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
| 17 | 16 | releqi 5717 | . . . . . . 7 ⊢ (Rel dom (Homf ‘𝐶) ↔ Rel ((Base‘𝐶) × (Base‘𝐶))) |
| 18 | 13, 17 | mpbir 231 | . . . . . 6 ⊢ Rel dom (Homf ‘𝐶) |
| 19 | rntpos 8169 | . . . . . 6 ⊢ (Rel dom (Homf ‘𝐶) → ran tpos (Homf ‘𝐶) = ran (Homf ‘𝐶)) | |
| 20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ ran tpos (Homf ‘𝐶) = ran (Homf ‘𝐶) |
| 21 | 12, 20 | eqtr3i 2756 | . . . 4 ⊢ ran (Homf ‘𝑂) = ran (Homf ‘𝐶) |
| 22 | oyoncl.h | . . . 4 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) | |
| 23 | 21, 22 | eqsstrid 3968 | . . 3 ⊢ (𝜑 → ran (Homf ‘𝑂) ⊆ 𝑈) |
| 24 | 1, 5, 6, 7, 8, 9, 23 | yoncl 18168 | . 2 ⊢ (𝜑 → 𝑌 ∈ (𝑂 Func ((oppCat‘𝑂) FuncCat 𝑆))) |
| 25 | oyoncl.q | . . . 4 ⊢ 𝑄 = (𝐶 FuncCat 𝑆) | |
| 26 | 3 | 2oppchomf 17630 | . . . . . 6 ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
| 27 | 26 | a1i 11 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂))) |
| 28 | 3 | 2oppccomf 17631 | . . . . . 6 ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) |
| 29 | 28 | a1i 11 | . . . . 5 ⊢ (𝜑 → (compf‘𝐶) = (compf‘(oppCat‘𝑂))) |
| 30 | eqidd 2732 | . . . . 5 ⊢ (𝜑 → (Homf ‘𝑆) = (Homf ‘𝑆)) | |
| 31 | eqidd 2732 | . . . . 5 ⊢ (𝜑 → (compf‘𝑆) = (compf‘𝑆)) | |
| 32 | 6 | oppccat 17628 | . . . . . 6 ⊢ (𝑂 ∈ Cat → (oppCat‘𝑂) ∈ Cat) |
| 33 | 5, 32 | syl 17 | . . . . 5 ⊢ (𝜑 → (oppCat‘𝑂) ∈ Cat) |
| 34 | 7 | setccat 17992 | . . . . . 6 ⊢ (𝑈 ∈ 𝑉 → 𝑆 ∈ Cat) |
| 35 | 9, 34 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ Cat) |
| 36 | 27, 29, 30, 31, 2, 33, 35, 35 | fucpropd 17887 | . . . 4 ⊢ (𝜑 → (𝐶 FuncCat 𝑆) = ((oppCat‘𝑂) FuncCat 𝑆)) |
| 37 | 25, 36 | eqtrid 2778 | . . 3 ⊢ (𝜑 → 𝑄 = ((oppCat‘𝑂) FuncCat 𝑆)) |
| 38 | 37 | oveq2d 7362 | . 2 ⊢ (𝜑 → (𝑂 Func 𝑄) = (𝑂 Func ((oppCat‘𝑂) FuncCat 𝑆))) |
| 39 | 24, 38 | eleqtrrd 2834 | 1 ⊢ (𝜑 → 𝑌 ∈ (𝑂 Func 𝑄)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 × cxp 5612 dom cdm 5614 ran crn 5615 Rel wrel 5619 ‘cfv 6481 (class class class)co 7346 tpos ctpos 8155 Basecbs 17120 Catccat 17570 Homf chomf 17572 compfccomf 17573 oppCatcoppc 17617 Func cfunc 17761 FuncCat cfuc 17852 SetCatcsetc 17982 Yoncyon 18155 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-ixp 8822 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-7 12193 df-8 12194 df-9 12195 df-n0 12382 df-z 12469 df-dec 12589 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-hom 17185 df-cco 17186 df-cat 17574 df-cid 17575 df-homf 17576 df-comf 17577 df-oppc 17618 df-func 17765 df-nat 17853 df-fuc 17854 df-setc 17983 df-xpc 18078 df-curf 18120 df-hof 18156 df-yon 18157 |
| This theorem is referenced by: oyon1cl 18177 |
| Copyright terms: Public domain | W3C validator |