MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oyoncl Structured version   Visualization version   GIF version

Theorem oyoncl 18176
Description: The opposite Yoneda embedding is a functor from oppCat‘𝐶 to the functor category 𝐶 → SetCat. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
oyoncl.o 𝑂 = (oppCat‘𝐶)
oyoncl.y 𝑌 = (Yon‘𝑂)
oyoncl.c (𝜑𝐶 ∈ Cat)
oyoncl.s 𝑆 = (SetCat‘𝑈)
oyoncl.u (𝜑𝑈𝑉)
oyoncl.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
oyoncl.q 𝑄 = (𝐶 FuncCat 𝑆)
Assertion
Ref Expression
oyoncl (𝜑𝑌 ∈ (𝑂 Func 𝑄))

Proof of Theorem oyoncl
StepHypRef Expression
1 oyoncl.y . . 3 𝑌 = (Yon‘𝑂)
2 oyoncl.c . . . 4 (𝜑𝐶 ∈ Cat)
3 oyoncl.o . . . . 5 𝑂 = (oppCat‘𝐶)
43oppccat 17628 . . . 4 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
52, 4syl 17 . . 3 (𝜑𝑂 ∈ Cat)
6 eqid 2729 . . 3 (oppCat‘𝑂) = (oppCat‘𝑂)
7 oyoncl.s . . 3 𝑆 = (SetCat‘𝑈)
8 eqid 2729 . . 3 ((oppCat‘𝑂) FuncCat 𝑆) = ((oppCat‘𝑂) FuncCat 𝑆)
9 oyoncl.u . . 3 (𝜑𝑈𝑉)
10 eqid 2729 . . . . . . 7 (Homf𝐶) = (Homf𝐶)
113, 10oppchomf 17626 . . . . . 6 tpos (Homf𝐶) = (Homf𝑂)
1211rneqi 5879 . . . . 5 ran tpos (Homf𝐶) = ran (Homf𝑂)
13 relxp 5637 . . . . . . 7 Rel ((Base‘𝐶) × (Base‘𝐶))
14 eqid 2729 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
1510, 14homffn 17599 . . . . . . . . 9 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
1615fndmi 6586 . . . . . . . 8 dom (Homf𝐶) = ((Base‘𝐶) × (Base‘𝐶))
1716releqi 5721 . . . . . . 7 (Rel dom (Homf𝐶) ↔ Rel ((Base‘𝐶) × (Base‘𝐶)))
1813, 17mpbir 231 . . . . . 6 Rel dom (Homf𝐶)
19 rntpos 8172 . . . . . 6 (Rel dom (Homf𝐶) → ran tpos (Homf𝐶) = ran (Homf𝐶))
2018, 19ax-mp 5 . . . . 5 ran tpos (Homf𝐶) = ran (Homf𝐶)
2112, 20eqtr3i 2754 . . . 4 ran (Homf𝑂) = ran (Homf𝐶)
22 oyoncl.h . . . 4 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
2321, 22eqsstrid 3974 . . 3 (𝜑 → ran (Homf𝑂) ⊆ 𝑈)
241, 5, 6, 7, 8, 9, 23yoncl 18168 . 2 (𝜑𝑌 ∈ (𝑂 Func ((oppCat‘𝑂) FuncCat 𝑆)))
25 oyoncl.q . . . 4 𝑄 = (𝐶 FuncCat 𝑆)
2632oppchomf 17630 . . . . . 6 (Homf𝐶) = (Homf ‘(oppCat‘𝑂))
2726a1i 11 . . . . 5 (𝜑 → (Homf𝐶) = (Homf ‘(oppCat‘𝑂)))
2832oppccomf 17631 . . . . . 6 (compf𝐶) = (compf‘(oppCat‘𝑂))
2928a1i 11 . . . . 5 (𝜑 → (compf𝐶) = (compf‘(oppCat‘𝑂)))
30 eqidd 2730 . . . . 5 (𝜑 → (Homf𝑆) = (Homf𝑆))
31 eqidd 2730 . . . . 5 (𝜑 → (compf𝑆) = (compf𝑆))
326oppccat 17628 . . . . . 6 (𝑂 ∈ Cat → (oppCat‘𝑂) ∈ Cat)
335, 32syl 17 . . . . 5 (𝜑 → (oppCat‘𝑂) ∈ Cat)
347setccat 17992 . . . . . 6 (𝑈𝑉𝑆 ∈ Cat)
359, 34syl 17 . . . . 5 (𝜑𝑆 ∈ Cat)
3627, 29, 30, 31, 2, 33, 35, 35fucpropd 17887 . . . 4 (𝜑 → (𝐶 FuncCat 𝑆) = ((oppCat‘𝑂) FuncCat 𝑆))
3725, 36eqtrid 2776 . . 3 (𝜑𝑄 = ((oppCat‘𝑂) FuncCat 𝑆))
3837oveq2d 7365 . 2 (𝜑 → (𝑂 Func 𝑄) = (𝑂 Func ((oppCat‘𝑂) FuncCat 𝑆)))
3924, 38eleqtrrd 2831 1 (𝜑𝑌 ∈ (𝑂 Func 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  wss 3903   × cxp 5617  dom cdm 5619  ran crn 5620  Rel wrel 5624  cfv 6482  (class class class)co 7349  tpos ctpos 8158  Basecbs 17120  Catccat 17570  Homf chomf 17572  compfccomf 17573  oppCatcoppc 17617   Func cfunc 17761   FuncCat cfuc 17852  SetCatcsetc 17982  Yoncyon 18155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-tpos 8159  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-hom 17185  df-cco 17186  df-cat 17574  df-cid 17575  df-homf 17576  df-comf 17577  df-oppc 17618  df-func 17765  df-nat 17853  df-fuc 17854  df-setc 17983  df-xpc 18078  df-curf 18120  df-hof 18156  df-yon 18157
This theorem is referenced by:  oyon1cl  18177
  Copyright terms: Public domain W3C validator