![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oppchofcl | Structured version Visualization version GIF version |
Description: Closure of the opposite Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
Ref | Expression |
---|---|
oppchofcl.o | ⊢ 𝑂 = (oppCat‘𝐶) |
oppchofcl.m | ⊢ 𝑀 = (HomF‘𝑂) |
oppchofcl.d | ⊢ 𝐷 = (SetCat‘𝑈) |
oppchofcl.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
oppchofcl.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
oppchofcl.h | ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) |
Ref | Expression |
---|---|
oppchofcl | ⊢ (𝜑 → 𝑀 ∈ ((𝐶 ×c 𝑂) Func 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppchofcl.m | . . 3 ⊢ 𝑀 = (HomF‘𝑂) | |
2 | eqid 2795 | . . 3 ⊢ (oppCat‘𝑂) = (oppCat‘𝑂) | |
3 | oppchofcl.d | . . 3 ⊢ 𝐷 = (SetCat‘𝑈) | |
4 | oppchofcl.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | oppchofcl.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
6 | 5 | oppccat 16821 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑂 ∈ Cat) |
8 | oppchofcl.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
9 | eqid 2795 | . . . . . . 7 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
10 | 5, 9 | oppchomf 16819 | . . . . . 6 ⊢ tpos (Homf ‘𝐶) = (Homf ‘𝑂) |
11 | 10 | rneqi 5689 | . . . . 5 ⊢ ran tpos (Homf ‘𝐶) = ran (Homf ‘𝑂) |
12 | relxp 5461 | . . . . . . 7 ⊢ Rel ((Base‘𝐶) × (Base‘𝐶)) | |
13 | eqid 2795 | . . . . . . . . . 10 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
14 | 9, 13 | homffn 16792 | . . . . . . . . 9 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
15 | fndm 6325 | . . . . . . . . 9 ⊢ ((Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) → dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶))) | |
16 | 14, 15 | ax-mp 5 | . . . . . . . 8 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
17 | 16 | releqi 5538 | . . . . . . 7 ⊢ (Rel dom (Homf ‘𝐶) ↔ Rel ((Base‘𝐶) × (Base‘𝐶))) |
18 | 12, 17 | mpbir 232 | . . . . . 6 ⊢ Rel dom (Homf ‘𝐶) |
19 | rntpos 7756 | . . . . . 6 ⊢ (Rel dom (Homf ‘𝐶) → ran tpos (Homf ‘𝐶) = ran (Homf ‘𝐶)) | |
20 | 18, 19 | ax-mp 5 | . . . . 5 ⊢ ran tpos (Homf ‘𝐶) = ran (Homf ‘𝐶) |
21 | 11, 20 | eqtr3i 2821 | . . . 4 ⊢ ran (Homf ‘𝑂) = ran (Homf ‘𝐶) |
22 | oppchofcl.h | . . . 4 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) | |
23 | 21, 22 | eqsstrid 3936 | . . 3 ⊢ (𝜑 → ran (Homf ‘𝑂) ⊆ 𝑈) |
24 | 1, 2, 3, 7, 8, 23 | hofcl 17338 | . 2 ⊢ (𝜑 → 𝑀 ∈ (((oppCat‘𝑂) ×c 𝑂) Func 𝐷)) |
25 | 5 | 2oppchomf 16823 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
26 | 25 | a1i 11 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂))) |
27 | 5 | 2oppccomf 16824 | . . . . 5 ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) |
28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → (compf‘𝐶) = (compf‘(oppCat‘𝑂))) |
29 | eqidd 2796 | . . . 4 ⊢ (𝜑 → (Homf ‘𝑂) = (Homf ‘𝑂)) | |
30 | eqidd 2796 | . . . 4 ⊢ (𝜑 → (compf‘𝑂) = (compf‘𝑂)) | |
31 | 2 | oppccat 16821 | . . . . 5 ⊢ (𝑂 ∈ Cat → (oppCat‘𝑂) ∈ Cat) |
32 | 7, 31 | syl 17 | . . . 4 ⊢ (𝜑 → (oppCat‘𝑂) ∈ Cat) |
33 | 26, 28, 29, 30, 4, 32, 7, 7 | xpcpropd 17287 | . . 3 ⊢ (𝜑 → (𝐶 ×c 𝑂) = ((oppCat‘𝑂) ×c 𝑂)) |
34 | 33 | oveq1d 7031 | . 2 ⊢ (𝜑 → ((𝐶 ×c 𝑂) Func 𝐷) = (((oppCat‘𝑂) ×c 𝑂) Func 𝐷)) |
35 | 24, 34 | eleqtrrd 2886 | 1 ⊢ (𝜑 → 𝑀 ∈ ((𝐶 ×c 𝑂) Func 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1522 ∈ wcel 2081 ⊆ wss 3859 × cxp 5441 dom cdm 5443 ran crn 5444 Rel wrel 5448 Fn wfn 6220 ‘cfv 6225 (class class class)co 7016 tpos ctpos 7742 Basecbs 16312 Catccat 16764 Homf chomf 16766 compfccomf 16767 oppCatcoppc 16810 Func cfunc 16953 SetCatcsetc 17164 ×c cxpc 17247 HomFchof 17327 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-rep 5081 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 ax-cnex 10439 ax-resscn 10440 ax-1cn 10441 ax-icn 10442 ax-addcl 10443 ax-addrcl 10444 ax-mulcl 10445 ax-mulrcl 10446 ax-mulcom 10447 ax-addass 10448 ax-mulass 10449 ax-distr 10450 ax-i2m1 10451 ax-1ne0 10452 ax-1rid 10453 ax-rnegex 10454 ax-rrecex 10455 ax-cnre 10456 ax-pre-lttri 10457 ax-pre-lttrn 10458 ax-pre-ltadd 10459 ax-pre-mulgt0 10460 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3or 1081 df-3an 1082 df-tru 1525 df-fal 1535 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-nel 3091 df-ral 3110 df-rex 3111 df-reu 3112 df-rmo 3113 df-rab 3114 df-v 3439 df-sbc 3707 df-csb 3812 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-pss 3876 df-nul 4212 df-if 4382 df-pw 4455 df-sn 4473 df-pr 4475 df-tp 4477 df-op 4479 df-uni 4746 df-int 4783 df-iun 4827 df-br 4963 df-opab 5025 df-mpt 5042 df-tr 5064 df-id 5348 df-eprel 5353 df-po 5362 df-so 5363 df-fr 5402 df-we 5404 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-pred 6023 df-ord 6069 df-on 6070 df-lim 6071 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-riota 6977 df-ov 7019 df-oprab 7020 df-mpo 7021 df-om 7437 df-1st 7545 df-2nd 7546 df-tpos 7743 df-wrecs 7798 df-recs 7860 df-rdg 7898 df-1o 7953 df-oadd 7957 df-er 8139 df-map 8258 df-ixp 8311 df-en 8358 df-dom 8359 df-sdom 8360 df-fin 8361 df-pnf 10523 df-mnf 10524 df-xr 10525 df-ltxr 10526 df-le 10527 df-sub 10719 df-neg 10720 df-nn 11487 df-2 11548 df-3 11549 df-4 11550 df-5 11551 df-6 11552 df-7 11553 df-8 11554 df-9 11555 df-n0 11746 df-z 11830 df-dec 11948 df-uz 12094 df-fz 12743 df-struct 16314 df-ndx 16315 df-slot 16316 df-base 16318 df-sets 16319 df-hom 16418 df-cco 16419 df-cat 16768 df-cid 16769 df-homf 16770 df-comf 16771 df-oppc 16811 df-func 16957 df-setc 17165 df-xpc 17251 df-hof 17329 |
This theorem is referenced by: yoncl 17341 yon11 17343 yon12 17344 yon2 17345 yonpropd 17347 |
Copyright terms: Public domain | W3C validator |