Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oppchofcl | Structured version Visualization version GIF version |
Description: Closure of the opposite Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.) |
Ref | Expression |
---|---|
oppchofcl.o | ⊢ 𝑂 = (oppCat‘𝐶) |
oppchofcl.m | ⊢ 𝑀 = (HomF‘𝑂) |
oppchofcl.d | ⊢ 𝐷 = (SetCat‘𝑈) |
oppchofcl.c | ⊢ (𝜑 → 𝐶 ∈ Cat) |
oppchofcl.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
oppchofcl.h | ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) |
Ref | Expression |
---|---|
oppchofcl | ⊢ (𝜑 → 𝑀 ∈ ((𝐶 ×c 𝑂) Func 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oppchofcl.m | . . 3 ⊢ 𝑀 = (HomF‘𝑂) | |
2 | eqid 2758 | . . 3 ⊢ (oppCat‘𝑂) = (oppCat‘𝑂) | |
3 | oppchofcl.d | . . 3 ⊢ 𝐷 = (SetCat‘𝑈) | |
4 | oppchofcl.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ Cat) | |
5 | oppchofcl.o | . . . . 5 ⊢ 𝑂 = (oppCat‘𝐶) | |
6 | 5 | oppccat 17055 | . . . 4 ⊢ (𝐶 ∈ Cat → 𝑂 ∈ Cat) |
7 | 4, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝑂 ∈ Cat) |
8 | oppchofcl.u | . . 3 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
9 | eqid 2758 | . . . . . . 7 ⊢ (Homf ‘𝐶) = (Homf ‘𝐶) | |
10 | 5, 9 | oppchomf 17053 | . . . . . 6 ⊢ tpos (Homf ‘𝐶) = (Homf ‘𝑂) |
11 | 10 | rneqi 5782 | . . . . 5 ⊢ ran tpos (Homf ‘𝐶) = ran (Homf ‘𝑂) |
12 | relxp 5545 | . . . . . . 7 ⊢ Rel ((Base‘𝐶) × (Base‘𝐶)) | |
13 | eqid 2758 | . . . . . . . . . 10 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
14 | 9, 13 | homffn 17026 | . . . . . . . . 9 ⊢ (Homf ‘𝐶) Fn ((Base‘𝐶) × (Base‘𝐶)) |
15 | 14 | fndmi 6441 | . . . . . . . 8 ⊢ dom (Homf ‘𝐶) = ((Base‘𝐶) × (Base‘𝐶)) |
16 | 15 | releqi 5625 | . . . . . . 7 ⊢ (Rel dom (Homf ‘𝐶) ↔ Rel ((Base‘𝐶) × (Base‘𝐶))) |
17 | 12, 16 | mpbir 234 | . . . . . 6 ⊢ Rel dom (Homf ‘𝐶) |
18 | rntpos 7920 | . . . . . 6 ⊢ (Rel dom (Homf ‘𝐶) → ran tpos (Homf ‘𝐶) = ran (Homf ‘𝐶)) | |
19 | 17, 18 | ax-mp 5 | . . . . 5 ⊢ ran tpos (Homf ‘𝐶) = ran (Homf ‘𝐶) |
20 | 11, 19 | eqtr3i 2783 | . . . 4 ⊢ ran (Homf ‘𝑂) = ran (Homf ‘𝐶) |
21 | oppchofcl.h | . . . 4 ⊢ (𝜑 → ran (Homf ‘𝐶) ⊆ 𝑈) | |
22 | 20, 21 | eqsstrid 3942 | . . 3 ⊢ (𝜑 → ran (Homf ‘𝑂) ⊆ 𝑈) |
23 | 1, 2, 3, 7, 8, 22 | hofcl 17580 | . 2 ⊢ (𝜑 → 𝑀 ∈ (((oppCat‘𝑂) ×c 𝑂) Func 𝐷)) |
24 | 5 | 2oppchomf 17057 | . . . . 5 ⊢ (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂)) |
25 | 24 | a1i 11 | . . . 4 ⊢ (𝜑 → (Homf ‘𝐶) = (Homf ‘(oppCat‘𝑂))) |
26 | 5 | 2oppccomf 17058 | . . . . 5 ⊢ (compf‘𝐶) = (compf‘(oppCat‘𝑂)) |
27 | 26 | a1i 11 | . . . 4 ⊢ (𝜑 → (compf‘𝐶) = (compf‘(oppCat‘𝑂))) |
28 | eqidd 2759 | . . . 4 ⊢ (𝜑 → (Homf ‘𝑂) = (Homf ‘𝑂)) | |
29 | eqidd 2759 | . . . 4 ⊢ (𝜑 → (compf‘𝑂) = (compf‘𝑂)) | |
30 | 2 | oppccat 17055 | . . . . 5 ⊢ (𝑂 ∈ Cat → (oppCat‘𝑂) ∈ Cat) |
31 | 7, 30 | syl 17 | . . . 4 ⊢ (𝜑 → (oppCat‘𝑂) ∈ Cat) |
32 | 25, 27, 28, 29, 4, 31, 7, 7 | xpcpropd 17529 | . . 3 ⊢ (𝜑 → (𝐶 ×c 𝑂) = ((oppCat‘𝑂) ×c 𝑂)) |
33 | 32 | oveq1d 7170 | . 2 ⊢ (𝜑 → ((𝐶 ×c 𝑂) Func 𝐷) = (((oppCat‘𝑂) ×c 𝑂) Func 𝐷)) |
34 | 23, 33 | eleqtrrd 2855 | 1 ⊢ (𝜑 → 𝑀 ∈ ((𝐶 ×c 𝑂) Func 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 × cxp 5525 dom cdm 5527 ran crn 5528 Rel wrel 5532 ‘cfv 6339 (class class class)co 7155 tpos ctpos 7906 Basecbs 16546 Catccat 16998 Homf chomf 17000 compfccomf 17001 oppCatcoppc 17044 Func cfunc 17188 SetCatcsetc 17406 ×c cxpc 17489 HomFchof 17569 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-om 7585 df-1st 7698 df-2nd 7699 df-tpos 7907 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-map 8423 df-ixp 8485 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-3 11743 df-4 11744 df-5 11745 df-6 11746 df-7 11747 df-8 11748 df-9 11749 df-n0 11940 df-z 12026 df-dec 12143 df-uz 12288 df-fz 12945 df-struct 16548 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-hom 16652 df-cco 16653 df-cat 17002 df-cid 17003 df-homf 17004 df-comf 17005 df-oppc 17045 df-func 17192 df-setc 17407 df-xpc 17493 df-hof 17571 |
This theorem is referenced by: yoncl 17583 yon11 17585 yon12 17586 yon2 17587 yonpropd 17589 |
Copyright terms: Public domain | W3C validator |