MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oppchofcl Structured version   Visualization version   GIF version

Theorem oppchofcl 18272
Description: Closure of the opposite Hom functor. (Contributed by Mario Carneiro, 17-Jan-2017.)
Hypotheses
Ref Expression
oppchofcl.o 𝑂 = (oppCat‘𝐶)
oppchofcl.m 𝑀 = (HomF𝑂)
oppchofcl.d 𝐷 = (SetCat‘𝑈)
oppchofcl.c (𝜑𝐶 ∈ Cat)
oppchofcl.u (𝜑𝑈𝑉)
oppchofcl.h (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
Assertion
Ref Expression
oppchofcl (𝜑𝑀 ∈ ((𝐶 ×c 𝑂) Func 𝐷))

Proof of Theorem oppchofcl
StepHypRef Expression
1 oppchofcl.m . . 3 𝑀 = (HomF𝑂)
2 eqid 2735 . . 3 (oppCat‘𝑂) = (oppCat‘𝑂)
3 oppchofcl.d . . 3 𝐷 = (SetCat‘𝑈)
4 oppchofcl.c . . . 4 (𝜑𝐶 ∈ Cat)
5 oppchofcl.o . . . . 5 𝑂 = (oppCat‘𝐶)
65oppccat 17734 . . . 4 (𝐶 ∈ Cat → 𝑂 ∈ Cat)
74, 6syl 17 . . 3 (𝜑𝑂 ∈ Cat)
8 oppchofcl.u . . 3 (𝜑𝑈𝑉)
9 eqid 2735 . . . . . . 7 (Homf𝐶) = (Homf𝐶)
105, 9oppchomf 17732 . . . . . 6 tpos (Homf𝐶) = (Homf𝑂)
1110rneqi 5917 . . . . 5 ran tpos (Homf𝐶) = ran (Homf𝑂)
12 relxp 5672 . . . . . . 7 Rel ((Base‘𝐶) × (Base‘𝐶))
13 eqid 2735 . . . . . . . . . 10 (Base‘𝐶) = (Base‘𝐶)
149, 13homffn 17705 . . . . . . . . 9 (Homf𝐶) Fn ((Base‘𝐶) × (Base‘𝐶))
1514fndmi 6642 . . . . . . . 8 dom (Homf𝐶) = ((Base‘𝐶) × (Base‘𝐶))
1615releqi 5756 . . . . . . 7 (Rel dom (Homf𝐶) ↔ Rel ((Base‘𝐶) × (Base‘𝐶)))
1712, 16mpbir 231 . . . . . 6 Rel dom (Homf𝐶)
18 rntpos 8238 . . . . . 6 (Rel dom (Homf𝐶) → ran tpos (Homf𝐶) = ran (Homf𝐶))
1917, 18ax-mp 5 . . . . 5 ran tpos (Homf𝐶) = ran (Homf𝐶)
2011, 19eqtr3i 2760 . . . 4 ran (Homf𝑂) = ran (Homf𝐶)
21 oppchofcl.h . . . 4 (𝜑 → ran (Homf𝐶) ⊆ 𝑈)
2220, 21eqsstrid 3997 . . 3 (𝜑 → ran (Homf𝑂) ⊆ 𝑈)
231, 2, 3, 7, 8, 22hofcl 18271 . 2 (𝜑𝑀 ∈ (((oppCat‘𝑂) ×c 𝑂) Func 𝐷))
2452oppchomf 17736 . . . . 5 (Homf𝐶) = (Homf ‘(oppCat‘𝑂))
2524a1i 11 . . . 4 (𝜑 → (Homf𝐶) = (Homf ‘(oppCat‘𝑂)))
2652oppccomf 17737 . . . . 5 (compf𝐶) = (compf‘(oppCat‘𝑂))
2726a1i 11 . . . 4 (𝜑 → (compf𝐶) = (compf‘(oppCat‘𝑂)))
28 eqidd 2736 . . . 4 (𝜑 → (Homf𝑂) = (Homf𝑂))
29 eqidd 2736 . . . 4 (𝜑 → (compf𝑂) = (compf𝑂))
302oppccat 17734 . . . . 5 (𝑂 ∈ Cat → (oppCat‘𝑂) ∈ Cat)
317, 30syl 17 . . . 4 (𝜑 → (oppCat‘𝑂) ∈ Cat)
3225, 27, 28, 29, 4, 31, 7, 7xpcpropd 18220 . . 3 (𝜑 → (𝐶 ×c 𝑂) = ((oppCat‘𝑂) ×c 𝑂))
3332oveq1d 7420 . 2 (𝜑 → ((𝐶 ×c 𝑂) Func 𝐷) = (((oppCat‘𝑂) ×c 𝑂) Func 𝐷))
3423, 33eleqtrrd 2837 1 (𝜑𝑀 ∈ ((𝐶 ×c 𝑂) Func 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wss 3926   × cxp 5652  dom cdm 5654  ran crn 5655  Rel wrel 5659  cfv 6531  (class class class)co 7405  tpos ctpos 8224  Basecbs 17228  Catccat 17676  Homf chomf 17678  compfccomf 17679  oppCatcoppc 17723   Func cfunc 17867  SetCatcsetc 18088   ×c cxpc 18180  HomFchof 18260
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-hom 17295  df-cco 17296  df-cat 17680  df-cid 17681  df-homf 17682  df-comf 17683  df-oppc 17724  df-func 17871  df-setc 18089  df-xpc 18184  df-hof 18262
This theorem is referenced by:  yoncl  18274  yon11  18276  yon12  18277  yon2  18278  yonpropd  18280
  Copyright terms: Public domain W3C validator