| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0rest | Structured version Visualization version GIF version | ||
| Description: Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| 0rest | ⊢ (∅ ↾t 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5265 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | restval 17396 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) |
| 4 | mpt0 6663 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ | |
| 5 | 4 | rneqi 5904 | . . . 4 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ran ∅ |
| 6 | rn0 5892 | . . . 4 ⊢ ran ∅ = ∅ | |
| 7 | 5, 6 | eqtri 2753 | . . 3 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ |
| 8 | 3, 7 | eqtrdi 2781 | . 2 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
| 9 | relxp 5659 | . . . 4 ⊢ Rel (V × V) | |
| 10 | restfn 17394 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
| 11 | 10 | fndmi 6625 | . . . . 5 ⊢ dom ↾t = (V × V) |
| 12 | 11 | releqi 5743 | . . . 4 ⊢ (Rel dom ↾t ↔ Rel (V × V)) |
| 13 | 9, 12 | mpbir 231 | . . 3 ⊢ Rel dom ↾t |
| 14 | 13 | ovprc2 7430 | . 2 ⊢ (¬ 𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
| 15 | 8, 14 | pm2.61i 182 | 1 ⊢ (∅ ↾t 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∩ cin 3916 ∅c0 4299 ↦ cmpt 5191 × cxp 5639 dom cdm 5641 ran crn 5642 Rel wrel 5646 (class class class)co 7390 ↾t crest 17390 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-1st 7971 df-2nd 7972 df-rest 17392 |
| This theorem is referenced by: firest 17402 topnval 17404 resstopn 23080 ussval 24154 bj-rest00 37076 |
| Copyright terms: Public domain | W3C validator |