MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0rest Structured version   Visualization version   GIF version

Theorem 0rest 17399
Description: Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
0rest (∅ ↾t 𝐴) = ∅

Proof of Theorem 0rest
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0ex 5265 . . . 4 ∅ ∈ V
2 restval 17396 . . . 4 ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥𝐴)))
31, 2mpan 690 . . 3 (𝐴 ∈ V → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥𝐴)))
4 mpt0 6663 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑥𝐴)) = ∅
54rneqi 5904 . . . 4 ran (𝑥 ∈ ∅ ↦ (𝑥𝐴)) = ran ∅
6 rn0 5892 . . . 4 ran ∅ = ∅
75, 6eqtri 2753 . . 3 ran (𝑥 ∈ ∅ ↦ (𝑥𝐴)) = ∅
83, 7eqtrdi 2781 . 2 (𝐴 ∈ V → (∅ ↾t 𝐴) = ∅)
9 relxp 5659 . . . 4 Rel (V × V)
10 restfn 17394 . . . . . 6 t Fn (V × V)
1110fndmi 6625 . . . . 5 dom ↾t = (V × V)
1211releqi 5743 . . . 4 (Rel dom ↾t ↔ Rel (V × V))
139, 12mpbir 231 . . 3 Rel dom ↾t
1413ovprc2 7430 . 2 𝐴 ∈ V → (∅ ↾t 𝐴) = ∅)
158, 14pm2.61i 182 1 (∅ ↾t 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  cin 3916  c0 4299  cmpt 5191   × cxp 5639  dom cdm 5641  ran crn 5642  Rel wrel 5646  (class class class)co 7390  t crest 17390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-ov 7393  df-oprab 7394  df-mpo 7395  df-1st 7971  df-2nd 7972  df-rest 17392
This theorem is referenced by:  firest  17402  topnval  17404  resstopn  23080  ussval  24154  bj-rest00  37076
  Copyright terms: Public domain W3C validator