![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0rest | Structured version Visualization version GIF version |
Description: Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
0rest | ⊢ (∅ ↾t 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5298 | . . . 4 ⊢ ∅ ∈ V | |
2 | restval 17377 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) | |
3 | 1, 2 | mpan 687 | . . 3 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) |
4 | mpt0 6683 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ | |
5 | 4 | rneqi 5927 | . . . 4 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ran ∅ |
6 | rn0 5916 | . . . 4 ⊢ ran ∅ = ∅ | |
7 | 5, 6 | eqtri 2752 | . . 3 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ |
8 | 3, 7 | eqtrdi 2780 | . 2 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
9 | relxp 5685 | . . . 4 ⊢ Rel (V × V) | |
10 | restfn 17375 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
11 | 10 | fndmi 6644 | . . . . 5 ⊢ dom ↾t = (V × V) |
12 | 11 | releqi 5768 | . . . 4 ⊢ (Rel dom ↾t ↔ Rel (V × V)) |
13 | 9, 12 | mpbir 230 | . . 3 ⊢ Rel dom ↾t |
14 | 13 | ovprc2 7442 | . 2 ⊢ (¬ 𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
15 | 8, 14 | pm2.61i 182 | 1 ⊢ (∅ ↾t 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1533 ∈ wcel 2098 Vcvv 3466 ∩ cin 3940 ∅c0 4315 ↦ cmpt 5222 × cxp 5665 dom cdm 5667 ran crn 5668 Rel wrel 5672 (class class class)co 7402 ↾t crest 17371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4316 df-if 4522 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-id 5565 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-oprab 7406 df-mpo 7407 df-1st 7969 df-2nd 7970 df-rest 17373 |
This theorem is referenced by: firest 17383 topnval 17385 resstopn 23034 ussval 24108 bj-rest00 36462 |
Copyright terms: Public domain | W3C validator |