| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0rest | Structured version Visualization version GIF version | ||
| Description: Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| 0rest | ⊢ (∅ ↾t 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5282 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | restval 17445 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) |
| 4 | mpt0 6685 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ | |
| 5 | 4 | rneqi 5922 | . . . 4 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ran ∅ |
| 6 | rn0 5910 | . . . 4 ⊢ ran ∅ = ∅ | |
| 7 | 5, 6 | eqtri 2759 | . . 3 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ |
| 8 | 3, 7 | eqtrdi 2787 | . 2 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
| 9 | relxp 5677 | . . . 4 ⊢ Rel (V × V) | |
| 10 | restfn 17443 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
| 11 | 10 | fndmi 6647 | . . . . 5 ⊢ dom ↾t = (V × V) |
| 12 | 11 | releqi 5761 | . . . 4 ⊢ (Rel dom ↾t ↔ Rel (V × V)) |
| 13 | 9, 12 | mpbir 231 | . . 3 ⊢ Rel dom ↾t |
| 14 | 13 | ovprc2 7450 | . 2 ⊢ (¬ 𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
| 15 | 8, 14 | pm2.61i 182 | 1 ⊢ (∅ ↾t 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3464 ∩ cin 3930 ∅c0 4313 ↦ cmpt 5206 × cxp 5657 dom cdm 5659 ran crn 5660 Rel wrel 5664 (class class class)co 7410 ↾t crest 17439 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1st 7993 df-2nd 7994 df-rest 17441 |
| This theorem is referenced by: firest 17451 topnval 17453 resstopn 23129 ussval 24203 bj-rest00 37104 |
| Copyright terms: Public domain | W3C validator |