| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0rest | Structured version Visualization version GIF version | ||
| Description: Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| 0rest | ⊢ (∅ ↾t 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5249 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | restval 17348 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) |
| 4 | mpt0 6628 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ | |
| 5 | 4 | rneqi 5883 | . . . 4 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ran ∅ |
| 6 | rn0 5872 | . . . 4 ⊢ ran ∅ = ∅ | |
| 7 | 5, 6 | eqtri 2752 | . . 3 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ |
| 8 | 3, 7 | eqtrdi 2780 | . 2 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
| 9 | relxp 5641 | . . . 4 ⊢ Rel (V × V) | |
| 10 | restfn 17346 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
| 11 | 10 | fndmi 6590 | . . . . 5 ⊢ dom ↾t = (V × V) |
| 12 | 11 | releqi 5725 | . . . 4 ⊢ (Rel dom ↾t ↔ Rel (V × V)) |
| 13 | 9, 12 | mpbir 231 | . . 3 ⊢ Rel dom ↾t |
| 14 | 13 | ovprc2 7393 | . 2 ⊢ (¬ 𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
| 15 | 8, 14 | pm2.61i 182 | 1 ⊢ (∅ ↾t 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3438 ∩ cin 3904 ∅c0 4286 ↦ cmpt 5176 × cxp 5621 dom cdm 5623 ran crn 5624 Rel wrel 5628 (class class class)co 7353 ↾t crest 17342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-rest 17344 |
| This theorem is referenced by: firest 17354 topnval 17356 resstopn 23089 ussval 24163 bj-rest00 37054 |
| Copyright terms: Public domain | W3C validator |