![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0rest | Structured version Visualization version GIF version |
Description: Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
0rest | ⊢ (∅ ↾t 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5325 | . . . 4 ⊢ ∅ ∈ V | |
2 | restval 17486 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) | |
3 | 1, 2 | mpan 689 | . . 3 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) |
4 | mpt0 6722 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ | |
5 | 4 | rneqi 5962 | . . . 4 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ran ∅ |
6 | rn0 5950 | . . . 4 ⊢ ran ∅ = ∅ | |
7 | 5, 6 | eqtri 2768 | . . 3 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ |
8 | 3, 7 | eqtrdi 2796 | . 2 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
9 | relxp 5718 | . . . 4 ⊢ Rel (V × V) | |
10 | restfn 17484 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
11 | 10 | fndmi 6683 | . . . . 5 ⊢ dom ↾t = (V × V) |
12 | 11 | releqi 5801 | . . . 4 ⊢ (Rel dom ↾t ↔ Rel (V × V)) |
13 | 9, 12 | mpbir 231 | . . 3 ⊢ Rel dom ↾t |
14 | 13 | ovprc2 7488 | . 2 ⊢ (¬ 𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
15 | 8, 14 | pm2.61i 182 | 1 ⊢ (∅ ↾t 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∩ cin 3975 ∅c0 4352 ↦ cmpt 5249 × cxp 5698 dom cdm 5700 ran crn 5701 Rel wrel 5705 (class class class)co 7448 ↾t crest 17480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-rest 17482 |
This theorem is referenced by: firest 17492 topnval 17494 resstopn 23215 ussval 24289 bj-rest00 37047 |
Copyright terms: Public domain | W3C validator |