MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0rest Structured version   Visualization version   GIF version

Theorem 0rest 17330
Description: Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.)
Assertion
Ref Expression
0rest (∅ ↾t 𝐴) = ∅

Proof of Theorem 0rest
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 0ex 5245 . . . 4 ∅ ∈ V
2 restval 17327 . . . 4 ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥𝐴)))
31, 2mpan 690 . . 3 (𝐴 ∈ V → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥𝐴)))
4 mpt0 6623 . . . . 5 (𝑥 ∈ ∅ ↦ (𝑥𝐴)) = ∅
54rneqi 5877 . . . 4 ran (𝑥 ∈ ∅ ↦ (𝑥𝐴)) = ran ∅
6 rn0 5866 . . . 4 ran ∅ = ∅
75, 6eqtri 2754 . . 3 ran (𝑥 ∈ ∅ ↦ (𝑥𝐴)) = ∅
83, 7eqtrdi 2782 . 2 (𝐴 ∈ V → (∅ ↾t 𝐴) = ∅)
9 relxp 5634 . . . 4 Rel (V × V)
10 restfn 17325 . . . . . 6 t Fn (V × V)
1110fndmi 6585 . . . . 5 dom ↾t = (V × V)
1211releqi 5718 . . . 4 (Rel dom ↾t ↔ Rel (V × V))
139, 12mpbir 231 . . 3 Rel dom ↾t
1413ovprc2 7386 . 2 𝐴 ∈ V → (∅ ↾t 𝐴) = ∅)
158, 14pm2.61i 182 1 (∅ ↾t 𝐴) = ∅
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  cin 3901  c0 4283  cmpt 5172   × cxp 5614  dom cdm 5616  ran crn 5617  Rel wrel 5621  (class class class)co 7346  t crest 17321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-rest 17323
This theorem is referenced by:  firest  17333  topnval  17335  resstopn  23099  ussval  24172  bj-rest00  37114
  Copyright terms: Public domain W3C validator