| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 0rest | Structured version Visualization version GIF version | ||
| Description: Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.) |
| Ref | Expression |
|---|---|
| 0rest | ⊢ (∅ ↾t 𝐴) = ∅ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5247 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | restval 17332 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) | |
| 3 | 1, 2 | mpan 690 | . . 3 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) |
| 4 | mpt0 6628 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ | |
| 5 | 4 | rneqi 5881 | . . . 4 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ran ∅ |
| 6 | rn0 5870 | . . . 4 ⊢ ran ∅ = ∅ | |
| 7 | 5, 6 | eqtri 2756 | . . 3 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ |
| 8 | 3, 7 | eqtrdi 2784 | . 2 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
| 9 | relxp 5637 | . . . 4 ⊢ Rel (V × V) | |
| 10 | restfn 17330 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
| 11 | 10 | fndmi 6590 | . . . . 5 ⊢ dom ↾t = (V × V) |
| 12 | 11 | releqi 5722 | . . . 4 ⊢ (Rel dom ↾t ↔ Rel (V × V)) |
| 13 | 9, 12 | mpbir 231 | . . 3 ⊢ Rel dom ↾t |
| 14 | 13 | ovprc2 7392 | . 2 ⊢ (¬ 𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
| 15 | 8, 14 | pm2.61i 182 | 1 ⊢ (∅ ↾t 𝐴) = ∅ |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∩ cin 3897 ∅c0 4282 ↦ cmpt 5174 × cxp 5617 dom cdm 5619 ran crn 5620 Rel wrel 5624 (class class class)co 7352 ↾t crest 17326 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-rest 17328 |
| This theorem is referenced by: firest 17338 topnval 17340 resstopn 23102 ussval 24175 bj-rest00 37146 |
| Copyright terms: Public domain | W3C validator |