Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > 0rest | Structured version Visualization version GIF version |
Description: Value of the structure restriction when the topology input is empty. (Contributed by Mario Carneiro, 13-Aug-2015.) |
Ref | Expression |
---|---|
0rest | ⊢ (∅ ↾t 𝐴) = ∅ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5234 | . . . 4 ⊢ ∅ ∈ V | |
2 | restval 17118 | . . . 4 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) | |
3 | 1, 2 | mpan 686 | . . 3 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴))) |
4 | mpt0 6571 | . . . . 5 ⊢ (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ | |
5 | 4 | rneqi 5843 | . . . 4 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ran ∅ |
6 | rn0 5832 | . . . 4 ⊢ ran ∅ = ∅ | |
7 | 5, 6 | eqtri 2767 | . . 3 ⊢ ran (𝑥 ∈ ∅ ↦ (𝑥 ∩ 𝐴)) = ∅ |
8 | 3, 7 | eqtrdi 2795 | . 2 ⊢ (𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
9 | relxp 5606 | . . . 4 ⊢ Rel (V × V) | |
10 | restfn 17116 | . . . . . 6 ⊢ ↾t Fn (V × V) | |
11 | 10 | fndmi 6533 | . . . . 5 ⊢ dom ↾t = (V × V) |
12 | 11 | releqi 5686 | . . . 4 ⊢ (Rel dom ↾t ↔ Rel (V × V)) |
13 | 9, 12 | mpbir 230 | . . 3 ⊢ Rel dom ↾t |
14 | 13 | ovprc2 7308 | . 2 ⊢ (¬ 𝐴 ∈ V → (∅ ↾t 𝐴) = ∅) |
15 | 8, 14 | pm2.61i 182 | 1 ⊢ (∅ ↾t 𝐴) = ∅ |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ∈ wcel 2109 Vcvv 3430 ∩ cin 3890 ∅c0 4261 ↦ cmpt 5161 × cxp 5586 dom cdm 5588 ran crn 5589 Rel wrel 5593 (class class class)co 7268 ↾t crest 17112 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pr 5355 ax-un 7579 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-ral 3070 df-rex 3071 df-reu 3072 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-id 5488 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-ov 7271 df-oprab 7272 df-mpo 7273 df-1st 7817 df-2nd 7818 df-rest 17114 |
This theorem is referenced by: firest 17124 topnval 17126 resstopn 22318 ussval 23392 bj-rest00 35231 |
Copyright terms: Public domain | W3C validator |